CMOSLOGIC

A CMOS transistor (or device) has four terminals. gate, source, drain, and afourth terminal that we
shall ignore until the next section. A CMOS transistor is a switch. The switch must be conducting or on
to allow current to flow between the source and drain terminals (using open and closed for switchesis
confusing-for the same reason we say atap ison and not that it is closed ). The transistor source and
drain terminals are equivalent as far as digital signals are concerned-we do not worry about labeling an
electrical switch with two terminals.

® V g isthepotential difference, or voltage, between nodes A and B in acircuit; V 5 g ispositive if

node A is more positive than node B.

® |[talics denote variables; constants are set in roman (upright) type. Uppercase letters denote DC,
large-signal, or steady-state voltages.

® For TTL the positive power supply is called VCC (V - or V ¢ ). The'C' denotes that the supply

is connected indirectly to the collectors of the npn bipolar transistors (a bipolar transistor has a
collector, base, and emitter-corresponding roughly to the drain, gate, and source of an MOS
transistor).

® Following the example of TTL we used VDD (V p or V 5 ) to denote the positive supply in an

NMOS chip where the devices are all n -channel transistors and the drains of these devices are
connected indirectly to the positive supply. The supply nomenclature for NM OS chips has stuck
for CMOS.

® VDD isthe name of the power supply node or net; V 5 represents the value (uppercase since V

pp isaDC quantity). SinceV y isavariable, it isitalic (words and multiletter abbreviations use
roman-thusitisV o, butV g....).

® L ogic designers often call the CMOS negative supply VSS or VSS even if it is actually ground or
GND. | shall use VSSfor the node and V g for the value.

® CMOS uses positivelogic -VDD islogic’1l and VSSislogic’0O'.

We turn atransistor on or off using the gate terminal. There are two kinds of CMOS transistors: n
-channel transistors and p -channel transistors. An n -channel transistor requiresalogic’1’ (from now
onl’ll just say a’1’) on the gate to make the switch conducting (to turn the transistor on ). A p -channel
transistor requiresalogic 'O’ (again from now on, I'll just say a’0’) on the gate to make the switch
nonconducting (to turn the transistor off ). The p -channel transistor symbol has a bubble on its gate to
remind usthat the gate hasto be a’ 0’ to turn the transistor on . All thisis shown in Figure 2.1(a) and (b).
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FIGURE 2.1 CMOS transistors as switches. (a) An n -channel transistor. (b) A p -channel transistor.
(c) A CMOS inverter and its symbol (an equilateral triangle and acircle).

If we connect an n -channel transistor in series with a p -channel transistor, as shown in Figure 2.1(c),
we form an inverter . With four transistors we can form a two-input NAND gate (Figure 2.2a). We can
also make atwo-input NOR gate (Figure 2.2b). Logic designers normally use the terms NAND gate and
logic gate (or just gate), but | shall try to use the terms NAND cell and logic cell rather than NAND gate
or logic gate in this chapter to avoid any possible confusion with the gate terminal of atransistor.
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FIGURE 2.2 CMOSIogic. (a) A two-input NAND logic cell. (b) A two-input NOR logic cell. Then
-channel and p -channel transistor switches implement the’1'sand’0’s of a Karnaugh map.
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2.1 CMOS Transistors

Figure 2.3 illustrates how electrons and holes abandon their dopant atoms leaving a depletion region
around atransistor’s source and drain. The region between source and drain is normally nonconducting.
To make an n -channel transistor conducting, we must apply a positive voltage V ¢ (the gate voltage

with respect to the source) that is greater than the n -channel transistor threshold voltage, V , , (atypical

valueis 0.5V and, as far aswe are presently concerned, is a constant). This establishes athin (250 A)
conducting channel of electrons under the gate. MOS transistors can carry avery small current (the
subthreshold current -afew microamperes or less) withV o<V ., but we shall ignore this. A

transistor can be conducting (V 55>V ;) without any current flowing. To make current flow inann
-channel transistor we must also apply a positive voltage, V g, to the drain with respect to the source.

Figure 2.3 shows these connections and the connection to the fourth terminal of an MOS transistor-the
bulk (well , tub, or substrate ) terminal. For an n -channel transistor we must connect the bulk to the
most negative potential, GND or VSS, to reverse bias the bulk-to-drain and bulk-to-source pn -diodes.
The arrow in the four-terminal n -channel transistor symbol in Figure 2.3 reflects the polarity of these pn
-diodes.
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FIGURE 2.3 An n -channel MOS transistor. The gate-oxide thickness, T o, , is approximately 100

angstroms (0.01 m m). A typical transistor length, L =21 . The bulk may be either the substrate or a
well. The diodes represent pn -junctions that must be reverse-biased.

The current flowing in the transistor is
current (amperes) = charge (coulombs) per unit time (second). (2.1)

We can express the current in terms of the total charge in the channel, Q (imagine taking a picture and
counting the number of electronsin the channel at that instant). If t ; (for time of flight -sometimes

called the transit time) isthe time that it takes an electron to cross between source and drain, the
drain-to-source current, | hg, , is

I psn=Q/t¢ . (2.2)

Weneed to find Qand t ; . The velocity of the electrons v (a vector) is given by the equation that forms
the basis of Ohm’slaw:

v=-m_,E, (2.3

where m . is the electron mobility ( m D is the hole mobility ) and E is the electric field (with units Vm 1

).

Typical carrier mobility valuesarem , = 500-1000 cm 2V 1 s1and m o = 100-400 cm 2y-lgl,
Equation 2.3 is a vector equation, but we shall ignore the vertical electric field and concentrate on the
horizontal electric field, E , , that moves the electrons between source and drain. The horizontal

component of the electric field isE , = -V g/ L, directed from the drain to the source, where L isthe
channel length (see Figure 2.3). The electrons travel a distance L with horizontal velocity v, =-m E
, SO that

L L2
tf e = ceee L (2.4)
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Next we find the channel charge, Q . The channel and the gate form the plates of a capacitor, separated
by an insulator-the gate oxide. We know that the charge on alinear capacitor, C,isQ = CV . Our lower
plate, the channel, is not alinear conductor. Charge only appears on the lower plate when the voltage
between the gate and the channel, V - , exceeds the n -channel threshold voltage. For our nonlinear

capacitor we need to modify the equation for alinear capacitor to the following:
Q=C(Vgc-Vin)-(25)

The lower plate of our capacitor is resistive and conducting current, so that the potential in the channel,
V oo varies. Infact, V =V ggatthesourceand V - =V g~ V pga thedrain. What we really

should do isfind an expression for the channel charge as a function of channel voltage and sum
(integrate) the charge all the way across the channel, from x = O (at the source) to x = L (at the drain).
Instead we shall assume that the channel voltage, V - (X ), isalinear function of distance from the

source and take the average value of the charge, which is thus

The gate capacitance, C, is given by the formulafor a parallel-plate capacitor with length L , width W,
and plate separation equal to the gate-oxide thickness, T ,, . Thusthe gate capacitanceis

where e , isthe gate-oxide dielectric permittivity. For silicon dioxide, Si0,, e, 23.45¥10 11 Fm-1,
so that, for a typical gate-oxide thickness of 100 A1A=1 angstrom = 0.1 nm), the gate capacitance
per unit area, C ,, 23f Fmm 2.

Now we can express the channel charge in terms of the transistor parameters,
Q=WLC[(Vgs-Vin)-05Vpgl. (28
Finally, the drain-source current is

= (W/L)mncox[(VGS-th)-OSVDS]VDS

= (WILK [ (Vgs-Vin)-05VpslVps.  (29)



The constant k' , IS the process transconductance parameter (or intrinsic transconductance ):
k ,=m,C. - (2.10)

We aso defineb |, the transistor gain factor (or just gain factor ) as

b=k (WIL). (212)

The factor W/L (transistor width divided by length) is the transistor shape factor .

Equation 2.9 describes the linear region (or triode region) of operation. This equation isvalid until V 5o
=V g5~V {,adthen predicts that | g decreases with increasing V 5 , which does not make physical
sense. AtV ps=Vies-Vin=Vops (sat) (the saturation voltage ) there is no longer enough voltage

between the gate and the drain end of the channel to support any channel charge. Clearly a small amount
of charge remains or the current would go to zero, but with very little free charge the channel resistance
in asmall region close to the drain increases rapidly and any further increasein V g is dropped over

thisregion. Thusfor V o>V 55- V  , (the saturation region , or pentode region, of operation) the
drain current |DS remains approximately constant at the saturation current, | g, (sat) where

| bsn (sa) = (0 2V s Vin)?: Vs>V, (212)
Figure 2.4 shows the n -channel transistor | DS -V DS characteristics for ageneric 0.5 m m CMOS

process that we shall call G5 . We can fit Eq. 2.12 to the long-channel transistor characteristics (W = 60
mm, L =6mm)inFigure2.4(d). If | g, (sat) = 25mA (WithV 5g=30V,V 5=30V,V =065

V, T ox =100 A), the intrinsic transconductance is

2(LIW) | pgn (s

(3.0- 0.65) 2

=9.05¥10° AV 2



or approximately 90 m AV 2 Thisvalueof k., calculated in the saturation region, will be different

n H
(typically lower by afactor of 2 or more) from the value of k n, measured in the linear region. We
assumed the mobility, m ., and the threshold voltage, V are constants-neither of which istrue, aswe

shall seein Section 2.1.2.

tn’

For the p -channel transistor in the G5 process, | DSp (sat) = -850mA (V pg=-30V,V 55=-30V, V,

p:-0.85V,W:60mm,L:6mm).Then

2 (LIW) (-1 pgp san))
L R — (2.14)

(-3.0- (-0.85) ) 2

=368¥10°AV 2

The next section explainsthe signsin Eq. 2.14.
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FIGURE 2.4 MOS n -channel transistor characteristics for ageneric



FIGURE 2.4 MOS n -channel transistor characteristics for ageneric L
0.5 m m process (G5). (a) A short-channel transistor, with W =6 m o= o
mand L = 0.6 m m (drawn) and a long-channel transistor (W = 60
mm, L =6 mm) (b) The 6/0.6 characteristics represented as a
surface. () A long-channel transistor obeys a square-law
characteristic between | hgand V g in the saturation region (V pg

= 3V). A short-channel transistor shows amore linear
characteristic due to velocity saturation. Normally, all of the
transistors used on an ASIC have short channels.

2.1.1 P-Channel Transistors

The source and drain of CMOS transistors ook identical; we have to know which way the current is
flowing to distinguish them. The source of an n -channel transistor is lower in potential than the drain
and vice versafor ap -channel transistor. In an n -channel transistor the threshold voltage, V , , , is

normally positive, and the terminal voltagesV g and V sgare aso usudly positive. In ap -channel
transistor V D is normally negative and we have a choice: We can write everything in terms of the
magnitudes of the voltages and currents or we can use negative signs in a consistent fashion.

Here are the equations for a p -channel transistor using negative signs:

— 2.
psp(saty =-0p2(Ves-Vip) i Vps<VgsVip:

In these two equations V o is negative, and the terminal voltagesV pgand V ;gare aso normally
negative (and -3V < -2V, for example). The current | DSp is then negative, corresponding to
conventional current flowing from source to drain of ap -channel transistor (and hence the negative sign
for | DSp (sat) in Eq. 2.14).

2.1.2 Velocity Saturation

For a deep submicron transistor, Eq. 2.12 may overestimate the drain-source current by a factor of 2 or
more. There are three reasons for this error. First, the threshold voltage is not constant. Second, the
actua length of the channel (the electrical or effective length, often written asL ) islessthan the
drawn (mask) length. The third reason isthat Eq. 2.3 isnot valid for high electric fields. The electrons
cannot move any faster than about v ., , = 10° ms 1 when the electric field is above 106 Vm -1
(reached when 1V is dropped across 1 m m); the electrons become velocity saturated . Inthiscaset ; =
L o / V max n » the drain-source saturation current is independent of the transistor length, and Eq. 2.12

becomes



| bsn (sat) = WV xnCox (Ves-Vin)i Vps>Vops (sat) (velocity saturated). (2.16)

We can see this behavior for the short-channel transistor characteristics in Figure 2.4(a) and (c).

Transistor current is often specified per micron of gate width because of the form of Eg. 2.16. Asan
example, suppose | g, (sat) /W =300m A mm -1 for then -channel transistorsin our G5 process (with
Vps=30V,V o5=30V,V, =065V,L 4=05mmandT ,, =100 A). Then E, 2(3-0.65) VV /

05mmasvmm1,

Vo oo (2.17)

(3.45¥1073) (3- 0.65)

= 37,000 ms 1
andt,20.5mm/37,000ms™1213 ps.

Thevaueforv . ,islower than the 10> ms™1 we expected because the carrier velocity is also

lowered by mobility degradation due the vertical electric field-which we have ignored. This vertical
field forces the carriersto keep "bumping” in to the interface between the silicon and the gate oxide,
slowing them down.

2.1.3 SPICE Models

The simulation program SPICE (which stands for Simulation Program with Integrated Circuit Emphasis
) is often used to characterize logic cells. Table 2.1 shows atypical set of model parameters for our G5

process. The SPICE parameter KP (given inm AV "2) correspondstok , (and k’ o) SPICE

parameters VTO and TOX correspondto V', , (and V D ),andT ., . SPICE parameter UO (givenincm 2
-1 ~-1 . -

V "= s™") corresponds to the ideal bulk mobility values, m  (and m 0 ). Many of the other parameters

model velocity saturation and mobility degradation (and thus the effective value of k and k ' D ).

TABLE 2.1 SPICE parameters for a generic 0.5 m m process, G5 (0.6 m m drawn gate length). The
n-channel transistor characteristics are shown in Figure 2.4.

.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1 VTO=0.65



DELTA=0.7

+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6 NSUB=1.4E+17 NFS=6E+11
+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10 CGSO=3.0E-10 CGBO=4.0E-10
+ CJ=5.6E-04 MJ=0.56 CISW=5E-11 MISW=0.52 PB=1

.MODEL CMOSP PMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=-1 VTO=-0.92
DELTA=0.29

+ LD=3.5E-08 KP=4.9E-05 UO=135 THETA=0.18 RSH=2 GAMMA=0.47 NSUB=8.5E+16
NFS=6.5E+11

+ VMAX=2.5E+05 ETA=2.45E-02 KAPPA=7.96 CGDO=2.4E-10 CGSO=2.4E-10 CGBO=3.8E-10
+ CJ=9.3E-04 MJ=0.47 CISW=2.9E-10 MISW=0.505 PB=1

2.1.4 Logic Levels

Figure 2.5 shows how to use transistors as logic switches. The bulk connection for the n -channel
transistor in Figure 2.5(a-b) isap -well. The bulk connection for the p -channel transistor isan n -well.
The remaining connections show what happens when we try and pass alogic signal between the drain
and source terminals.
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FIGURE 2.5 CMOS | ogic levels. (a) A strong’'0’. (b) A weak *1’. (c) A weak '0". (d) A strong’1". (V

nispositiveand V

0 Is negative.) The depth of the channelsis greatly exaggerated.



In Figure 2.5(a) we apply alogic’1’ (or VDD -l shall use these interchangeably) to the gate and a logic
"0’ (V gg) to the source (we know it is the source since electrons must flow from this point, since V g

is the lowest voltage on the chip). The application of these voltages makes the n -channel transistor
conduct current, and electrons flow from source to drain.

Supposethedrainisinitially at logic *1’; then the n -channel transistor will begin to discharge any
capacitance that is connected to its drain (due to another logic cell, for example). Thiswill continue until
the drain terminal reachesalogic'0’, and at that timeV ;5 and V g are both equal to'V 5 , afull

logic’1l'. Thetransistor is strongly conducting now (with alarge channel charge, Q, but thereisno
current flowing sinceV g = 0 V). The transistor will strongly object to attempts to changeitsdrain

terminal from alogic’0’. We say that the logic level at thedrainisastrong’0’.

In Figure 2.5(b) we apply alogic’1’ to thedrain (it must now be the drain since electrons have to flow
toward alogic'1"). The situation is now quite different-the transistor is still onbut V ¢ is decreasing as

the source voltage approachesits final value. In fact, the source terminal never getsto alogic’1 -the
source will stop increasing in voltage whenV g reachesV . . At this point the transistor is very nearly

off and the source voltage creeps slowly upto V 5 - V |, . Because the transistor is very nearly off, it

would be easy for alogic cell connected to the source to change the potential there, since thereis so little
channel charge. Thelogic level at the sourceisaweak ' 1'. Figure 2.5(c-d) show the state of affairsfor a
p -channel transistor is the exact reverse or complement of the n -channel transistor situation.

In summary, we have the following logic levels:

® Ann-channel transistor providesastrong’0’, but aweak "1’.
® A p-channel transistor providesastrong'1’, but aweak '0’.

Sometimes we refer to the weak versionsof 0" and’1’ as degraded logic levels. In CMOS technol ogy
we can use both types of transistor together to produce strong’0’ logic levels aswell as strong’1’ logic
levels.

2.2 The CMOS Process

Figure 2.6 outlines the steps to create an integrated circuit. The starting material issilicon, Si, refined

from quartzite (with less than 1 impurity in 10 19 silicon atoms). We draw a single-crystal silicon boule
(or ingot) from a crucible containing a melt at approximately 1500 °C (the melting point of silicon at

1 atm. pressure is 1414 °C). This method is known as Czochralski growth. Acceptor ( p -type) or donor (
n -type) dopants may be introduced into the melt to alter the type of silicon grown.

The boule is sawn to form thin circular wafers (6, 8, or 12 inches in diameter, and typically 600 m m
thick), and aflat is ground (the primary flat), perpendicular to the <110> crystal axis-as a"this edge
down" indication. The boule is drawn so that the wafer surfaceis either in the (111) or (100) crystal
planes. A smaller secondary flat indicates the wafer crystalline orientation and doping type. A typical
submicron CMOS processes uses p -type (100) wafers with aresistivity of approximately 10 W cm-this
type of wafer has two flats, 90° apart. Wafers are made by chemical companies and sold to the IC
manufacturers. A blank 8-inch wafer costs about $100.



To begin IC fabrication we place a batch of wafers (awafer lot ) on aboat and grow alayer (typicaly a
few thousand angstroms) of silicon dioxide, SIO , , using afurnace. Silicon is used in the

semiconductor industry not so much for the properties of silicon, but because of the physical, chemical,
and electrical properties of its native oxide, SIO , . An | C fabrication process contains a series of

masking steps (that in turn contain other steps) to create the layers that define the transistors and metal
interconnect.
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FIGURE 2.6 IC fabrication. Grow crystalline silicon (1); make awafer (2-3); grow asilicon dioxide
(oxide) layer in afurnace (4); apply liquid photoresist (resist) (5); mask exposure (6); a cross-section
through awafer showing the developed resist (7); etch the oxide layer (8); ion implantation (9-10);
strip the resist (11); strip the oxide (12). Steps similar to 4-12 are repeated for each layer (typically
12-20 times for a CM OS process).

Each masking step starts by spinning athin layer (approximately 1 m m) of liquid photoresist ( resist)
onto each wafer. The wafers are baked at about 100 °C to remove the solvent and harden the resist
before being exposed to ultraviolet (UV) light (typically less than 200 nm wavel ength) through a mask .
The UV light alters the structure of the resist, allowing it to be removed by developing. The exposed
oxide may then be etched (removed). Dry plasma etching etches in the vertical direction much faster
than it does horizontally (an anisotropic etch). Wet etch techniques are usually isotropic . The resist
functions as amask during the etch step and transfers the desired pattern to the oxide layer.

Dopant ions are then introduced into the exposed silicon areas. Figure 2.6 illustrates the use of ion
implantation . An ion implanter is a cross between a TV and a mass spectrometer and fires dopant ions
into the silicon wafer. lons can only penetrate materials to a depth (the range , normally afew microns)
that depends on the closely controlled implant energy (measured in keV-usually between 10 and 100

keV; an electron volt, 1 eV, is 1.6 ¥ 10719 J). By using layers of resist, oxide, and polysilicon we can
prevent dopant ions from reaching the silicon surface and thus block the silicon from receiving an
implant . We control the doping level by counting the number of ions we implant (by integrating the

ion-beam current). The implant dose is measured in atoms/cm 2 (typical doses are from 10 13t0101° cm

“2). As an alternative to ion implantation we may instead strip the resist and introduce dopants by
diffusion from a gaseous source in afurnace.

Once we have completed the transistor diffusion layers we can deposit layers of other materials. Layers



of polycrystalline silicon (polysilicon or poly ), SO, , and silicon nitride (Si 3 N ), for example, may

be deposited using chemical vapor deposition ( CVD ). Metal layers can be deposited using sputtering .
All these layers are patterned using masks and similar photolithography steps to those shown in
Figure 2.6.

TABLE 2.2 CMOS process layers.
Derivation from drawn MQOSIS mask

Mask/layer name layers Alternative names for mask/layer label
n -well =nwell 1 bulk, substrate, tub, n-tub, moat CWN
p -well =pwell 1 bulk, substrate, tub, p -tub, moat CWP
active = pdiff + ndiff (in oxide, thinox, island, gate— can
polysilicon = poly poly, gate CPG
n -diffusion implant 2 = grow (ndiff) ndiff, n -select, nplus, n+ CSN
p -diffusion implant 2 = grow (pdiff) pdiff, p -select, pplus, p+ CsP
contact = contact ggm?;:tt cut, poly contact, diffusion CCPand CCA 3
metal 1 =ml first-level metal CMF
metal2 =m2 second-level metal CMS
via2 =via2 metal 2/metal 3 via, m2/m3 via CVS
metal3 =m3 third-level metal CMT
glass = glass passivation, overglass, pad COG

Table 2.2 shows the mask layers (and their relation to the drawn layers) for a submicron, silicon-gate,
three-level metal, self-aligned, CMOS process . A process in which the effective gate length isless than
1 mmisreferred to as a submicron process . Gate lengths below 0.35 m m are considered in the
deep-submicron regime.

Figure 2.7 shows the layers that we draw to define the masks for the logic cell of Figure 1.3. Potential
confusion arises because we like to keep layout simple but maintain a"what you see is what you get"
(WY SIWY G) approach. This means that the drawn layers do not correspond directly to the masksin all
Cases.
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FIGURE 2.7 The standard cell shown in Figure 1.3. (a8)-(i) The drawn layers that define the masks.
The active mask is the union of the ndiff and pdiff drawn layers. The n -diffusion implant and p
-diffusion implant masks are bloated versions of the ndiff and pdiff drawn layers. (j) The complete
cell layout. (k) The phantom cell layout. Often an ASIC vendor hides the details of the internal cell
construction. The phantom cell is used for layout by the customer and then "instantiated" by the ASIC
vendor after layout is complete. This layout uses grayscale stipple patterns to distinguish between
layers.

We can construct wellsin a CMOS processin several ways. In an n-well process, the substrate is p
-type (the wafer itself) and we use an n -well mask to build the n -well. We do not need a p -well mask
because there are no p -wellsin an n -well process-the n -channel transistors all sit in the substrate (the
wafer)-but we often draw the p -well layer asthough it existed. In a p-well processwe use ap -well
mask to make the p -wells and the n -wells are the substrate. In atwin-tub (or twin-well ) process, we
create individual wells for both types of transistors, and neither well is the substrate (which may be
either n -type or p -type). There are even triple-well processes used to achieve even more control over
the transistor performance. Whatever process that we use we must connect all the n -wells to the most
positive potential on the chip, normally VDD, and al the p -wellsto VSS; otherwise we may forward
bias the bulk to source/drain pn -junctions. The bulk connections for CMOS transistors are not usually
drawn in digital circuit schematics, but these substrate contacts ( well contacts or tub ties) are very
important. After we make the well(s), we grow a layer (approximately 1500 A) of Si 3 N 4over the

wafer. The active mask (CAA) leavesthis nitride layer only in the active areas that will later become
transistors or substrate contacts. Thus

CAA (mask) = ndiff (drawn) ? pdiff (drawn) , (2.18)

the ? symbol represents OR (union) of the two drawn layers, ndiff and pdiff. Everything outside the
active areasis known as the field region, or just field .



Next we implant the substrate to prevent unwanted transistors from forming in the field region-thisis the
field implant or channel-stop implant . The nitride over the active areas acts as an implant mask and we
may use another field-implant mask at this step also. Following this we grow athick (approximately
5000 A) layer of SiO , , thefield oxide ( FOX'). The FOX will not grow over the nitride areas. When we

strip the nitride we are left with FOX in the areas we do not want to dope the silicon. Following thiswe
deposit, dope, mask, and etch the poly gate material, CPG (mask) = poly (drawn). Next we create the
doped regions that form the sources, drains, and substrate contacts using ion implantation. The poly gate
functions like masking tape in these steps. One implant (using phosphorous or arsenic ions) formsthe n
-type source/drain for the n -channel transistors and n -type substrate contacts (CSN). A second implant
(using boron ions) forms the p -type source-drain for the p -channel transistors and p -type substrate
contacts (CSP). These implants are masked as follows

CSN (mask) = grow (ndiff (drawn)), (2.19)
CSP (mask) = grow (pdiff (drawn)), (2.20)

where "grow" means that we expand or bloat the drawn ndiff and drawn pdiff layers slightly (usually by
afew ).

During implantation the dopant ions are blocked by the resist pattern defined by the CSN and CSP
masks. The CSN mask thus prevents the n -type regions being implanted with p -type dopants (and vice
versafor the CSP mask). Aswe shall see, the CSN and CSP masks are not intended to define the edges
of the n -type and p -type regions. Instead these two masks function more like newspaper that prevents
paint from spraying everywhere. The dopant ions are also blocked from reaching the silicon surface by
the poly gates and this aligns the edge of the source and drain regions to the edges of the gates (we call
thisa self-aligned process). In addition, the implants are blocked by the FOX and this defines the
outside edges of the source, drain, and substrate contact regions.

The only areas of the silicon surface that are doped n -type are
n -diffusion (silicon) = (CAA (mask) ? CSN (mask)) ? (  CPG (mask)) ; (2.21)
where the ? symbol represents AND (the intersection of two layers); and the y symbol represents NOT.

Similarly, the only regions that are doped p -type are
p -diffusion (silicon) = (CAA (mask) ? CSP (mask)) ? ( § CPG (mask)) . (2.22)

If the CSN and CSP masks do not overlap, it is possible to save a mask by using one implant mask (CSN
or CSP) for the other type (CSP or CSN). We can do this by using a positive resist (the pattern of resist
remaining after developing is the same as the dark areas on the mask) for one implant step and a
negative resist (vice versa) for the other step. However, because of the poor resolution of negative resist
and because of difficultiesin generating the implant masks automatically from the drawn diffusions
(especialy when opposite diffusion types are drawn close to each other or touching), it is now common
to draw both implant masks as well as the two diffusion layers.

It isimportant to remember that, even though poly is above diffusion, the polysilicon is deposited first



and acts like masking tape. It israther like airbrushing a stripe-you use masking tape and spray
everywhere without worrying about making straight lines. The edges of the pattern will align to the edge
of the tape. Here the analogy ends because the poly isleft in place. Thus,

n -diffusion (silicon) = (ndiff (drawn)) ? ( ¥ poly (drawn)) and (2.23)
p -diffusion (silicon) = (pdiff (drawn)) ? (¥ poly (drawn)) .  (2.24)

In the ASIC industry the names nplus, n +, and n -diffusion (as well as the p -type equivalents) are used
in various ways. These names may refer to either the drawn diffusion layer (that we call ndiff), the mask
(CSN), or the doped region on the silicon (the intersection of the active and implant mask that we call n
-diffusion)-very confusing.

The source and drain are often formed from two separate implants. Thefirst isalight implant close to
the edge of the gate, the second a heavier implant that forms the rest of the source or drain region. The
separate diffusions reduce the electric field near the drain end of the channel. Tailoring the device
characteristics in this fashion is known as drain engineering and a process including these stepsis
referred to asan LDD process, for lightly doped drain ; the first light implant is known asan LDD
diffusion or LDD implant.

FIGURE 2.8 Drawn layers and an example set of nwell  pwell  ndif pdif  poly  contact
black-and-white stipple patterns for a CMOS process. On top NN | | A7 | NN

are the patterns as they appear in layout. Underneath are the RS (RN | St | NN

magnified 8-by-8 pixel patterns. If we are trying to simplify H F FErE

layout we may use solid black or white for contact and vias. If | A B it
we have contacts and vias placed on top of one another we for solid)

may use stipple patterns or other means to help distinguish m Bl om2 ez omEdass
between them. Each stipple pattern is transparent, so that black
shows through from underneath when layers are

superimposed. There are no standards for these patterns.
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Figure 2.8 shows a stipple-pattern matrix for a CMOS process. When we draw layout you can see
through the layers-all the stipple patterns are OR’ ed together. Figure 2.9 shows the transistor layers as
they appear in layout (drawn using the patterns from Figure 2.8) and as they appear on the silicon.
Figure 2.10 shows the same thing for the interconnect layers.
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FIGURE 2.9 The transistor layers. (a) A p -channel transistor as drawn in layout. (b) The
corresponding silicon cross section (the heavy linesin part a show the cuts). Thisis how ap -channel
transistor would look just after completing the source and drain implant steps.

FIGURE 2.10 The interconnect layers. (a) Metal layers as
drawn in layout. (b) The corresponding structure (as it might

appear in a scanning-electron micrograph). The insulating . m Y
layers between the metal layers are not shown. Contact is T_-"

made to the underlying silicon through a platinum barrier ez e A
layer. Each via consists of atungsten plug. Each metal layer L '
consists of atitanium-tungsten and al uminum-copper B

sandwich. Most deep submicron CMOS processes use metal ol f:i:[ms y
structures similar to this. The scale, rounding, and irregularity i 2 contact

+mz

of the features are realistic.

2.2.1 Sheet Resistance

Tables 2.3 and 2.4 show the sheet resistance for each conducting layer (in decreasing order of resistance)
for two different generations of CMOS process.

TABLE 2.3 Sheet resistance (1 m m CMOS). TABLE 2.4 Sheet resistance (0.35 m m CMOS).

Sheet Sheet
Layer Units Layer Units
resistance resistance
n-well 1.15+£0.25 kW /square n-well 1+04 k W / square
poly 35+£2.0 W / square poly 10+£4.0 W / square
n-diffuson 75+ 20 W / square n -diffusion 35+2.0 W / square
p-diffuson 140 + 40 W / square p -diffusion 25+1.5 W / square
ml/2 70+ 6 m W / square m1/2/3 60 +6 m W / square
m3 30+ 3 m W / square metal4 30+3 m W / square

The diffusion layers, n -diffusion and p -diffusion, both have a high resistivity-typically from 1-100 W
/square. We measure resistance in W / square (ohms per square) because for afixed thickness of
material it does not matter what the size of a square is-the resistance is the same. Thus the resistance of a



rectangular shape of a sheet of material may be calculated from the number of squaresit contains times
the sheet resistancein W / square. We can use diffusion for very short connectionsinside alogic cell,
but not for interconnect between logic cells. Poly has the next highest resistance to diffusion. Most
submicron CMOS processes use a silicide material (ametallic compound of silicon) that has much lower
resistivity (at several W /square) than the poly or diffusion layers alone. Examples are tantalum silicide,
TaSi; tungsten silicide, WSI; or titanium silicide, TiSi. The stoichiometry of these deposited silicides
varies. For example, for tungsten silicide W:Si 21:2.6.

There are two types of silicide process. In asilicide process only the gate is silicided. This reduces the
poly sheet resistance, but not that of the source-drain. In a self-aligned silicide ( salicide) process, both
the gate and the source-drain regions are silicided. In some processes silicide can be used to connect
adjacent poly and diffusion (we call thisfeature LI , white metal, local interconnect, metal0, or m0). L1
is useful to reduce the areaof ASIC RAM cells, for example.

Interconnect uses metal layers with resistivities of tens of m W /sgquare, several orders of magnitude less
than the other layers. There are usually several layers of metal in a CMOS ASIC process, each separated
by an insulating layer. The metal layer above the poly gate layer isthe first-level metal ( m1 or metall),
the next is the second-level metal ( m2 or metal2), and so on. We can make connections from m1l to
diffusion using diffusion contacts or to the poly using polysilicon contacts .

After we etch the contact holes athin barrier metal (typically platinum) is deposited over the silicon and
poly. Next we form contact plugs ( via plugs for connections between metal layers) to reduce contact
resistance and the likelihood of breaks in the contacts. Tungsten is commonly used for these plugs.
Following this we form the metal layers as sandwiches. The middle of the sandwich isalayer (usualy
from 3000 A to 10,000 A) of aluminum and copper. The top and bottom layers are normally
titanium-tungsten (TiW, pronounced "tie-tungsten). Submicron processes use chemical-mechanical
polishing ( CMP) to smooth the wafers flat before each metal deposition step to help with step
coverage.

Aninsulating glass, often sputtered quartz (SO , ), though other materials are al'so used, is deposited

between metal layers to help create a smooth surface for the deposition of the metal. Design rules may
refer to thisinsulator as an intermetal oxide (IMO ) whether they are in fact oxides or not, or interlevel
dielectric (1LD ). The IMO may be a spin-on polymer; boron-doped phosphosilicate glass (BPSG); Si 5

N , ; or sandwiches of these material's (oxynitrides, for example).

We make the connections between m1 and m2 using metal vias, cuts, or just vias . We cannot connect
m2 directly to diffusion or poly; instead we must make these connections through m1 using avia. Most
processes allow contacts and vias to be placed directly above each other without restriction,
arrangements known as stacked vias and stacked contacts . We call a process with ml and m2 a
two-level metal ( 2LM ) technology. A 3LM process includes a third-level metal layer ( m3 or metal 3),
and some processes include more metal layers. In this case a connection between m1 and m2 will use an
ml/m2 via, or vial ; a connection between m2 and m3 will use an m2/m3 via, or via2 , and so on.

The minimum spacing of interconnects, the metal pitch , may increase with successive metal layers. The
minimum metal pitch is the minimum spacing between the centers of adjacent interconnects and is equal
to the minimum metal width plus the minimum metal spacing.



Aluminum interconnect tends to break when carrying a high current density. Collisions between
high-energy electrons and atoms move the metal atoms over along period of time in a process known as
electromigration . Copper is added to the auminum to help reduce the problem. The other solutionisto
reduce the current density by using wider than minimum-width metal lines.

Tables 2.5 and 2.6 show maximum specified contact resistance and via resistance for two generations of

CMOS processes. Notice that aml contact in either process is equal in resistance to several hundred
squares of metal.

TABLE 2.5 Contact resistance (1 mm CMOS). TABLE 2.6 Contact resistance (0.35 m m CMOS).

Contact/viatype Resistance (maximum)  Contact/viatype Resistance (maximum)
m2/m3 via (via2) SW m2/m3 via (via2) 6W

m1/m2 via (vial) 2W m1/m2 via (vial) 6W

m1/ p -diffusion contact 20 W ml/ p -diffusion contact 20 W

m1/ n -diffusion contact 20 W ml/ n -diffusion contact 20 W

m2/poly contact 20W m2l/poly contact 20W

1. If only one well layer is drawn, the other mask may be derived from the drawn layer. For example, p
-well (mask) = not (nwell (drawn)). A single-well process requires only one well mask.

2. The implant masks may be derived or drawn.

3. Largely for historical reasons the contacts to poly and contacts to active have different layer names. In
the past this allowed a different sizing or process bias to be applied to each contact type when the mask
was made.

2.3 CMOS Design Rules

Figure 2.11 defines the design rules for a CM OS process using pictures. Arrows between objects denote
aminimum spacing, and arrows showing the size of an object denote a minimum width. Rule 3.1, for
example, is the minimum width of poly (21). Each of the rule numbers may have different values for
different manufacturers-there are no standards for design rules. Tables 2.7-2.9 show the MOSI S scalable
CMOS rules. Table 2.7 shows the layer rules for the process front end , which is the front end of the line
(asin production line) or FEOL . Table 2.8 shows the rules for the process back end ( BEOL ), the metal
interconnect, and Table 2.9 shows the rules for the pad layer and glass layer.
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FIGURE 2.11 The MOSIS scalable CMOS design rules (rev. 7). Dimensions are in | . Rule numbers
are in parentheses (missing rule sets 11-13 are extensions to this basic process).

TABLE 2.7 MOSIS scalable CMOS rules version 7-the process front end.

Layer Rule Explanation Vaue/l
well (CWN, CWP) 1.1 minimum width 10
1.2 minimum space (different potential, a hot well) 9
1.3  minimum space (same potential) Oor6
14 minimum space (different well type) 0
active (CAA) 2.1/2.2 minimum width/space 3
2.3 source/drain active to well edge space 5
24 substrate/well contact active to well edge space 3

25 minimum space between active (different implant type) 0 or 4

poly (CPG) 3.1/3.2 minimum width/space 2
3.3 minimum gate extension of active 2



3.4
3.5

select (CSN, CSP) 4.1
4.2
4.3
4.4

poly contact (CCP) 5.1.a
52a
53a

active contact (CCA) 6.1.a
6.2.a
6.3.a
6.4.a

minimum active extension of poly
minimum field poly to active space

minimum select spacing to channel of transistor 1
minimum select overlap of active

minimum select overlap of contact

minimum select width and spacing 2

exact contact size
minimum poly overlap
minimum contact spacing

exact contact size

minimum active overlap

minimum contact spacing
minimum space to gate of transistor

TABLE 2.8 MOSIS scalable CMOS rules version 7-the process back end.
Layer Rule Explanation Value/l
metall (CMF) 7.1  minimum width 3

7.2.a minimum space 3

7.2.b minimum space (for minimum-width wires only) 2

7.3  minimum overlap of poly contact 1

7.4  minimum overlap of active contact 1

vial (CVA) 8.1 exactsize
8.2 minimum via spacing
8.3 minimum overlap by metal 1
8.4 minimum spacing to contact
8.5 minimum spacing to poly or active edge
metal2 (CMS) 9.1  minimum width
9.2.a minimum space
9.2.b minimum space (for minimum-width wires only)
9.3 minimum overlap of vial
via2 (CVS) 141 exactsize
14.2 minimum space
14.3 minimum overlap by metal2
14.4 minimum spacing to vial
metal3 (CMT) 15.1 minimum width
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15.2 minimum space 4

15.3 minimum overlap of via2 2
TABLE 2.9 MOSIS scalable CMOS rules version 7-the pads and overglass (passivation).
Layer Rule Explanation Vaue
glass (COG) 10.1 minimum bonding-pad width 100mm¥ 100 mm
10.2 minimum probe-pad width SmMmm¥75mm
10.3 pad overlap of glass opening 6mm

10.4 minimum pad spacing to unrelated metal 2 (or metal 3) 30mm
10.5 minimum pad spacing to unrelated metall, poly, or active 15mm

Therulesin Table 2.7 and Table 2.8 are given as multiples of | . If we use lambda-based rules we can
move between successive process generations just by changing the value of | . For example, we can
scale 0.5 mm layouts (| = 0.25 m m) by afactor of 0.175/0.25for a0.35 m m process (| =0.175m
m)-at |least in theory. Y ou may get an inkling of the practical problems from the fact that the values for
pad dimensions and spacing in Table 2.9 are given in micronsand not in | . Thisis because bonding to
the padsis an operation that does not scale well. Often companies have two sets of design rules: onein|
(with fractional | rules) and the other in microns. Ideally we would like to express all of the design rules
in integer multiples of | . Thiswas true for revisions 4-6, but not revision 7 of the MOSIS rules. In
revision 7 rules 5.2a/6.2a are noninteger. The original Mead-Conway NMOS rules include a noninteger
1.51 rulefor the implant layer.

1. To ensure source and drain width.

2. Different select types may touch but not overlap.

2.4 Combinational Logic Cells

The AND-OR-INVERT (AQI) and the OR-AND-INVERT (OAl) logic cells are particularly efficient in
CMOS. Figure 2.12 shows an AOI221 and an OAI1321 logic cell (the logic symbolsin Figure 2.12 are
not standards, but are widely used). All indices (the indices are the numbers after AOI or OAl) in the
logic cell name greater than 1 correspond to the inputsto the first "level” or stage-the AND gate(s) in an
AOQI cell, for example. Anindex of *1’ corresponds to a direct input to the second-stage cell. We write
indicesin descending order; so it is AOI221 and not AOI122 (but both are equivalent cells), and AOI32
not AOI23. If we have more than one direct input to the second stage we repeat the’1’; thusan AOI211
cell performsthe function Z = (A.B + C + D)’. A three-input NAND cell isan OAI111, but calling it
that would be very confusing. These rules are not standard, but form a convention that we shall adopt
and one that iswidely used in the ASIC industry.

There are many ways to represent the logical operator, AND. | shall use the middle dot and write A - B
(rather than AB, A.B, or A ?B); occasionally | may use AND(A, B). Similarly | shall write A + B as
well as OR(A, B). | shall use an apostrophe like this, A’, to denote the complement of A rather than A
since sometimes it is difficult or inappropriate to use an overbar ( vinculum ) or diacritical mark



(macron). It is possible to misinterpret AB’ as A B rather than AB (but the former alternative would be
A - B’ in my convention). | shall be careful in these situations.

FIGURE 2.12 Naming and numbering complex CMOS i T
combinational cells. (a) An AND-OR-INVERT cell, an l‘*ﬁf“ ERT lﬁf‘”” INVERT
AOI221. (b) An OR-AND-INVERT cell, an OAI321. FE@E FE z
Numbering is always in descending order. 0
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We can express the function of the AOI221 cell in Figure 2.12(a) as
Z=(A-B+C-D+E) . (225

We can a so write this equation unambiguously as Z = OAI221(A, B, C, D, E), just as we might write X
=NAND (I, J, K) to describe the logic function X = (I - J - K)'.

This notation is useful because, for example, if wewrite OAI321(P, Q, R, S, T, U) weimmediately
know that U (the sixth input) isthe (only) direct input connected to the second stage. Sometimes we
need to refer to particular inputs without listing them all. We can adopt another convention that letters of
the input names change with the index position. Now we can refer to input B2 of an AOI321 céll, for
example, and know which input we are talking about without writing

Z = AOI321(A1, A2, A3, B1, B2, C) . (2.26)

Table 2.10 shows the AOI family of logic cells with three indices (with branches in the family for AQI,
OAl, AO, and OA cdlls). There are 5 types and 14 separate members of each branch of thisfamily.
There are thus 4 ¥ 14 = 56 cells of the type X abc where X = { OAI, AOI, OA, AO} and each of the
indexesa, b, and c can range from 1 to 3. We form the AND-OR (AO) and OR-AND (OA) cells by
adding an inverter to the output of an AOI or OAI cell.

TABLE 2.10 The AOI family of cells with three index numbers or less.

Cell typel Caells Number of unique cells
Xal X21, X31

Xall X211, X311 2

Xab X22, X33, X32 3

Xabl X221, X331, X321 3

Xabc X222, X333, X332, X322 4

Total 14



2.4.1 Pushing Bubbles

The AOI and OAI logic cells can be built using asingle stagein CMOS using series-parallel networks
of transistors called stacks. Figure 2.13 illustrates the procedure to build the n -channel and p -channel
stacks, using the AOI1221 cell as an example.
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FIGURE 2.13 Constructing a CMOS logic cell-an AOI221. (a) First build the dual icon by using de
Morgan’s theorem to "push” inversion bubbles to the inputs. (b) Next build the n -channel and p
-channel stacks from series and parallel combinations of transistors. (¢) Adjust transistor sizes so that
the n- channel and p -channel stacks have equal strengths.

Here are the steps to construct any single-stage combinational CMOS logic cell:

1. Draw aschematic icon with an inversion (bubble) on the last cell (the bubble-out schematic). Use
de Morgan’stheorems-"A NAND isan OR with inverted inputs and aNOR isan AND with
inverted inputs’-to push the output bubble back to the inputs (this the dual icon or bubble-in
schematic).

2. Form the n -channel stack working from the inputs on the bubble-out schematic: OR translatesto a
paralel connection, AND trandates to a series connection. If you have a bubble at an input, you
need an inverter.

3. Form the p -channel stack using the bubble-in schematic (ignore the inversions at the inputs-the
bubbles on the gate terminals of the p -channel transistors take care of these). If you do not have a
bubble at the input gate terminals, you need an inverter (these will be the same input gate terminals
that had bubbles in the bubble-out schematic).

The two stacks are network duals (they can be derived from each other by swapping series connections
for parallel, and parallel for series connections). The n -channel stack implements the strong 'O’ s of the
function and the p -channel stack providesthe strong’1's. Thefinal step isto adjust the drive strength of
the logic cell by sizing the transistors.

2.4.2 Drive Strength

Normally we ratio the sizes of the n -channel and p -channel transistorsin an inverter so that both types
of transistors have the same resistance, or drive strength . That is, we makeb , =b D At low dopant



concentrations and low electric fieldsm |, is about twice m 0 To compensate we make the shape factor,

WIL, of the p -channel transistor in an inverter about twice that of the n -channel transistor (we say the
logic has aratio of 2). Since the transistor lengths are normally equal to the minimum poly width for
both types of transistors, the ratio of the transistor widthsis also equal to 2. With the high dopant
concentrations and high electric fields in submicron transistors the difference in mobilitiesis
less-typically between 1 and 1.5.

Logic cellsin alibrary have arange of drive strengths. We normally call the minimum-size inverter a
1X inverter. The drive strength of alogic cell is often used as a suffix; thusa 1X inverter has a cell name
such asINVX1or INVD1. Aninverter with transistors that are twice the size will be an INVX2. Drive
strengths are normally scaled in a geometric ratio, so we have 1X, 2X, 4X, and (sometimes) 8X or even
higher, drive-strength cells. We can size alogic cell using these basic rules:

® Any string of transistors connected between a power supply and the output in acell with 1X drive
should have the same resistance as the n -channel transistor in a 1X inverter.
® A transistor with shape factor W , /L ; has aresistance proportiona to L ; /W ; (so the larger W ;

is, the smaller the resistance).
® Two transistorsin parallel with shape factorsW ; /L ; and W, /L , are equivaent to asingle

transistor (W ; /L ; + W, /L ,)/1. For example, a2/1in parallel witha3/lisa5/1.
® Two transistors, with shape factorsW ; /L , and W, /L , , in series are equivalent to asingle 1/(L
1/W 1 +L,/W,) transistor.

For example, atransistor with shape factor 3/1 (we shall call this"a 3/1") in series with another 3/1is
equivalent to a 1/((1/3) + (1/3)) or a 3/2. We can use the following method to calcul ate equivalent
transistor sizes:

® To add transistorsin parallel, make all the lengths 1 and add the widths.
® To add transistors in series, make all the widths 1 and add the lengths.

We have to be careful to keep W and L reasonable. For example, a3/1 in serieswith a2/1 is equivalent
toal/((1/3) + (1/2)) or 1/0.83. Since we cannot make adevice 2 | wide and 1.66 | long, a 1/0.83 is more
naturally written as 3/2.5. We like to keep both W and L as integer multiples of 0.5 (equivalent to
making W and L integer multiples of | ), but W and L must be greater than 1.

In Figure 2.13(c) the transistors in the AOI221 cell are sized so that any string through the p -channel
stack has a drive strength equivalent to a 2/1 p -channel transistor (we choose the worst case, if more
than one transistor in parallel is conducting then the drive strength will be higher). The n -channel stack
issized so that it has adrive strength of a 1/1 n -channel transistor. Theratio in thislibrary is thus 2.

If we were to use four drive strengths for each of the AOI family of cells shown in Table 2.10, we would
have atotal of 224 combinational library cells-just for the AOI family. The synthesis tools can handle
this number of cells, but we may not be able to design this many cells in a reasonable amount of time.
Section 3.3, "Logical Effort," will help us choose the most logically efficient cells.

2.4.3 Transmission Gates



Figure 2.14(a) and (b) showsa CMOS transmission gate ( TG, TX gate, pass gate, coupler). We connect
ap -channel transistor (to transmit astrong’1’) in paralel with an n -channel transistor (to transmit a
strong'0’).
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FIGURE 2.14 CMOS transmission gate (TG). (@) An n- channel and p -channel transistor in parallel
formaTG. (b) A common symbol for aTG. (c) The charge-sharing problem.

We can express the function of aTG as
Z=TG(A, Y9, (2.27)

but thisis ambiguous-if we write TG(X, Y), how do we know if X is connected to the gates or
sources/drains of the TG? We shall always define TG(X, Y) when we use it. It is tempting to write
TG(A, S) =A - S, but what isthe value of Z when S="0" in Figure 2.14(a), since Z is then left floating?
A TG isaswitch, not an AND logic cell.

Thereis apotential problem if we use a TG as a switch connecting a node Z that has a large capacitance,
C gig » toaninput node A that has only asmall capacitance C g, 5 | (See Figure 2.14c). If theinitia

voltageat A isV g, | @nd theinitid voltageat ZisV g5, When we closethe TG (by setting S="1")
the final voltage on both nodes A and Z is

C BIG v BIG +C SMALL v SMALL
Y —— . (2.28)

Cric*CsuaLL

Imagine we want to drivea’0’ onto node Z from node A. Suppose C g, = 0.2 pF (about 10 standard
loadsin a0.5 mm process) and C g5 | =0.02pF, V 5 =0V andV g a | =5 V; then

(0.2 ¥10712) (0) + (0.02 ¥ 10°12) (5)
[ S — =045V . (2.29)

(0.2¥10°12) + (0.02 ¥10-12)
Thisisnot what we want at all, the "big" capacitor has forced node A to avoltage closetoa’0’. This

type of problem is known as charge sharing . We should make sure that either (1) node A is strong
enough to overcome the big capacitor, or (2) insulate node A from node Z by including a buffer (an



inverter, for example) between node A and node Z. We must not use charge to drive another logic
cell-only alogic cell can drive alogic cell.

If we omit one of the transistorsin a TG (usually the p -channel transistor) we have a pass transistor .
There is abranch of full-custom VLSI design that uses pass-transistor logic. Much of thisis based on
relay-based logic, since asingle transistor switch looks like arelay contact. There are many problems
associated with pass-transistor logic related to charge sharing, reduced noise margins, and the difficulty
of predicting delays. Though pass transistors may appear in an ASIC cell inside alibrary, they are not
used by ASIC designers.
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FIGURE 2.15 The CMOS multiplexer (MUX). (a) A noninverting 2:1 MUX using transmission gates
without buffering. (b) A symbol for aMUX (note how the inputs are |abeled). (c) An |EEE standard
symbol for aMUX. (d) A nonstandard, but very common, |[EEE symbol for aMUX. (€) An inverting
MUX with output buffer. (f) A noninverting buffered MUX.

We can use two TGs to form a multiplexer (or multiplexor-people use both orthographies) as shown in
Figure 2.15(a). We often shorten multiplexer to MUX . The MUX function for two datainputs, A and B,
with aselect signal S, is

Z=TG(A,S)+TG(B, S) . (2.30)

We can writethisasZ=A - S + B - S, since node Z is always connected to one or other of the inputs
(and we assume both are driven). Thisis atwo-input MUX (2-to-1 MUX or 2:1 MUX). Unfortunately,
we can also writethe MUX functionasZ =A - S+ B - S, soitisdifficult to write the MUX function
unambiguously asZ = MUX(X, Y, Z). For example, isthe select input X, Y, or Z? We shall define the
function MUX(X, Y, Z) each time we use it. We must aso be careful to label aMUX if we use the
symbol shown in Figure 2.15(b). Symbolsfor aMUX are shown in Figure 2.15(b-d). In the IEEE
notation’ G’ specifiesan AND dependency. Thus, in Figure 2.15(c), G ="1" selectsthe input labeled " 1'.
Figure 2.15(d) uses the common control block symbol (the notched rectangle). Here, G1 =1’ selectsthe
input'1’, and G1 ="0' selectstheinput’ 1°. Strictly thisform of IEEE symbol should be used only for
elements with more than one section controlled by common signals, but the symbol of Figure 2.15(d) is
used often for a2:1 MUX.

The MUX shown in Figure 2.15(a) works, but there is a potential charge-sharing problem if we cascade
MUXes (connect them in series). Instead most ASIC libraries use MUX cells built with amore
conservative approach. We could buffer the output using an inverter (Figure 2.15€), but then the MUX
becomesinverting. To build a safe, noninverting MUX we can buffer the inputs and output

(Figure 2.15f)-requiring 12 transistors, or 3 gate equivalents (only the gate equivalent counts are shown
from now on).



Figure 2.16 shows how to use an OAI22 logic cell (and an inverter) to implement an inverting MUX.
The implementation in equation form (2.5 gates) is

ZN = A’ -S +B -S
[(A"-S) - (B -9
[(A+S)-(B+S)]
OAI22[A, S, B, NOT(9)] . (2.31)

(both A’ and NOT(A) represent an inverter, depending on which representation is most convenient-they
are equivalent). | often use an equation to describe a cell implementation.

A
FIGURE 2.16 Aninverting 2:1 MUX based on an OAI22 cell. = "

The following factors will determine which MUX implementation is best:

1. Do we want to minimize the delay between the select input and the output or between the data
inputs and the output?

2. Do wewant an inverting or noninverting MUX?

3. Do we object to having any logic cell inputs tied directly to the source/drain diffusions of a
transmission gate? (Some companies forbid such transmission-gate inputs -since some simulation
tools cannot handle them.)

4. Do we object to any logic cell outputs being tied to the source/drain of atransmission gate? (Some
companies will not allow this because of the dangers of charge sharing.)

5. What drive strength do we require (and is size or speed more important)?

A minimum-size TG is alittle slower than a minimum-size inverter, so there is not much difference
between the implementations shown in Figure 2.15 and Figure 2.16, but the difference can become
important for 4:1 and larger MUXes.

2.4.4 Exclusve-OR Cdl

The two-input exclusive-OR ( XOR , EXOR, not-equivalence, ring-OR) function is
A1?A2=XOR(A1,A2) =Al-A2 +Al -A2.(2.32)

We are now using multiletter symbols, but there should be no doubt that A1’ means anything other than
NOT(A1). We can implement atwo-input XOR using aMUX and an inverter as follows (2 gates):

XOR(A1, A2) = MUX[NOT(A1), AL, A2] , (2.33)



where
MUX(A,B,S) =A-S+B-S’. (2.34)

This implementation only buffers one input and does not buffer the MUX output. We can use inverter
buffers (3.5 gates total) or an inverting MUX so that the XOR cell does not have any external
connections to source/drain diffusions as follows (3 gates total):

XOR(AL, A2) = NOT[MUX(NOT[NOT(A1)], NOT(A1), A2)] . (2.35)
We can also implement a two-input XOR using an AOI21 (and aNOR cell), since

XOR(A1, A2)

Al-A2 +Al -A2
[ (AL-A2) + (Al+A2) ]
AOI21[A1, A2, NOR(AL, A2)], (2.36)

(2.5 gates). Similarly we can implement an exclusive-NOR (XNOR, equivalence) logic cell using an
inverting MUX (and two inverters, total 3.5 gates) or an OAI21 logic cell (and aNAND cell, total 2.5
gates) as follows (using the MUX function of Eq. 2.34):

XNOR(AL,A2) = Al-A2+NOT(AL) - NOT(A2
= NOT[NOT[MUX (AL, NOT (A1), A2]]
= OAI21[A1, A2, NAND(AL, A2)] .  (2.37)

1. Xabc: X ={AOQI, AQ, OAIl, OA}; a b, c={2, 3}; { } means "choose one."

2.5 Sequential Logic Cells

There are two main approaches to clocking in VLS| design: multiphase clocks or asingle clock and
synchronous design . The second approach has the following key advantages: (1) it allows automated
design, (2) it issafe, and (3) it permits vendor signoff (a guarantee that the ASIC will work as
simulated). These advantages of synchronous design (especially the last one) usually outweigh every
other consideration in the choice of a clocking scheme. The vast mgjority of ASICs use arigid
synchronous design style.

2.5.1 Latch

Figure 2.17(a) shows asequential logic cell-alatch . Theinternal clock signals, CLKN (N for negative)
and CLKP (P for positive), are generated from the system clock, CLK, by two inverters (14 and 15) that
are part of every latch cell-it is usually too dangerous to have these signals supplied externally, even
though it would save space.
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FIGURE 2.17 CMOS latch. (a) A positive-enable latch using transmission gates without output
buffering, the enable (clock) signal is buffered inside the latch. (b) A positive-enable latch is
transparent while the enable is high. (c) The latch stores the last value at D when the enable goes low.

To emphasize the difference between alatch and flip-flop, sometimes people refer to the clock input of a
latch as an enable . This makes sense when we look at Figure 2.17(b), which shows the operation of a
latch. When the clock input is high, the latch is transparent -changes at the D input appear at the output
Q (quite different from aflip-flop as we shall see). When the enable (clock) goes low (Figure 2.17c),
inverters 12 and |3 are connected together, forming a storage loop that holds the last value on D until the
enable goes high again. The storage loop will hold its state as long as power is on; we call thisastatic
latch. A sequential logic cell is different from a combinational cell because it has this feature of storage
or memory.

Notice that the output Q is unbuffered and connected directly to the output of 12 (and the input of 13),
which isastorage node. In an ASIC library we are conservative and add an inverter to buffer the output,
isolate the sensitive storage node, and thus invert the sense of Q. If we want both Q and QN we have to
add two inverters to the circuit of Figure 2.17(a). This meansthat alatch requires seven inverters and
two TGs (4.5 gates).

The latch of Figure 2.17(a) is a positive-enable D latch, active-high D latch, or transparent-high D latch
(sometimes people also call this a D-type latch). A negative-enable (active-low) D latch can be built by
inverting all the clock polaritiesin Figure 2.17(a) (swap CLKN for CLKP and vice-versa).

2.5.2 Flip-Flop

Figure 2.18(a) shows aflip-flop constructed from two D latches: a master latch (the first one) and a slave
latch . Thisflip-flop contains atotal of nineinverters and four TGs, or 6.5 gates. In thisflip-flop design
the storage node S is buffered and the clock-to-Q delay will be one inverter delay less than the
clock-to-QN delay.
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FIGURE 2.18 CMOS flip-flop. (a) This negative-edge-triggered flip-flop consists of two latches:
master and slave. (b) While the clock is high, the master latch is loaded. (c) Asthe clock goes low, the
dlave latch loads the value of the master latch. (d) Waveformsillustrating the definition of the flip-flop
setuptimet g, holdtimet, , and propagation delay from clock to Q, t oy -

In Figure 2.18(b) the clock input is high, the master latch is transparent, and node M (for master) will
follow the D input. Meanwhile the slave latch is disconnected from the master latch and is storing
whatever the previous value of Q was. Asthe clock goes low (the negative edge) the slave latch is
enabled and will update its state (and the output Q) to the value of node M at the negative edge of the
clock. The slave latch will then keep thisvalue of M at the output Q, despite any changes at the D input
while the clock islow (Figure 2.18c). When the clock goes high again, the slave latch will store the
captured value of M (and we are back where we started our explanation).

The combination of the master and slave latches acts to capture or sample the D input at the negative
clock edge, the active clock edge . Thistype of flip-flop is a negative-edge-triggered flip-flop and its
behavior is quite different from alatch. The behavior is shown on the IEEE symbol by using a triangular
"notch" to denote an edge-sensitive input. A bubble shows the input is sensitive to the negative edge. To
build a positive-edge-triggered flip-flop we invert the polarity of all the clocks-as we did for alatch.

The waveformsin Figure 2.18(d) show the operation of the flip-flop as we have described it, and
illustrate the definition of setup time (t g, ), hold time (t ), and clock-to-Q propagation delay ('t ppy ).

We must keep the data stable (afixed logic'1" or '0") for atimet g, prior to the active clock edge, and
stablefor atimet after the active clock edge (during the decision window shown).
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In Figure 2.18(d) times are measured from the points at which the waveforms cross 50 percent of V 5 .

We say the trip point is 50 percent or 0.5. Common choices are 0.5 or 0.65/0.35 (asignal hasto reach
065V pptobea’l’, andreach 0.35V pytobea’0’), or 0.1/0.9 (there is no standard way to write a

trip point). Some vendors use different trip points for the input and output waveforms (especially in I/O
cells).

Theflip-flop in Figure 2.18(a) isaD flip-flop and is by far the most widely used type of flip-flop in
ASIC design. There are other types of flip-flops-JK, T (toggle), and S-R flip-flops-that are provided in
some ASIC cell libraries mainly for compatibility with TTL design. Some people use the term register to
mean an array (more than one) of flip-flops or latches (on a data bus, for example), but some people use
register to mean asingle flip-flop or alatch. Thisis confusing since flip-flops and latches are quite
different in their behavior. When | am talking about logic cells, | use the term register to mean more
than one flip-flop.

To add an asynchronous set (Q to’1") or asynchronous reset (Q to '0’) to the flip-flop of Figure 2.18(a),
we replace one inverter in both the master and slave latches with two-input NAND cells. Thus, for an
active-low set, we replace 12 and 17 with two-input NAND cells, and, for an active-low reset, we replace
I3 and 16. For both set and reset we replace al four inverters: 12, 13, 16, and | 7. Some TTL flip-flops
have dominant reset or dominant set , but thisis difficult (and dangerous) to do in ASIC design. An
input that forces Qto’ 1’ is sometimes also called preset . The IEEE logic symbolsuse’ P to denote an
input with a presetting action. An input that forces Q to 'O’ is often also called clear . The IEEE symbols
use’R’ to denote an input with aresetting action.

2.5.3 Clocked Inverter

Figure 2.19 shows how we can derive the structure of a clocked inverter from the series combination of
an inverter and aTG. The arrowsin Figure 2.19(b) represent the flow of current when the inverter is
charging (| g ) or discharging (| ) aload capacitance through the TG. We can break the connection

between the inverter cells and use the circuit of Figure 2.19(c) without substantially affecting the
operation of the circuit. The symbol for the clocked inverter shown in Figure 2.19(d) is common, but by
no means a standard.
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FIGURE 2.19 Clocked inverter. (a) An inverter plus transmission gate (TG). (b) The current flow in



the inverter and TG allows us to break the connection between the transistors in the inverter.
(c) Breaking the connection forms a clocked inverter. (d) A common symbol.

We can use the clocked inverter to replace the inverter-TG pairs in latches and flip-flops. For example,
we can replace one or both of the inverters11 and I3 (together with the TGs that follow them) in

Figure 2.17(a) by clocked inverters. There is not much to choose between the different implementations
in this case, except that layout may be easier for the clocked inverter versions (since there is one less
connection to make).

More interesting is the flip-flop design: We can only replace invertersii, 13, and | 7 (and the TGs that
follow them) in Figure 2.18(a) by clocked inverters. We cannot replace inverter 16 becauseit is not
directly connected to a TG. We can replace the TG attached to node M with a clocked inverter, and this
will invert the sense of the output Q, which thus becomes QN. Now the clock-to-Q delay will be slower
than clock-to-QN, since Q (which was QN) now comes one inverter later than QN.

If we wish to build aflip-flop with afast clock-to-QN delay it may be better to build it using clocked
inverters and use inverters with TGs for aflip-flop with afast clock-to-Q delay. In fact, since we do not
always use both Q and QN outputs of aflip-flop, some libraries include Q only or QN only flip-flops
that are dlightly smaller than those with both polarity outputs. It is slightly easier to layout clocked
inverters than an inverter plusa TG, so flip-flopsin commercial libraries include a mixture of
clocked-inverter and TG implementations.

2.6 Datapath Logic Cells

Suppose we wish to build an n -bit adder (that adds two n -bit numbers) and to exploit the regularity of
this function in the layout. We can do so using a datapath structure.

The following two functions, SUM and COUT, implement the sum and carry out for afull adder ( FA )
with two datainputs (A, B) and acarry in, CIN:

SUM =A ?B ?CIN = SUM(A, B, CIN) = PARITY (A, B, CIN) , (2.38)

COUT=A-B+A -CIN+B-CIN=MAJA, B, CIN). (2.39)

The sum uses the parity function (' 1" if there are an odd numbers of ' 1’ sin the inputs). The carry out,
COUT, uses the 2-of-3 majority function ("1’ if the mgjority of theinputsare’1’). We can combine
these two functionsin asingle FA logic cell, ADD(A[ i ],B[i], CIN, § i], COUT), shownin
Figure 2.20(a), where

S[i]=SUM (A[i],B[i],CIN), (2.40)
COUT =MAJ(A[i],B[i], CIN) . (2.41)

Now we can build a 4-bit ripple-carry adder ( RCA ) by connecting four of these ADD cells together as
shown in Figure 2.20(b). Thei th ADD cell is arranged with the following: two businputsA[ i ], B[ i ];



one bus output § i ]; aninput, CIN, that isthe carry in from stage (i - 1) below and is also passed up to
the cell above as an output; and an output, COUT, that isthe carry out to stage (i + 1) above. In the 4-bit
adder shown in Figure 2.20(b) we connect the carry input, CIN[0], to VSS and use COUT[3] and
COUT[2] to indicate arithmetic overflow (in Section 2.6.1 we shall see why we may need both signals).
Notice that we build the ADD cell so that COUT([2] is available at the top of the datapath when we need
it.

Figure 2.20(c) shows alayout of the ADD cell. The A inputs, B inputs, and S outputs all use m1
interconnect running in the horizontal direction-we call these data signals. Other signals can enter or exit
from the top or bottom and run vertically across the datapath in m2-we call these control signals. We can
also use ml for control and m2 for data, but we normally do not mix these approachesin the same
structure. Control signals are typically clocks and other signals common to elements. For example, in
Figure 2.20(c) the carry signals, CIN and COUT, run vertically in m2 between cells. To build a 4-bit
adder we stack four ADD cells creating the array structure shown in Figure 2.20(d). In this case the A
and B data bus inputs enter from the left and bus S, the sum, exits at the right, but we can connect A, B,
and Sto either side if we want.

The layout of buswide logic that operates on data signalsin this fashion is called a datapath . The
module ADD is adatapath cell or datapath element . Just as we do for standard cells we make all the
datapath cellsin alibrary the same height so we can abut other datapath cells on either side of the adder
to create a more complex datapath. When people talk about a datapath they always assumethat it is
oriented so that increasing the size in bits makes the datapath grow in height, upwards in the vertical
direction, and adding different datapath elements to increase the function makes the datapath grow in
width, in the horizontal direction-but we can rotate and position a completed datapath in any direction
we want on achip.
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FIGURE 2.20 A datapath adder. (a) A full-adder (FA) cell with inputs (A and B), acarry in, CIN, sum
output, S, and carry out, COUT. (b) A 4-bit adder. (c) The layout, using two-level metal, with datain
m1 and control in m2. In this example the wiring is completed outside the cell; it is also possible to
design the datapath cells to contain the wiring. Using three levels of metal, it is possible to wire over
the top of the datapath cells. (d) The datapath layout.

What is the difference between using a datapath, standard cells, or gate arrays? Cells are placed together
inrowson aCBIC or an MGA, but there is no generally no regularity to the arrangement of the cells
within the rows-we let software arrange the cells and complete the interconnect. Datapath layout
automatically takes care of most of the interconnect between the cells with the following advantages:



® Regular layout produces predictable and equal delay for each bit.
® |nterconnect between cells can be built into each cell.

There are some disadvantages of using a datapath:

® The overhead (buffering and routing the control signals, for example) can make a narrow (small
number of bits) datapath larger and slower than a standard-cell (or even gate-array)
implementation.

® Datapath cells have to be predesigned (otherwise we are using full-custom design) for usein a
wide range of datapath sizes. Datapath cell design can be harder than designing gate-array macros
or standard cells.

® Software to assemble a datapath is more complex and not as widely used as software for
assembling standard cells or gate arrays.

There are some newer standard-cell and gate-array tools that can take advantage of regularity in adesign
and position cells carefully. The problem isin finding the regularity if it is not specified. Using a
datapath is one way to specify regularity to ASIC design tools.

2.6.1 Datapath Elements

Figure 2.21 shows some typical datapath symbols for an adder (people rarely use the |EEE standards in
ASIC datapath libraries). | use heavy lines (they are 1.5 point wide) with a stroke to denote a data bus
(that flows in the horizontal direction in a datapath), and regular lines (0.5 point) to denote the control
signas (that flow vertically in a datapath). At the risk of adding confusion where there is none, this
stroke to indicate a data bus has nothing to do with mixed-logic conventions. For a bus, A[31:0] denotes
a 32-hit bus with A[31] as the leftmost or most-significant bit or MSB , and A[0] as the least-significant
bit or LSB . Sometimes we shall use A[MSB] or A[LSB] to refer to these bits. Notice that if we have an
n -bit busand LSB =0, then MSB =n - 1. Also, for example, A[4] is the fifth bit on the bus (from the
LSB). Weusea’ S’ or ’ADD’ inside the symbol to denote an adder instead of "+’, so we can attach ’-’
or '+/-’ to the inputs for a subtracter or adder/subtracter.
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FIGURE 2.21 Symbolsfor a datapath adder. (a) A data busis shown by a heavy line (1.5 point) and a
bus symbol. If the busisn -bitswide then MSB = n - 1. (b) An alternative symbol for an adder.
(c) Control signals are shown as lightweight (0.5 point) lines.

Some schematic datapath symbols include only data signals and omit the control signals-but we must
not forget them. In Figure 2.21, for example, we may need to explicitly tie CIN[0] to VSS and use



COUT[MSB] and COUT[MSB - 1] to detect overflow. Why might we need both of these control
signals? Table 2.11 shows the process of simple arithmetic for the different binary number
representations, including unsigned, signed magnitude, ones’ complement, and two’s complement.

TABLE 2.11 Binary arithmetic.

Binary Number Representation

Operation

P Unsigned

no change
3= 0011
-3= NA
zero = 0000
:max. positive ;14 = 15
. 0000=0
negative =
addition =
S=A+B
= addend +
augend S=A+B
SG(A) =sign
of A
%
' COUT[MSB]
oV =
overflow,
OR = out of COUT iscarry
out

range
SG(S) =sign
of S

NA

Signed

magnitude

if positivethen
MSB =0

elseMSB =1
0011
1011
0000 or 1000

0111 =7

1111 =-7

if SG(A) = SG(B)
then S=A +B

else{ if B<A
thenS=A-B

dseS=B- A}

if SG(A) = SG(B)
then QV =
COUT[MSB]

elseQV =0
(impossible)

it SG(A) = SG(B)
then SG(S) =
SG(A)

ese{ if B<A

Ones’

complement

if negative then flip bits

0011

1100

1111 or 0000
0111=7
1000 = -7
S=

A + B + COUT[MSB]

COUT iscarry out

Qv =

XOR(COUT[MSB],
COUT[MSB-1])

NA

Two's

complement

if negative then {flip
bits; add 1}

0011
1101
0000

0111 =7

1000 = -8

S=A+B

oV =

XOR(COUT[MSB],
COUT[MSB - 1])

NA



INA INA INA

then SG(S) =
SG(A)
S=A+B
else SG(9) =
SG(B)}
subtraction =
_ SG(B) = _ . _ .
D=A-B D=A.B NOT(SG(B)); £~ B (negae); Z =-B (negate);
= minuend D=A+B D=A+Z D=A+7Z
- subtrahend
subtraction
result : OR =
oV = BOUT[MSB]
overflow asin addition asin addition asin addition
' BOUT is
OR = out of borrow out
range
negation : Z=A;
Z=-A NA SG(2) = Z =NOT(A) Z =NOT(A) +1
(negate) NOT(SG(A))
2.6.2 Adders

We can view addition in terms of generate, G[ i ], and propagate, P[ i ], signals.

method 1 method 2

G[i] = A[i] - BJi] Gli]=A[i]-B[i] (2.42)
Pli]=A[i]?BJ[i Pli]=A[i]+B[i] (2.43)
Cli]=qG[i]+Hi]-Cl[i-1 C[i]=G[i]+Fi]-C[i-1] (2.44)
Si]l=Fi]?2C[i-1] Sli]=A[i]?B[i]?C[i-1] (2.45)

where C[ i ] isthe carry-out signal from stage i , equal to the carry in of stage (i +1). Thus, C[i] =
COUT[ 1] =CIN[ i + 1]. We need to be careful because C[0] might represent either the carry in or the
carry out of the LSB stage. For an adder we set the carry in to the first stage (stage zero), C[-1] or
CIN[O], to’O'. Some people use delete (D) or kill (K) in various ways for the complements of G[i] and
Fi], but unfortunately others use C for COUT and D for CIN-so | avoid using any of these. Do not
confuse the two different methods (both of which are used) in Egs. 2.42-2.45 when forming the sum,
since the propagate signal, P[ i ] , is different for each method.

Figure 2.22(a) shows a conventional RCA. The delay of an n -bit RCA is proportional to n and is limited
by the propagation of the carry signal through all of the stages. We can reduce delay by using pairs of



"go-faster" bubbles to change AND and OR gates to fast two-input NAND gates as shown in
Figure 2.22(a). Alternatively, we can write the equations for the carry signal in two different ways:

either C[i]=A[i]-B[i]+P[i]-C[i-1] (2.46)
o Cli]=(A[i]+B[i]) (P[i] +C[i-1]), (2.47)

where P[1]’=NOT(P[ i ]). Equations 2.46 and 2.47 allow usto build the carry chain from two-input
NAND gates, one per cell, using different logic in even and odd stages (Figure 2.22b):

even stages odd stages

Cli]' =Hi]-C3[i-1] -C4[i-1] Cg3[i] =PF[i]-C1[i-1] -C2i-1] (2.48)
C2i] =A[i]+8B[i] C4[i] =A[i] -BJi] (2.49)
Cli]=C1Ji] -C2Zi] Cli]=C3[i]'+C4i] (2.50)

(the carry inputs to stage zero are C3[-1] = C4[-1] =’0"). We can use the RCA of Figure 2.22(b) in a
datapath, with standard cells, or on a gate array.

Instead of propagating the carries through each stage of an RCA, Figure 2.23 shows a different
approach. A carry-save adder (CSA ) cell CSA(AL[ 1], A2[i],A3[i],CIN,S1[i],S2[ 1], COUT) has
three outputs:

S1[i]=CIN, (2.51)
Si]=A1[i]?A2[i]?A3[i]=PARITY(ALi],A2[i],A3[i]), (2.52)
COUT =A1[i]-A2[i]+[(AL[i]+A2[i])-A3[i]]=MAJXALi], A2[i], A3[i]). (253

Theinputs, A1, A2, and A3; and outputs, S1 and S2, are buses. The input, CIN, is the carry from stage (
i - 1). Thecarry in, CIN, is connected directly to the output bus S1-indicated by the schematic symbol
(Figure 2.234). We connect CIN[Q] to VSS. The output, COUT, isthe carry out to stage (i + 1).

A 4-hit CSA isshown in Figure 2.23(b). The arithmetic overflow signal for ones' complement or two’s
complement arithmetic, OV, is XOR(COUT[MSB], COUT[MSB - 1]) as shown in Figure 2.23(c). Ina
CSA the carries are "saved" at each stage and shifted left onto the bus S1. There is thus no carry
propagation and the delay of a CSA is constant. At the output of a CSA we still need to add the S1 bus
(all the saved carries) and the S2 bus (all the sums) to get an n -bit result using afinal stage that is not
shown in Figure 2.23(c). We might regard the n -bit sum as being encoded in the two buses, S1 and S2,
in the form of the parity and maority functions.

We can use a CSA to add multiple inputs-as an example, an adder with four 4-bit inputs is shown in
Figure 2.23(d). The last stage sums two input buses using a carry-propagate adder ( CPA ). We have
used an RCA asthe CPA in Figure 2.23(d) and (€), but we can use any type of adder. Notice in

Figure 2.23(e) how the two CSA cells and the RCA cell abut together horizontally to form abit slice (or
dlice) and then the dlices are stacked vertically to form the datapath.
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FIGURE 2.22 The carry-save adder (CSA). (a) A CSA cell. (b) A 4-bit CSA. (c) Symbol for a CSA.
(d) A four-input CSA. (e) The datapath for a four-input, 4-bit adder using CSAs with aripple-carry
adder (RCA) asthefinal stage. (f) A pipelined adder. (g) The datapath for the pipelined version
showing the pipeline registers as well as the clock control lines that use m2.

We can register the CSA stages by adding vectors of flip-flops as shown in Figure 2.23(f). This reduces
the adder delay to that of the slowest adder stage, usually the CPA. By using registers between stages of
combinational logic we use pipelining to increase the speed and pay a price of increased area (for the
registers) and introduce latency . It takes afew clock cycles (the latency, equal to n clock cyclesfor ann
-stage pipeline) to fill the pipeline, but once it isfilled, the answers emerge every clock cycle. Ferris
wheels work much the same way. When the fair opens it takes awhile (latency) to fill the wheel, but
once it isfull the people can get on and off every few seconds. (We can also pipeline the RCA of
Figure2.20. Weadd i registerson the A and B inputs before ADDJ[ i ] and add ( n - i ) registers after the
output §[ i ], with asingle register beforeeach C[ i ].)

The problem with an RCA isthat every stage hasto wait to make its carry decision, C[ i ], until the
previous stage has calculated C[ i - 1]. If we examine the propagate signals we can bypass this critical
path. Thus, for example, to bypass the carries for bits 4-7 (stages 5-8) of an adder we can compute
BYPASS = P[4].P[5].P[6].P[7] and then useaMUX asfollows:

C[7] = (G[7] + P[7] - C[6]) - BYPASS + C[3] - BYPASS. (2.54)

Adders based on this principle are called carry-bypass adders ( CBA ) [Sato et al., 1992]. Large, custom
adders employ Manchester-carry chainsto compute the carries and the bypass operation using TGs or
just pass transistors [Weste and Eshraghian, 1993, pp. 530-531]. These types of carry chains may be part
of apredesigned ASIC adder cell, but are not used by ASIC designers.

Instead of checking the propagate signals we can check the inputs. For example we can compute SKIP =
(A[i-1]?B[i-1])+(A[i]?B[i])andthenusea2:1 MUX to select C[ i ]. Thus,



CSKIP[i]=(G[i]+P[i]-C[i-1])-SKIP +C[i-2]-SKIP. (2.55)

Thisisacarry-skip adder [Keutzer, Malik, and Saldanha, 1991; Lehman, 1961]. Carry-bypass and
carry-skip adders may include redundant logic (since the carry is computed in two different ways-we
just take the first signal to arrive). We must be careful that the redundant logic is not optimized away
during logic synthesis.

If we evaluate EQ. 2.44 recursively for i = 1, we get the following:

C[1] = G[1] + P[1] - C[0]
= G[1] + P[1] - (G[Q] + P[1] - C[-1])
= G[1] + P[1] - G[0] . (2.56)

This result means that we can "look ahead" by two stages and calculate the carry into the third stage (bit
2), which is C[1], using only the first-stage inputs (to calculate G[Q]) and the second-stage inputs. Thisis
acarry-lookahead adder ( CLA ) [MacSorley, 1961]. If we continue expanding Eq. 2.44, we find:

C[2] = G[2] + F[2] - G[1] + F{2] - F{1] - G[(]

C[3] = G[3] +P[2] - G[2] + F[2] - F[1] - G[1] + P[3] - F{2] - P[1] - G[Q] . (2.57)

Aswe look ahead further these equations become more complex, take longer to calculate, and the logic
becomes less regular when implemented using cells with alimited number of inputs. Datapath layout
must fit in abit dlice, so the physical and logical structure of each bit must be similar. In a standard cell
or gate array we are not so concerned about aregular physical structure, but aregular logical structure
simplifies design. The Brent-Kung adder reduces the delay and increases the regularity of the
carry-lookahead scheme [Brent and Kung, 1982]. Figure 2.24(a) shows aregular 4-bit CLA, using the
carry-lookahead generator cell (CLG) shown in Figure 2.24(b).
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FIGURE 2.23 The Brent-Kung carry-lookahead adder (CLA). (a) Carry generation in a4-bit CLA.

(b) A cell to generate the lookahead terms, C[0]-C[3]. (c) CellsL1, L2, and L3 arerearranged into a
tree that has less delay. Cell L4 is added to calculate C[2] that islost in the trandation. (d) and

(e) Simplified representations of partsaand c. (f) The lookahead logic for an 8-bit adder. The inputs,
0-7, are the propagate and carry terms formed from the inputs to the adder. (g) An 8-bit Brent-Kung
CLA. The outputs of the lookahead logic are the carry bits that (together with the inputs) form the sum.
One advantage of this adder is that delays from the inputs to the outputs are more nearly equal than in
other adders. This tends to reduce the number of unwanted and unnecessary switching events and thus

reduces power dissipation.

In a carry-select adder we duplicate two small adders (usually 4-bit or 8-bit adders-often CLAS) for the
casesCIN ="0" and CIN ="1" and then use aMUX to select the case that we need-wasteful, but fast
[Bedrij, 1962]. A carry-select adder is often used as the fast adder in a datapath library because its layout
isregular.

We can use the carry-select, carry-bypass, and carry-skip architectures to split a 12-bit adder, for
example, into three blocks. The delay of the adder is then partly dependent on the delays of the MUX
between each block. Suppose the delay due to 1-bit in an adder block (we shall call thisabit delay) is
approximately equal to the MUX delay. In this case may be faster to make the blocks 3, 4, and 5-bits
long instead of being equal in size. Now the delaysinto the final MUX are equal-3 bit-delays plus 2
MUX delays for the carry signal from bits 0-6 and 5 bit-delays for the carry from bits 7-11. Adjusting
the block size reduces the delay of large adders (more than 16 bits).

We can extend the idea behind a carry-select adder as follows. Suppose we have an n -bit adder that
generates two sums: One sum assumes a carry-in condition of 'O’ the other sum assumes a carry-in
condition of "1’. We can split thisn -bit adder into an i -bit adder for thei LSBsand an ( n - i )-bit adder



for the n - i MSBs. Both of the smaller adders generate two conditional sums as well as true and
complement carry signals. The two (true and complement) carry signals from the L SB adder are used to
select between the two ( n - i + 1)-bit conditional sums from the MSB adder using 2( n - i + 1) two-input
MUXes. Thisisaconditional-sum adder (also often abbreviated to CSA) [Sklansky, 1960]. We can
recursively apply this technique. For example, we can split a 16-bit adder using i = 8 and n = 8; then we
can split one or both 8-bit adders again-and so on.

Figure 2.25 shows the simplest form of an n -bit conditional-sum adder that uses n single-bit conditional
adders, H (each with four outputs: two conditional sums, true carry, and complement carry), together
with atree of 2:1 MUXes (Qi_j). The conditional-sum adder is usually the fastest of all the adders we
have discussed (it is the fastest when logic cell delay increases with the number of inputs-thisistrue for
all ASICs except FPGAS).
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FIGURE 2.24 The conditional-sum adder. (a) A 1-bit conditional adder that calcul ates the sum and
carry out assuming the carry iniseither *1’ or 0. (b) The multiplexer that sel ects between sums and
carries. (c) A 4-bit conditional-sum adder with carry input, C[O].

2.6.3 A Simple Example

How do we make and use datapath elements? What does a design look like? We may use predesigned
cellsfrom alibrary or build the elements ourselves from logic cells using a schematic or a design
language. Table 2.12 shows an 8-hit conditional-sum adder intended for an FPGA. This Verilog
implementation uses the same structure as Figure 2.25, but the equations are collapsed to use four or five
variables. A basic logic cell in certain Xilinx FPGAS, for example, can implement two equations of the
same four variables or one equation with five variables. The equations shown in Table 2.12 requires
three levels of FPGA logic cells (so, for example, if each FPGA logic cell has a5 ns delay, the 8-bit
conditional-sum adder delay is 15 ns).



TABLE 2.12 An 8-bit conditional-sum adder (the notation is described in Figure 2.25).
module m8hitCSum (CO, a, b, s, C8); // Verilog conditional-sum adder for an FPGA

input [7:0] CO, a, b; output [7:0] s; output C8;

wire A7,A6,A5A4,A3A2A1A0B7,B6,B5B4,B3,B2,B1,B0,S8,57,56,55,34,S3,52,S1,0;
wireC0,C2,C4. 2 0,C4 2 1,S5 4 0,S5 4 1,C6,C6_4 0,C6 4 1,CS8;

assign {A7,A6,A5A4A3A2A1AQ} = g assign { B7,B6,B5,B4,83,82,81,B0} = b;

assign s={ S7,56,55,4,S3,52,51,30 };

assign SO = A0"BOMCO; // start of level 1: & = AND,*=XOR, |=OR, ! = NOT

assign S1 = A1"B1"A0&BO|(A0B0)& CO) ;

assign C2 = A1&B1|(A1|B1)&(A0&BO|(A0|B0)& CO) ;

assign C4 2 0=A3&B3|(A3B3)&(A2&B2) ; assign C4 2 1=A3&B3|(A3|B3)&(A2B2) ;
assign S5 4 0= A5"B5°(A4&B4) ; assign S5 4 1= A5'B5\(A4|B4) ;

assign C6_4 0= A5&B5|(A5|B5)& (A4&B4) ; assign C6_4 1= A5&B5|(A5|B5)& (A4|B4) ;
assign S2 = A2"B2"C2; /I start of level 2

assign S3= A3"B3"(A2&B2|(A2|B2)&C2) ;

assign S4 = A4"B4(C4 2 0|C4 2 1&C2);

assign S5=S5 4 0& !(C4_2 0|C4_2 1&C2)|S5 4 1&(C4 2 0|C4 2 1&C2);

assign C6 =C6_4 0|C6_4 1&(C4 2 0|C4 2 _1&C2);

assign S6 = A6"B6"C6 ; // start of level 3

assign S7 = A7"B7"(A6&B6|(A6|B6)& C6) ;

assign C8 = A7&B7|(A7|B79)& (A6& B6|(A6|B6)& C6) ;

endmodule

Figure 2.26 shows the normalized delay and areafigures for a set of predesigned datapath adders. The
datain Figure 2.26 is from a series of ASIC datapath cell libraries (Compass Passport) that may be
synthesized together with test vectors and simulation models. We can combine the different adder



techniques, but the adders then lose regularity and become less suited to a datapath implementation.
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FIGURE 2.25 Datapath adders. This datais from a series of submicron datapath libraries. (@) Delay
normalized to atwo-input NAND logic cell delay (approximately equal to 250 psina0.5mm
process). For example, a 64-bit ripple-carry adder (RCA) has a delay of approximately 30 nsina0.5m
m process. The spread in delay is due to variation in delays between different inputs and outputs. An n
-bit RCA has adelay proportional to n. The delay of an n -bit carry-select adder is approximately
proportiona to log , n . The carry-save adder delay is constant (but requires a carry-propagate adder to

complete an addition). (b) In a datapath library the area of all adders are proportional to the bit size.

There are other adders that are not used in datapaths, but are occasionally useful in ASIC design. A

serial adder is smaller but slower than the parallel adders we have described [ Denyer and Renshaw,

1985]. The carry-completion adder is a variable delay adder and rarely used in synchronous designs
[Sklansky, 1960].

2.6.4 Multipliers

Figure 2.27 shows a symmetric 6-bit array multiplier (an n -bit multiplier multiplies two n -bit numbers;
we shall use n -bit by m -bit multiplier if the lengths are different). Adders a0-fO may be eliminated,
which then eliminates adders al-a6, leaving an asymmetric CSA array of 30 (5 ¥ 6) adders (including
one half adder). An n -bit array multiplier has a delay proportional to n plus the delay of the CPA
(adders b6-f6 in Figure 2.27). There are two items we can attack to improve the performance of a
multiplier: the number of partial products and the addition of the partial products.
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FIGURE 2.26 Multiplication. A 6-bit array multiplier using afinal carry-propagate adder (full-adder
cells a6-f6, aripple-carry adder). Apart from the generation of the summands this multiplier uses the
same structure as the carry-save adder of Figure 2.23(d).

Suppose we wish to multiply 15 (the multiplicand ) by 19 (the multiplier ) mentally. It is easier to
calculate 15 ¥ 20 and subtract 15. In effect we complete the multiplication as 15 ¥ (20 - 1) and we could
writethisas 15 ¥ 2 1, with the overbar representing a minus sign. Now suppose we wish to multiply an
8-bit binary number, A, by B = 00010111 (decimal 16 + 4 + 2 + 1 = 23). It iseasier to multiply A by the
canonical signed-digit vector ( CSD vector ) D = 0010 1 001 (decimal 32 - 8 + 1 = 23) since thisrequires
only three add or subtract operations (and a subtraction is as easy as an addition). We say B has aweight
of 4 and D has aweight of 3. By using D instead of B we have reduced the number of partial products
by1(=4-3).

We can recode (or encode) any binary number, B, asa CSD vector, D, as follows (canonical means there
isonly one CSD vector for any number):

Di=B;+C;-2C;,,, (259
whereC, , ; isthecarry fromthesumof B, , ; + B, + C; (we start with C ; = 0).

As another example, if B=011(B,=0,B; =1, B,=1; decima 3), then, using Eqg. 2.58,



Dy=Bg+Cy-2C,=1+0-2=1,

sothat D =10 1 (decimal 4 - 1 = 3). CSD vectors are useful to represent fixed coefficientsin digital
filters, for example.

We can recode using aradix other than 2. Suppose B isan ( n + 1)-digit two’s complement number,
B:BO+812+8222+...+Bi2'+...+Bn_12”'1-Bn2”. (2.60)
We can rewrite the expression for B using the following sleight-of-hand:

ZB-B:B:-BO+(BO-B]_)2+.,.+(Bi_1-Bi)2i+___+Bn_12n-1_Bn2n
:(-281+BO)20+('283+BZ+81)22+...
+(-2B,+B; {+B, ,)2"1+ (2B, ,+B,,+B; )21 1+ .
+(-ZBn+Bi_1+Bi_2)2n-1_ (261)

Thisisvery useful. Consider B = 101001 (decimal 9 - 32 =-23, n=5),

B = 101001
=(-2B,+B )20+ (-2B,+B,+B )22+ (-2B +B ,+B )24
((-(2¥0)+ 120+ ((-2¥1) +0+0)22+ ((-2¥1) +0+ 1)24. (262

Equation 2.61 tells us how to encode B as aradix-4 signed digit, E= 12 1 (decimal -16 - 8 + 1 =-23).
To multiply by B encoded as E we only have to perform a multiplication by 2 (a shift) and three
add/subtract operations.

Using Eg. 2.61 we can encode any number by taking groups of three bits at atime and calculating

where each 3-bit group overlaps by one bit. We pad B with azero, B ... B ; B ;0, to match thefirst
termin Eq. 2.61. If B has an odd number of bits, then we extend thesign: B ;B ... B B ;0. For

example, B = 01011 (eleven), encodestoE=111(16-4-1);andB=101isE=11. Thisiscalled
Booth encoding and reduces the number of partial products by afactor of two and thus considerably
reduces the area as well asincreasing the speed of our multiplier [Booth, 1951].



Next we turn our attention to improving the speed of addition in the CSA array. Figure 2.28(a) shows a
section of the 6-bit array multiplier from Figure 2.27. We can collapse the chain of adders a0-f5 (5 adder
delays) to the Wallace tree consisting of adders 5.1-5.4 (4 adder delays) shown in Figure 2.28(b).
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FIGURE 2.27 Tree-based multiplication. (a) The portion of Figure 2.27 that calculates the sum bit, P ¢

, using a chain of adders (cells a0-f5). (b) We can collapse this chain to a Wallace tree (cells 5.1-5.5).
(c) The stages of multiplication.

Figure 2.28(c) pictorially represents multiplication as a sort of golf course. Each link corresponds to an
adder. The holes or dots are the outputs of one stage (and the inputs of the next). At each stage we have
the following three choices: (1) sum three outputs using afull adder (denoted by a box enclosing three
dots); (2) sum two outputs using a half adder (a box with two dots); (3) pass the outputs directly to the
next stage. The two outputs of an adder are joined by adiagonal line (full adders use black dots, half
adders white dots). The object of the game isto choose (1), (2), or (3) at each stage to maximize the
performance of the multiplier. In tree-based multipliers there are two ways to do this-working forward
and working backward.

In a Wallace-tree multiplier we work forward from the multiplier inputs, compressing the number of
signalsto be added at each stage [Wallace, 1960]. We can view an FA as a 3:2 compressor or (3, 2)
counter -it counts the number of *1's on the inputs. Thus, for example, an input of 101’ (two '1's)
resultsin an output 10" (2). A half adder isa (2, 2) counter . To form P 5 in Figure 2.29 we must add 6

summands (S g5, S14, S53+ S355 Sy, ad Sy ) and 4 carries from the P, column. We add these in

stages 1-7, compressing from 6:3:2:2:3:1:1. Notice that we wait until stage 5 to add the last carry from
column P, , and this means we expand (rather than compress) the number of signals (from 2 to 3)

between stages 3 and 5. The maximum delay through the CSA array of Figure 2.29 is 6 adder delays. To



this we must add the delay of the 4-bit (9 inputs) CPA (stage 7). There are 26 adders (6 half adders) plus
the 4 addersin the CPA.
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FIGURE 2.28 A 6-bit Wallace-tree multiplier. The carry-save adder (CSA) requires 26 adders (cells
1-26, six are half adders). The final carry-propagate adder (CPA) consists of 4 adder cells (27-30). The
delay of the CSA is 6 adders. The delay of the CPA is 4 adders.

In a Dadda multiplier (Figure 2.30) we work backward from the final product [Dadda, 1965]. Each stage
hasamaximum of 2, 3, 4, 6, 9, 13, 19, . . . outputs (each successive stage is 3/2 times larger-rounded
down to an integer). Thus, for example, in Figure 2.28(d) we require 3 stages (with 3 adder delays-plus
the delay of a 10-bit output CPA) for a 6-bit Dadda multiplier. There are 19 adders (4 half adders) in the
CSA plusthe 10 adders (2 half adders) in the CPA. A Dadda multiplier is usually faster and smaller than
aWallace-tree multiplier.

FIGURE 2.29 The 6-bit Dadda multiplier. The carry-save adder (CSA) requires 20 adders (cells 1-20,
four are half adders). The carry-propagate adder (CPA, cells 21-30) isaripple-carry adder (RCA). The
CSA issmaller (20 versus 26 adders), faster (3 adder delays versus 6 adder delays), and more regular
than the Wallace-tree CSA of Figure 2.29. The overall speed of thisimplementation is approximately



the same as the Wallace-tree multiplier of Figure 2.29; however, the speed may be increased by
substituting afaster CPA.

In general, the number of stages and thus delay (in units of an FA delay-excluding the CPA) for an n -bit
tree-based multiplier using (3, 2) countersis

log, gn=1log,on/log,;15=1log,,n/0.176. (2.64)

Figure 2.31(a) shows how the partial-product array is constructed in a conventional 4-bit multiplier. The
Ferrari-Stefanelli multiplier (Figure 2.31b) "nests’ multipliers-the 2-bit submultipliers reduce the
number of partial products [Ferrari and Stefanelli, 1969].
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FIGURE 2.30 Ferrari-Stefanelli multiplier. (a) A conventional 4-bit array multiplier using AND gates
to calculate the summands with (2, 2) and (3, 2) counters to sum the partial products. (b) A 4-bit
Ferrari-Stefanelli multiplier using 2-bit submultipliers to construct the partial product array. (c) A
circuit implementation for an inverting 2-bit submultiplier.

There are several issues in deciding between parallel multiplier architectures:

1. Sinceitiseasier to fold triangles rather than trapezoids into squares, a Wallace-tree multiplier is
more suited to full-custom layout, but is slightly larger, than a Dadda multiplier-both are less
regular than an array multiplier. For cell-based ASICs, a Dadda multiplier is smaller than a
Wallace-tree multiplier.

2. The overall multiplier speed does depend on the size and architecture of the final CPA, but this
may be optimized independently of the CSA array. This means a Dadda multiplier is always at
least as fast as the Wallace-tree version.

3. Thelow-order bits of any parallel multiplier settle first and can be added in the CPA before the
remaining bits settle. This allows multiplication and the final addition to be overlapped in time.

4. Any of the paralel multiplier architectures may be pipelined. We may also use avariably
pipelined approach that tailors the register locations to the size of the multiplier.

5. Using (4, 2), (5, 3), (7, 3), or (15, 4) counters increases the stage compression and permits the size
of the stages to be tuned. Some ASIC cdll libraries contain a (7, 3) counter-a 2-bit full-adder . A
(15, 4) counter isa 3-bit full adder. There is atrade-off in using these counters between the speed
and size of the logic cells and the delay as well as area of the interconnect.

6. Power dissipation is reduced by the tree-based structures. The simplified carry-save logic produces
fewer signal transitions and the tree structures produce fewer glitches than a chain.

7. None of the multiplier structures we have discussed take into account the possibility of staggered



arrival times for different bits of the multiplicand or the multiplier. Optimization then requires a
logic-synthesistool.

2.6.5 Other Arithmetic Systems
There are other schemes for addition and multiplication that are useful in special circumstances.
Addition of numbers using redundant binary encoding avoids carry propagation and is thus potentially

very fast. Table 2.13 shows the rules for addition using an intermediate carry and sum that are added
without the need for carry. For example,

binary decima redundant binary CSD vector

1010111 87 10101001 10101001 addend
+1100101 101 +11100111 + 01100101 augend
01001110 = 11001100 intermediate sum
11000101 11000000 intermediate carry

=10111100 =188 111000100 101001100 sum

TABLE 2.13 Redundant binary addition.
Intermediate Intermediate

Ali]B[I]A[i-1] B[i-1]
sum carry

1 1 X X 0 1
1 0 Ali-1]=0/1and B[i - 1]=0/1 1 0
0 1 Ali-1]=1orB[i-1]=1 1 1
1 1 X X 0 0
1 1 X X 0 0
0 0 X X 0 0
0 1 Ali-1]=0/1and B[i - 1]=0/1 1 1
1 0 Ali-1]=1orBJi-1]=1 1 0
1 1 X X 0 1

The redundant binary representation is not unique. We can represent 101 (decimal), for example, by
1100101 (binary and CSD vector) or 1 1 100111. As another example, 188 (decimal) can be represented
by 10111100 (binary), 1 1 1000 1 00, 10 1 00 1 100, or 10 1 000 1 00 (CSD vector). Redundant binary
addition of binary, redundant binary, or CSD vectors does not result in a unique sum, and addition of
two CSD vectors does not result in a CSD vector. Each n -bit redundant binary number requires a rather
wasteful 2 n -bit binary number for storage. Thus 10 1 is represented as 010010, for example (using sign
magnitude). The other disadvantage of redundant binary arithmetic is the need to convert to and from
binary representation.

Table 2.14 shows the (5, 3) residue number system . As an example, 11 (decimal) isrepresented as[1, 2]
residue (5, 3) since 11R;=11mod 5= 1and 11R ;=11 mod 3 = 2. The size of this systemisthus 3 ¥ 5

= 15. We add, subtract, or multiply residue numbers using the modulus of each bit position-without any



carry. Thus:

4 [4,1] 12 [2,00] 3 [3,(]

+7 +[2,1] -4 -[4,1] ¥ 4¥ [4,1]]

=11=[1,2] =8=[3,2] =12 =[2,0]

TABLE 2.14 The 5, 3 residue number system.

nresidue5 residue3 nresidue5 residue3 n residue5 residue3

00 0 50 2 100 1
11 1 61 0 111 2
22 2 72 1 12 2 0
33 0 83 2 133 1
44 1 94 0 14 4 2

The choice of moduli determines the system size and the computing complexity. The most useful
choices are relative primes (such as 3 and 5). With p prime, numbers of theform 2P and 2P - 1 are
particularly useful (2P - 1 are Mersenne’ s numbers ) [Waser and Flynn, 1982].

2.6.6 Other Datapath Operators

Figure 2.32 shows symbols for some other datapath elements. The combinational datapath cells, NAND,
NOR, and so on, and sequential datapath cells (flip-flops and latches) have standard-cell equivalents and
function identically. | use abold outline (1 point) for datapath cellsinstead of the regular (0.5 point) line
| use for scalar symbols. We call aset of identical cells avector of datapath elementsin the same way
that abold symbol, A , represents a vector and A represents ascalar.
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FIGURE 2.31 Symbols for datapath elements. (a) An array or vector of flip-flops (aregister). (b) A
two-input NAND cell with databus inputs. (c) A two-input NAND cell with a control input. (d) A
buswide MUX. (e) An incrementer/decrementer. (f) An all-zeros detector. (g) An all-ones detector.
(h) An adder/subtracter.

A subtracter is similar to an adder, except in afull subtracter we have aborrow-in signal, BIN; a
borrow-out signal, BOUT; and a difference signal, DIFF:



DIFF = A ?NOT(B) ?NOT( BIN)

SUM(A, NOT(B), NOT(BIN)) (2.65)
NOT(BOUT) = A - NOT(B) + A - NOT(BIN) + NOT(B) - NOT(BIN)
MAJNOT(A), B, NOT(BIN)) (2.66)

These equations are the same as those for the FA (Egs. 2.38 and 2.39) except that the B input isinverted
and the sense of the carry chain isinverted. To build a subtracter that calculates (A - B) we invert the
entire B input bus and connect the BIN[O] input to VDD (not to VSS as we did for CIN[0] in an adder).
As an example, to subtract B =’0011’ from A =’1001" we calculate’ 1001’ +'1100" +°'1’ =’0110". As
with an adder, the true overflow is XOR(BOUT[MSB], BOUT[MSB - 1]).

We can build aripple-borrow subtracter (atype of borrow-propagate subtracter), a borrow-save
subtracter, and a borrow-select subtracter in the same way we built these adder architectures. An
adder/subtracter has a control signal that gates the A input with an exclusive-OR cdll (forming a
programmable inversion) to switch between an adder or subtracter. Some adder/subtracters gate both
inputs to allow usto compute (-A - B). We must be careful to connect the input to the LSB of the carry
chain (CIN[Q] or BIN[Q]) when changing between addition (connect to VSS) and subtraction (connect to
VDD).

A barrel shifter rotates or shifts an input bus by a specified amount. For example if we have an
eight-input barrel shifter with input *1111 0000" and we specify a shift of 0001 0000’ (3, coded by bit
position) the right-shifted 8-bit output is’0001 1110'. A barrel shifter may rotate left or right (or switch
between the two under a separate control). A barrel shifter may also have an output width that is smaller
than the input. To use a simple example, we may have an 8-bit input and a 4-bit output. This situation is
equivalent to having a barrel shifter with two 4-bit inputs and a 4-bit output. Barrel shifters are used
extensively in floating-point arithmetic to align (we call this normalize and denormalize ) floating-point
numbers (with sign, exponent, and mantissa).

A leading-one detector is used with a normalizing (Ieft-shift) barrel shifter to align mantissasin
floating-point numbers. The input isan n -bit bus A, the output isan n -bit bus, S, withasingle’1’ in the
bit position corresponding to the most significant ' 1’ in the input. Thus, for example, if theinput isA =
0000 01071’ the leading-one detector output is S ="0000 0100, indicating the leading one in A isin bit
position 2 (bit 7 isthe MSB, bit zero isthe LSB). If we feed the output, S, of the leading-one detector to
the shift select input of a normalizing (Ieft-shift) barrel shifter, the shifter will normalize the input A. In
our example, with an input of A =’0000 0101’, and aleft-shift of S="0000 0100’, the barrel shifter will
shift A left by five bits and the output of the shifter is Z =’1010 0000’ . Now that Z is aligned (with the
MSB equal to’1’') we can multiply Z with another normalized number.

The output of apriority encoder is the binary-encoded position of the leading one in an input. For
example, with an input A =’0000 0101’ the leading 1 isin bit position 3 (MSB is bit position 7) so the
output of a4-bit priority encoder would be Z =’0011" (3). In some cell libraries the encoding is reversed
so that the M SB has an output code of zero, inthiscase Z ='0101" (5). This second, reversed, encoding
scheme is useful in floating-point arithmetic. If A isamantissaand we normalize A to’1010 0000° we
have to subtract 5 from the exponent, this exponent correction is equal to the output of the priority
encoder.

An accumulator is an adder/subtracter and a register. Sometimes these are combined with amultiplier to



form amultiplier-accumulator (MAC ). An incrementer adds 1 to the input bus, Z = A + 1, so we can
use this function, together with aregister, to negate atwo’s complement number for example. The
implementationisZ[ i ] = XOR(A[i], CIN[i]),and COUT[i] = AND(A[i], CIN[i]). The carry-in
control input, CIN[0], thus acts as an enable: If itissetto’ Q' the output is the same as the input.

The implementation of arithmetic cellsis often alittle more complicated than we have explained. CMOS
logic is naturally inverting, so that it is faster to implement an incrementer as

Z[ i (even)] = XOR(A[ i ], CIN[ i ]) and COUTY i (even)] = NAND(A[ i ], CIN[ i ]).

Thisinverts COUT, so that in the following stage we must invert it again. If we push an inverting bubble
to theinput CIN we find that:

Z[ i (odd)] = XNOR(A[ i ], CIN[ i ]) and COUT[ i (even)] = NOR(NOT(A[ i ]), CIN[ i ]).

In many datapath implementations all odd-bit cells operate on inverted carry signals, and thus the
odd-bit and even-bit datapath elements are different. In fact, all the adder and subtracter datapath
elements we have described may use thistechnique. Normally thisis completely hidden from the
designer in the datapath assembly and any output control signals are inverted, if necessary, by inserting
buffers.

A decrementer subtracts 1 from the input bus, the logical implementationisZ[ i ] = XOR(A[ i ], CIN[ i
1) and COUT[ i ] = AND(NOT(A[ i ]), CIN[ i ]). The implementation may invert the odd carry signals,
with CIN[0] again acting as an enable.

An incrementer/decrementer has a second control input that gates the input, inverting the input to the
carry chain. This has the effect of selecting either the increment or decrement function.

Using the all-zeros detectors and all-ones detectors, remember that, for a 4-bit number, for example,
zeroinones' complement arithmeticis’1111’ or *0000, and that zero in signed magnitude arithmetic is
’1000" or '0000’.

A register file (or scratchpad memory) is a bank of flip-flops arranged across the bus; sometimes these
have the option of multiple ports (multiport register files) for read and write. Normally these register
files are the densest logic and hardest to fit in a datapath. For large register filesit may be more
appropriate to use a multiport memory. We can add control logic to aregister file to create afirst-in
first-out register ( FIFO ), or last-in first-out register ( LIFO).

In Section 2.5 we saw that the standard-cell version and gate-array macro version of the sequential cells
(latches and flip-flops) each contain their own clock buffers. The reason for thisisthat (without
intelligent placement software) we do not know where a standard cell or a gate-array macro will be
placed on a chip. We a'so have no idea of the condition of the clock signal coming into a sequential cell.
The ability to place the clock buffers outside the sequential cellsin a datapath gives us more flexibility
and saves space. For example, we can place the clock buffersfor all the clocked elements at the top of
the datapath (together with the buffers for the control signals) and river route (in river routing the
interconnect lines all flow in the same direction on the same layer) the connections to the clock lines.
This saves space and allows us to guarantee the clock skew and timing. It may mean, however, that there
isafixed overhead associated with a datapath. For example, it might make no sense to build a 4-bit



datapath if the clock and control buffers take up twice the space of the datapath logic. Some tools allow
us to design logic using a portable netlist . After we complete the design we can decide whether to
implement the portable netlist in a datapath, standard cells, or even a gate array, based on area, speed, or
power considerations.

2.71/0 Cdls

Figure 2.33 shows a three-state bidirectional output buffer (Tri-State ® is a registered trademark of
National Semiconductor). When the output enable (OE) signal is high, the circuit functions as a
noninverting buffer driving the value of DATAIn onto the I/O pad. When OE is low, the output
transistors or drivers, M1 and M2, are disconnected. This allows multiple drivers to be connected on a
bus. It is up to the designer to make sure that a bus never has two drivers-a problem known as contention

In order to prevent the problem opposite to contention-a bus floating to an intermediate voltage when
there are no bus drivers-we can use a bus keeper or bus-hold cell (Tl callsthis Bus-Friendly logic). A
bus keeper normally acts like two weak (low drive-strength) cross-coupled invertersthat act asalatch to
retain the last logic state on the bus, but the latch is weak enough that it may be driven easily to the
opposite state. Even though bus keepers act like latches, and will simulate like latches, they should not
be used as latches, since their drive strength is weak.

Transistors M1 and M2 in Figure 2.33 have to drive large off-chip loads. If we wish to change the
voltage on aC = 200 pF load by 5V in 5 ns (aslew rate of 1 Vns™1) we will require acurrent in the
output transistors of | 5 =C (dV /dt) = (200 ¥ 10-12) (5/5% 109 ) = 0.2 A or 200 mA.

Such large currents flowing in the output transistors must also flow in the power supply bus and can
cause problems. There is always some inductance in series with the power supply, between the point at
which the supply enters the ASIC package and reaches the power bus on the chip. The inductance is due
to the bond wire, lead frame, and package pin. If we have a power-supply inductance of 2 nH and a
current changing from zeroto 1 A (32 1/0 cells on a bus switching at 30 mA each) in 5 ns, we will have

avoltage spike on the power supply (called power-supply bounce) of L (d1/dt) = (2 ¥ 109 )(1/(5 ¥ 10
9)=04V.

We do several thingsto alleviate this problem: We can limit the number of simultaneously switching
outputs (SSOs), we can limit the number of I/O driversthat can be attached to any one VDD and GND
pad, and we can design the output buffer to limit the slew rate of the output (we call these slew-rate
limited 1/O pads). Quiet-1/0 cells also use two separate power supplies and two sets of 1/O drivers: an
AC supply (clean or quiet supply) with small AC driversfor the I/O circuits that start and stop the output
slewing at the beginning and end of a output transition, and a DC supply (noisy or dirty supply) for the
transistors that handle large currents as they slew the output.

The three-state buffer allows us to employ the same pad for input and output- bidirectional 1/0 . When
we want to use the pad as an input, we set OE low and take the data from DATAIN. Of course, it is not
necessary to have all these features on every pad: We can build output-only or input-only pads.
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We can also use many of these output cell features for input cells that have to drive large on-chip loads
(aclock pad cell, for example). Some gate arrays simply turn an output buffer around to drive agrid of

interconnect that supplies a clock signal internally. With atypical interconnect capacitance of 0.2pFcm

-1 "agrid of 100 cm (consisting of 10 by 10 lines running all the way acrossa 1 cm chip) presents aload
of 20 pF to the clock buffer.

Some libraries include 1/0 cells that have passive pull-ups or pull-downs (resistors) instead of the
transistors, M1 and M2 (the resistors are normally still constructed from transistors with long gate
lengths). We can also omit one of the driver transistors, M1 or M2, to form open-drain outputs that
require an external pull-up or pull-down. We can design the output driver to produce TTL output levels
rather than CMOS logic levels. We may also add input hysteresis (using a Schmitt trigger) to the input
buffer, 11 in Figure 2.33, to accept input data signals that contain glitches (from bouncing switch
contacts, for example) or that are slow rising. The input buffer can aso include alevel shifter to accept
TTL input levels and shift the input signal to CMOS levels.

The gate oxide in CMOS transistors is extremely thin (100 A or less). This leaves the gate oxide of the
I/O cell input transistors susceptible to breakdown from static electricity ( electrostatic discharge, or
ESD ). ESD arises when we or machines handle the package leads (like the shock | sometimes get when
| touch a doorknob after walking across the carpet at work). Sometimes this problem is called electrical
overstress (EOS) since most ESD-related failures are caused not by gate-oxide breakdown, but by the
thermal stress (melting) that occurs when the n -channel transistor in an output driver overheats (melts)
due to the large current that can flow in the drain diffusion connected to a pad during an ESD event.

To protect the 1/0 cells from ESD, the input pads are normally tied to device structures that clamp the
input voltage to below the gate breakdown voltage (which can be as low as 10 V with a 100 A gate
oxide). Some 1/O cells use transistors with a special ESD implant that increases breakdown voltage and
provides protection. I/O driver transistors can also use elongated drain structures (ladder structures) and
large drain-to-gate spacing to help limit current, but in a salicide process that lowers the drain resistance
thisisdifficult. One solution isto mask the I/O cells during the salicide step. Another solution isto use
pnpn and npnp diffusion structures called silicon-controlled rectifiers (SCRs) to clamp voltages and
divert current to protect the 1/0O circuits from ESD.

There are several ways to model the capability of an 1/0 cell to withstand EOS. The human-body model
(HBM) represents ESD by a 100 pF capacitor discharging through a 1.5 k W resistor (thisisan
International Electrotechnical Committee, |IEC, specification). Typical voltages generated by the human
body are in the range of 2-4 kV, and we often see an /O pad cell rated by the voltage it can withstand
using the HBM. The machine model ( MM ) represents an ESD event generated by automated machine



handlers. Typical MM parameters use a 200 pF capacitor (typically charged to 200 V) discharged
through a 25 W resistor, corresponding to a peak initial current of nearly 10 A. The charge-device model
(CDM , dso called device charge-discharge) represents the problem when an IC package is charged, in
a shipping tube for example, and then grounded. If the maximum charge on a packageis 3 nC (atypical
measured figure) and the package capacitance to ground is 1.5 pF, we can simulate this event by
charging a 1.5 pF capacitor to 2 kV and discharging it through a1 W resistor.

If the diffusion structuresin the I/O cells are not designed with care, it is possible to construct an SCR
structure unwittingly, and instead of protecting the transistors the SCR can enter amode whereit is
latched on and conducting large enough currents to destroy the chip. This failure modeis called latch-up
. Latch-up can occur if the pn -diodes on a chip become forward-biased and inject minority carriers
(electronsin p -type material, holesin n -type material) into the substrate. The source-substrate and
drain-substrate diodes can become forward-biased due to power-supply bounce or output undershoot
(the cell outputs fall below V oo ) or overshoot (outputs rise to greater than'V 5 ) for example. These

injected minority carriers can travel fairly large distances and interact with nearby transistors causing
latch-up. 1/0 cells normally surround the 1/O transistors with guard rings (a continuous ring of n
-diffusion in an n -well connected to VDD, and aring of p -diffusioninap

2.8 Céell Compilers

The process of hand crafting circuits and layout for afull-custom IC is atedious, time-consuming, and
error-prone task. There are two types of automated layout assembly tools, often known as asilicon
compilers. The first type produces a specific kind of circuit, aRAM compiler or multiplier compiler ,
for example. The second type of compiler is more flexible, usualy providing a programming language
that assembles or tiles layout from an input command file, but thisis full-custom IC design.

We can build aregister file from latches or flip-flops, but, at 4.5-6.5 gates (18-26 transistors) per bit, this
IS an expensive way to build memory. Dynamic RAM (DRAM) can use a cell with only one transistor,
storing charge on a capacitor that has to be periodically refreshed as the charge leaks away. ASIC RAM
isinvariably static (SRAM), so we do not need to refresh the bits. When we refer to RAM inan ASIC
environment we almost always mean SRAM. Most ASIC RAMs use a six-transistor cell (four transistors
to form two cross-coupled inverters that form the storage loop, and two more transistors to allow usto
read from and write to the cell). RAM compilers are available that produce single-port RAM (asingle
shared bus for read and write) as well as dual-port RAMs, and multiport RAMs . In a multi-port RAM
the compiler may or may not handle the problem of address contention (attempts to read and write to the
same RAM address simultaneously). RAM can be asynchronous (the read and write cycles are triggered
by control and/or address transitions asynchronous to a clock) or synchronous (using the system clock).

In addition to producing layout we also heed a model compiler so that we can verify the circuit at the
behavioral level, and we need a netlist from anetlist compiler so that we can simulate the circuit and
verify that it works correctly at the structural level. Silicon compilers are thus complex pieces of
software. We assume that a silicon compiler will produce working silicon even if every configuration
has not been tested. Thisis still ASIC design, but now we are relying on the fact that the tool works
correctly and therefore the compiled blocks are correct by construction

2.9 Summary



The most important concepts that we covered in this chapter are the following:

The use of transistors as switches

The difference between flip-flop and alatch

The meaning of setup time and hold time

Pipelines and latency

The difference between datapath, standard-cell, and gate-array logic cells
Strong and weak logic levels

Pushing bubbles

Ratio of logic

Resistance per square of layers and their relative valuesin CMOS

Design rulesand |



