
ASIC LIBRARY
DESIGN
Once we have decided to use an ASIC design style-using predefined and precharacterized cells from a
library-we need to design or buy a cell library. Even though it is not necessary a knowledge of ASIC
library design makes it easier to use library cells effectively.

3.1 Transistors as Resistors

3.2 Transistor Parasitic Capacitance

3.3 Logical Effort

3.4 Library-Cell Design

3.5 Library Architecture

3.6 Gate-Array Design

3.7 Standard-Cell Design

3.8 Datapath-Cell Design

3.9 Summary

3.10 Problems

3.11 Bibliography

3.12 References

3.1 Transistors as Resistors

In Section 2.1, "CMOS Transistors," we modeled transistors using ideal switches. If this model were
accurate, logic cells would have no delay.

FIGURE 3.1 A model for CMOS logic delay. (a) A CMOS inverter with a load capacitance, C out .

(b) Input, v(in1) , and output, v(out1) , waveforms showing the definition of the falling propagation
delay, t PDf . In this case delay is measured from the input trip point of 0.5. The output trip points are

0.35 (falling) and 0.65 (rising). The model predicts t PDf ª R pd (C p + C out). (c) The model for the

inverter includes: the input capacitance, C ; the pull-up resistance (R pu) and pull-down resistance (R

pd); and the parasitic output capacitance, C p .

The ramp input, v(in1) , to the inverter in Figure 3.1 (a) rises quickly from zero to V DD . In response

the output, v(out1) , falls from V DD to zero. In Figure 3.1 (b) we measure the propagation delay of the

inverter, t PD , using an input trip point of 0.5 and output trip points of 0.35 (falling, t PDf) and 0.65

(rising, t PDr). Initially the n -channel transistor, m1 , is off . As the input rises, m1 turns on in the

saturation region (V DS > V GS - V t n) before entering the linear region (V DS < V GS - V t n). We

model transistor m1 with a resistor, R pd (Figure 3.1 c); this is the pull-down resistance . The equivalent

resistance of m2 is the pull-up resistance , R pu .

Delay is created by the pull-up and pull-down resistances, R pd and R pu , together with the parasitic

capacitance at the output of the cell, C p (the intrinsic output capacitance) and the load capacitance (or

extrinsic output capacitance), C out (Figure 3.1 c). If we assume a constant value for R pd , the output

reaches a lower trip point of 0.35 when (Figure 3.1 b),

 - t PDf

0.35 V DD = V DD exp ----------------- . (3.1)

 R pd (C out + C p)

An output trip point of 0.35 is convenient because ln (1/0.35) = 1.04 ª 1 and thus

t PDf = R pd (C out + C p) ln (1/0.35) ª R pd (C out + C p) . (3.2)

The expression for the rising delay (with a 0.65 output trip point) is identical in form. Delay thus
increases linearly with the load capacitance. We often measure load capacitance in terms of a standard
load -the input capacitance presented by a particular cell (often an inverter or two-input NAND cell).

We may adjust the delay for different trip points. For example, for output trip points of 0.1/0.9 we
multiply Eq. 3.2 by -ln(0.1) = 2.3, because exp (-2.3) = 0.100.

Figure 3.2 shows the DC characteristics of a CMOS inverter. To form Figure 3.2 (b) we take the n
-channel transistor surface (Figure 2.4b) and add that for a p -channel transistor (rotated to account for
the connections). Seen from above, the intersection of the two surfaces is the static transfer curve of
Figure 3.2 (a)-along this path the transistor currents are equal and there is no output current to change
the output voltage. Seen from one side, the intersection is the curve of Figure 3.2 (c).

(a)

(b)

FIGURE 3.2 CMOS inverter characteristics. (a) This static inverter
transfer curve is traced as the inverter switches slowly enough to be
in equilibrium at all times (I DSn = - I DSp). (b) This surface

corresponds to the current flowing in the n -channel transistor
(falling delay) and p -channel transistor (rising delay) for any
trajectory. (c) The current that flows through both transistors as the
inverter switches along the equilibrium path.

(c)

The input waveform, v(in1) , and the output load (which determines the transistor currents) dictate the
path we take on the surface of Figure 3.2 (b) as the inverter switches. We can thus see that the currents
through the transistors (and thus the pull-up and pull-down resistance values) will vary in a nonlinear
way during switching. Deriving theoretical values for the pull-up and pull-down resistance values is
difficult-instead we work the problem backward by picking the trip points, simulating the propagation
delays, and then calculating resistance values that fit the model.

(a)

(b)

(c)

(d)

FIGURE 3.3 Delay. (a) LogicWorks schematic for inverters driving 1, 2, 4, and 8 standard loads
(1 standard load = 0.034 pF in this case). (b) Transient response (falling delay only) from PSpice. The
postprocessor Probe was used to mark each waveform as it crosses its trip point (0.5 for the input, 0.35
for the outputs). For example v(out1_4) (4 standard loads) crosses 1.0467 V (ª 0.35 V DD) at t =

169.93 ps. (c) Falling and rising delays as a function of load. The slopes in pspF -1 corresponds to the
pull-up resistance (1281 W) and pull-down resistance (817 W). (d) Comparison of the delay model
(valid for t > 20 ps) and simulation (4 standard loads). Both are equal at the 0.35 trip point.

Figure 3.3 shows a simulation experiment (using the G5 process SPICE parameters from Table 2.1).
From the results in Figure 3.3 (c) we can see that R pd = 817 W and R pu = 1281 W for this inverter

(with shape factors of 6/0.6 for the n -channel transistor and 12/0.6 for the p -channel) using 0.5 (input)
and 0.35/0.65 (output) trip points. Changing the trip points would give different resistance values.

We can check that 817 W is a reasonable value for the pull-down resistance. In the saturation region I DS

(sat) is (to first order) independent of V DS . For an n -channel transistor from our generic 0.5 m m

process (G5 from Section 2.1) with shape factor W/L = 6/0.6, I DSn (sat) = 2.5 mA (at V GS = 3V and V

DS = 3V). The pull-down resistance, R 1 , that would give the same drain-source current is

R 1 = 3.0 V / (2.5 ¥ 10 -3 A) = 1200 W . (3.3)

This value is greater than, but not too different from, our measured pull-down resistance of 817 W . We
might expect this result since Figure 3.2b shows that the pull-down resistance reaches its maximum
value at V GS = 3V, V DS = 3V. We could adjust the ratio of the logic so that the rising and falling

delays were equal; then R = R pd = R pu is the pull resistance .

Next, we check our model against the simulation results. The model predicts

 - t’

v(out1) ª V DD exp ------------- for t ’ > 0 . (3.4)

 R pd (C out + C p)

(t’ is measured from the point at which the input crosses the 0.5 trip point, t’ = 0 at t = 20 ps). With C p
= 4 standard loads = 4 ¥ 0.034 pF = 0.136 pF,

R pd (C out + C p) = (38 + 817 (0.136)) ps = 149.112 ps . (3.5)

To make a comparison with the simulation we need to use ln (1/0.35) = 1.04 and not approximately 1 as
we have assumed, so that (with all times in ps)

 - t’

v(out1) ª 3.0 exp ----------- V

 149.112/1.04

 -(t - 20)

 = 3.0 exp --------- for t > 20 ps . (3.6)

 143.4

Equation 3.6 is plotted in Figure 3.3 (d). For v(out1) = 1.05 V (equal to the 0.35 output trip point), Eq.
3.6 predicts t = 20 + 149.112 ª 169 ps and agrees with Figure 3.3 (b)-it should because we derived the
model from these results!

Now we find C p . From Figure 3.3 (c) and Eq. 3.2

t PDr = (52 + 1281 C out) ps thus C pr = 52/1281 = 0.041 pF (rising) ,

t PDf = (38 + 817 C out) ps thus C pf = 38/817 = 0.047 pF (falling) . (3.7)

These intrinsic parasitic capacitance values depend on the choice of output trip points, even though C

These intrinsic parasitic capacitance values depend on the choice of output trip points, even though C pf
R pdf and C pr R pdr

3.2 Transistor Parasitic Capacitance
Logic-cell delay results from transistor resistance, transistor (intrinsic) parasitic capacitance, and load
(extrinsic) capacitance. When one logic cell drives another, the parasitic input capacitance of the driven
cell becomes the load capacitance of the driving cell and this will determine the delay of the driving cell.

Figure 3.4 shows the components of transistor parasitic capacitance. SPICE prints all of the MOS
parameter values for each transistor at the DC operating point. The following values were printed by
PSpice (v5.4) for the simulation of Figure 3.3 :

FIGURE 3.4 Transistor parasitic capacitance. (a) An n -channel MOS transistor with (drawn) gate
length L and width W. (b) The gate capacitance is split into: the constant overlap capacitances C GSOV
, C GDOV , and C GBOV and the variable capacitances C GS , C GB , and C GD , which depend on the

operating region. (c) A view showing how the different capacitances are approximated by planar
components (T FOX is the field-oxide thickness). (d) C BS and C BD are the sum of the area (C BSJ ,

C BDJ), sidewall (C BSSW , C BDSW), and channel edge (C BSJ GATE , C BDJ GATE) capacitances.

(e)-(f) The dimensions of the gate, overlap, and sidewall capacitances (L D is the lateral diffusion).

NAME m1 m2
MODEL CMOSN CMOSP

ID 7.49E-11 -7.49E-11
VGS 0.00E+00 -3.00E+00
VDS 3.00E+00 -4.40E-08
VBS 0.00E+00 0.00E+00
VTH 4.14E-01 -8.96E-01
VDSAT 3.51E-02 -1.78E+00
GM 1.75E-09 2.52E-11
GDS 1.24E-10 1.72E-03
GMB 6.02E-10 7.02E-12
CBD 2.06E-15 1.71E-14
CBS 4.45E-15 1.71E-14
CGSOV 1.80E-15 2.88E-15
CGDOV 1.80E-15 2.88E-15
CGBOV 2.00E-16 2.01E-16
CGS 0.00E+00 1.10E-14
CGD 0.00E+00 1.10E-14
CGB 3.88E-15 0.00E+00

The parameters ID (I DS), VGS , VDS , VBS , VTH (V t), and VDSAT (V DS (sat)) are DC parameters.

The parameters GM , GDS , and GMB are small-signal conductances (corresponding to ? I DS /? V GS ,

? I DS /? V DS , and ? I DS /? V BS , respectively). The remaining parameters are the parasitic

capacitances. Table 3.1 shows the calculation of these capacitance values for the n -channel transistor
m1 (with W = 6 m m and L = 0.6 m m) in Figure 3.3 (a).

TABLE 3.1 Calculations of parasitic capacitances for an n-channel MOS transistor.

PSpice Equation Values 1 for VGS = 0V, VDS = 3V, VSB = 0V

CBD C BD = C BDJ + C BDSW C BD = 1.855 ¥ 10 -13 + 2.04 ¥ 10 -16 = 2.06 ¥

10 -13 F

C BDJ + A D C J (1 + V DB / f B) -mJ (f B
= PB)

C BDJ = (4.032 ¥ 10 -15)(1 + (3/1)) -0.56 = 1.86

¥ 10 -15 F

C BDSW = P D C JSW (1 + V DB / f B)
-mJSW

(P D may or may not include channel edge)

C BDSW = (4.2 ¥ 10 -16)(1 + (3/1)) -0.5 = 2.04 ¥

10 -16 F

CBS C BS = C BSJ + C BSSW C BS = 4.032 ¥ 10 -15 + 4.2 ¥ 10 -16 = 4.45 ¥ 10
-15 F

 C BSJ + A S C J (1 + V SB / f B) -mJ
A S C J = (7.2 ¥ 10 -15)(5.6 ¥ 10 -4) = 4.03 ¥

10 -15 F

C BSSW = P S C JSW (1 + V SB / f B)
-mJSW

P S C JSW = (8.4 ¥ 10 -6)(5 ¥ 10 -11) = 4.2 ¥ 10
-16 F

CGSOV
C GSOV = W EFF C GSO ; W EFF = W - 2W

D
C GSOV = (6 ¥ 10 -6)(3 ¥ 10 -10) = 1.8 ¥ 10 -16

 F

CGDOV C GDOV = W EFF C GSO C GDOV = (6 ¥ 10 -6)(3 ¥ 10 -10) = 1.8 ¥ 10 -15

 F

CGBOV C GBOV = L EFF C GBO ; L EFF = L - 2L D C GDOV = (0.5 ¥ 10 -6)(4 ¥ 10 -10) = 2 ¥ 10 -16

 F

CGS

C GS /C O = 0 (off), 0.5 (lin.), 0.66 (sat.)

C O (oxide capacitance) = W EF L EFF e ox /

T ox

C O = (6 ¥ 10 -6)(0.5 ¥ 10 -6)(0.00345) = 1.03

¥ 10 -14 F

C GS = 0.0 F

CGD C GD /C O = 0 (off), 0.5 (lin.), 0 (sat.) C GD = 0.0 F

CGB
C GB = 0 (on), = C O in series with C GS
(off)

C GB = 3.88 ¥ 10 -15 F , C S = depletion

capacitance

1 Input

.MODEL CMOSN NMOS LEVEL=3 PHI=0.7 TOX=10E-09 XJ=0.2U TPG=1 VTO=0.65
DELTA=0.7
+ LD=5E-08 KP=2E-04 UO=550 THETA=0.27 RSH=2 GAMMA=0.6 NSUB=1.4E+17
NFS=6E+11
+ VMAX=2E+05 ETA=3.7E-02 KAPPA=2.9E-02 CGDO=3.0E-10 CGSO=3.0E-10
CGBO=4.0E-10
+ CJ=5.6E-04 MJ=0.56 CJSW=5E-11 MJSW=0.52 PB=1
m1 out1 in1 0 0 cmosn W=6U L=0.6U AS=7.2P AD=7.2P PS=8.4U PD=8.4U

3.2.1 Junction Capacitance

The junction capacitances, C BD and C BS , consist of two parts: junction area and sidewall; both have

different physical characteristics with parameters: CJ and MJ for the junction, CJSW and MJSW for the
sidewall, and PB is common. These capacitances depend on the voltage across the junction (V DB and

V SB). The calculations in Table 3.1 assume both source and drain regions are 6 m m ¥ 1.2 m m

rectangles, so that A D = A S = 7.2 (m m) 2 , and the perimeters (excluding the 1.2 m m channel edge)

are P D = P S = 6 + 1.2 + 1.2 = 8.4 m m. We exclude the channel edge because the sidewalls facing the

channel (corresponding to C BSJ GATE and C BDJ GATE in Figure 3.4) are different from the sidewalls

that face the field. There is no standard method to allow for this. It is a mistake to exclude the gate edge
assuming it is accounted for in the rest of the model-it is not. A pessimistic simulation includes the
channel edge in P D and P S (but a true worst-case analysis would use more accurate models and

worst-case model parameters). In HSPICE there is a separate mechanism to account for the channel edge
capacitance (using parameters ACM and CJGATE). In Table 3.1 we have neglected C J GATE .

For the p -channel transistor m2 (W = 12 m m and L = 0.6 m m) the source and drain regions are 12 m m
¥ 1.2 m m rectangles, so that A D = A S ª 14 (m m) 2 , and the perimeters are P D = P S = 12 + 1.2 + 1.2 ª

14 m m (these parameters are rounded to two significant figures solely to simplify the figures and

tables).

In passing, notice that a 1.2 m m strip of diffusion in a 0.6 m m process (l = 0.3 m m) is only 4 l
wide-wide enough to place a contact only with aggressive spacing rules. The conservative rules in
Figure 2.11 would require a diffusion width of at least 2 (rule 6.4a) + 2 (rule 6.3a) + 1.5 (rule 6.2a) = 5.5
l .

3.2.2 Overlap Capacitance

The overlap capacitance calculations for C GSOV and C GDOV in Table 3.1 account for lateral diffusion

(the amount the source and drain extend under the gate) using SPICE parameter LD = 5E-08 or L D =

0.05 m m. Not all versions of SPICE use the equivalent parameter for width reduction, WD (assumed
zero in Table 3.1), in calculating C GDOV and not all versions subtract W D to form W EFF .

3.2.3 Gate Capacitance

The gate capacitance calculations in Table 3.1 depend on the operating region. The gate-source
capacitance C GS varies from zero when the transistor is off to 0.5C O (0.5 ¥ 1.035 ¥ 10 -15 = 5.18 ¥ 10
-16 F) in the linear region to (2/3)C O in the saturation region (6.9 ¥ 10 -16 F). The gate-drain capacitance

C GD varies from zero (off) to 0.5C O (linear region) and back to zero (saturation region).

The gate-bulk capacitance C GB may be viewed as two capacitors in series: the fixed gate-oxide

capacitance, C O = W EFF L EFF e ox / T ox , and the variable depletion capacitance, C S = W EFF L EFF e

Si / x d , formed by the depletion region that extends under the gate (with varying depth x d). As the

transistor turns on the conducting channel appears and shields the bulk from the gate-and at this point C

GB falls to zero. Even with V GS = 0 V, the depletion width under the gate is finite and thus C GB ª 4 ¥

10 -15 F is less than C O ª 10 -16 F. In fact, since C GB ª 0.5 C O , we can tell that at V GS = 0 V, C S ª C O
.

Figure 3.5 shows the variation of the parasitic capacitance values.

FIGURE 3.5 The variation of n -channel transistor parasitic capacitance. Values were obtained from a
series of DC simulations using PSpice v5.4, the parameters shown in Table 3.1 (LEVEL=3), and by
varying the input voltage, v(in1) , of the inverter in Figure 3.3 (a). Data points are joined by straight
lines. Note that CGSOV = CGDOV .

3.2.4 Input Slew Rate

Figure 3.6 shows an experiment to monitor the input capacitance of an inverter as it switches. We have
introduced another variable-the delay of the input ramp or the slew rate of the input.

In Figure 3.6 (b) the input ramp is 40 ps long with a slew rate of 3 V/ 40 ps or 75 GVs -1 -as in our
previous experiments-and the output of the inverter hardly moves before the input has changed. The
input capacitance varies from 20 to 40 fF with an average value of approximately 34 fF for both
transitions-we can measure the average value in Probe by plotting AVG(-i(Vin)) .

(a)

(b)

(c)

FIGURE 3.6 The input capacitance of an inverter. (a) Input capacitance is measured by monitoring
the input current to the inverter, i(Vin) . (b) Very fast switching. The current, i(Vin) , is multiplied by
the input ramp delay (D t = 0.04 ns) and divided by the voltage swing (D V = V DD = 3 V) to give the

equivalent input capacitance, C = i D t / D V . Thus an adjusted input current of 40 fA corresponds to
an input capacitance of 40 fF. The current, i(Vin) , is positive for the rising edge of the input and
negative for the falling edge. (c) Very slow switching. The input capacitance is now equal for both
transitions.

In Figure 3.6 (c) the input ramp is slow enough (300 ns) that we are switching under almost equilibrium

conditions-at each voltage we allow the output to find its level on the static transfer curve of Figure 3.2
(a). The switching waveforms are quite different. The average input capacitance is now approximately
0.04 pF (a 20 percent difference). The propagation delay (using an input trip point of 0.5 and an output
trip point of 0.35) is negative and approximately 150 - 127 = -23 ns. By changing the input slew rate we
have broken our model. For the moment we shall ignore this problem and proceed.

The calculations in Table 3.1 and behavior of Figures 3.5 and 3.6 are very complex. How can we find
the value of the parasitic capacitance, C , to fit the model of Figure 3.1 ? Once again, as we did for pull
resistance and the intrinsic output capacitance, instead of trying to derive a theoretical value for C, we
adjust the value to fit the model. Before we formulate another experiment we should bear in mind the
following questions that the experiment of Figure 3.6 raises: Is it valid to replace the nonlinear input
capacitance with a linear component? Is it valid to use a linear input ramp when the normal waveforms
are so nonlinear?

Figure 3.7 shows an experiment crafted to answer these questions. The experiment has the following
two steps:

1. Adjust c2 to model the input capacitance of m5/6 ; then C = c2 = 0.0335 pF.
2. Remove all the parasitic capacitances for inverter m9/10 -except for the gate capacitances C GS , C

GD , and C GB -and then adjust c3 (0.01 pF) and c4 (0.025 pF) to model the effect of these missing

parasitics.

(a)

(c)

(b)

(d)

FIGURE 3.7 Parasitic capacitance. (a) All devices in this circuit include parasitic capacitance.
(b) This circuit uses linear capacitors to model the parasitic capacitance of m9/10 . The load
formed by the inverter (m5 and m6) is modeled by a 0.0335 pF capacitor (c2); the parasitic
capacitance due to the overlap of the gates of m3 and m4 with their source, drain, and bulk
terminals is modeled by a 0.01 pF capacitor (c3); and the effect of the parasitic capacitance at
the drain terminals of m3 and m4 is modeled by a 0.025 pF capacitor (c4). (c) The two circuits
compared. The delay shown (1.22 - 1.135 = 0.085 ns) is equal to t PDf for the inverter m3/4 .

(d) An exact match would have both waveforms equal at the 0.35 trip point (1.05 V).

We can summarize our findings from this and previous experiments as follows:

1. Since the waveforms in Figure 3.7 match, we can model the input capacitance of a logic cell with
a linear capacitor. However, we know the input capacitance may vary (by up to 20 percent in our
example) with the input slew rate.

2. The input waveform to the inverter m3/m4 in Figure 3.7 is from another inverter-not a linear
ramp. The difference in slew rate causes an error. The measured delay is 85 ps (0.085 ns), whereas
our model (Eq. 3.7) predicts

t PDr = (38 + 817 C out) ps = (38 + (817)·(0.0355)) ps = 65 ps . (3.8)

3. The total gate-oxide capacitance in our inverter with T ox =

C O = (W n L n + W p L p) e ox T ox

 = (34.5 ¥ 10 -4)·(6)·((0.6) + (12)·(0.6)) pF = 0.037 pF . (3.9)

4. All the transistor parasitic capacitances excluding the gate capacitance contribute 0.01 pF of the
0.0335 pF input capacitance-about 30 percent. The gate capacitances contribute the rest-0.025 pF
(about 70 percent).

The last two observations are useful. Since the gate capacitances are nonlinear, we only see about
0.025/0.037 or 70 percent of the 0.037 pF gate-oxide capacitance, C O , in the input capacitance, C . This

means that it happens by chance that the total gate-oxide capacitance is also a rough estimate of the gate
input capacitance, C ª C O . Using L and W rather than L EFF and W EFF in Eq. 3.9 helps this estimate.

The accuracy of this estimate depends on the fact that the junction capacitances are approximately
one-third of the gate-oxide capacitance-which happens to be true for many CMOS processes for the
shapes of transistors that normally occur in logic cells. In the next section we shall use this estimate to
help us design logic cells.

3.3 Logical Effort
In this section we explore a delay model based on logical effort, a term coined by Ivan Sutherland and
Robert Sproull [1991], that has as its basis the time-constant analysis of Carver Mead, Chuck Seitz, and
others.

We add a "catch all" nonideal component of delay, t q , to Eq. 3.2 that includes: (1) delay due to internal

parasitic capacitance; (2) the time for the input to reach the switching threshold of the cell; and (3) the
dependence of the delay on the slew rate of the input waveform. With these assumptions we can express
the delay as follows:

t PD = R (C out + C p) + t q . (3.10)

(The input capacitance of the logic cell is C , but we do not need it yet.)

We will use a standard-cell library for a 3.3 V, 0.5 m m (0.6 m m drawn) technology (from Compass) to

illustrate our model. We call this technology C5 ; it is almost identical to the G5 process from
Section 2.1 (the Compass library uses a more accurate and more complicated SPICE model than the
generic process). The equation for the delay of a 1X drive, two-input NAND cell is in the form of Eq.
3.10 (C out is in pF):

t PD = (0.07 + 1.46 C out + 0.15) ns . (3.11)

The delay due to the intrinsic output capacitance (0.07 ns, equal to RC p) and the nonideal delay (t q =

0.15 ns) are specified separately. The nonideal delay is a considerable fraction of the total delay, so we
may hardly ignore it. If data books do not specify these components of delay separately, we have to
estimate the fractions of the constant part of a delay equation to assign to RC p and t q (here the ratio RC

p / t q is approximately 2).

The data book tells us the input trip point is 0.5 and the output trip points are 0.35 and 0.65. We can use
Eq. 3.11 to estimate the pull resistance for this cell as R ª 1.46 nspF -1 or about 1.5 k W . Equation 3.11
is for the falling delay; the data book equation for the rising delay gives slightly different values (but
within 10 percent of the falling delay values).

We can scale any logic cell by a scaling factor s (transistor gates become s times wider, but the gate
lengths stay the same), and as a result the pull resistance R will decrease to R / s and the parasitic
capacitance C p will increase to sC p . Since t q is nonideal, by definition it is hard to predict how it will

scale. We shall assume that t q scales linearly with s for all cells. The total cell delay then scales as

follows:

t PD = (R / s)·(C out + sC p) + st q . (3.12)

For example, the delay equation for a 2X drive (s = 2), two-input NAND cell is

t PD = (0.03 + 0.75 C out + 0.51) ns . (3.13)

Compared to the 1X version (Eq. 3.11), the output parasitic delay has decreased to 0.03 ns (from 0.07
ns), whereas we predicted it would remain constant (the difference is because of the layout); the pull
resistance has decreased by a factor of 2 from 1.5 k W to 0.75 k W , as we would expect; and the
nonideal delay has increased to 0.51 ns (from 0.15 ns). The differences between our predictions and the
actual values give us a measure of the model accuracy.

We rewrite Eq. 3.12 using the input capacitance of the scaled logic cell, C in = s C ,

 C out

t PD = RC ------ + RC p + st q . (3.14)

 C in

Finally we normalize the delay using the time constant formed from the pull resistance R inv and the

input capacitance C inv of a minimum-size inverter:

 (RC) (C out / C in) + RC p + st q

d = ------------------------------- = f + p + q . (3.15)

 t

The time constant tau ,

t = R inv C inv , (3.16)

is a basic property of any CMOS technology. We shall measure delays in terms of t .

The delay equation for a 1X (minimum-size) inverter in the C5 library is

t PDf = R pd (C out + C p) ln (1/0.35) ª R pd (C out + C p) . (3.17)

Thus tq inv = 0.1 ns and R inv = 1.60 k W . The input capacitance of the 1X inverter (the standard load

for this library) is specified in the data book as C inv = 0.036 pF; thus t = (0.036 pF)(1.60 k W) = 0.06 ns

for the C5 technology.

The use of logical effort consists of rearranging and understanding the meaning of the various terms in
Eq. 3.15 . The delay equation is the sum of three terms,

d = f + p + q . (3.18)

We give these terms special names as follows:

delay = effort delay + parasitic delay + nonideal delay . (3.19)

The effort delay f we write as a product of logical effort, g , and electrical effort, h:

f = gh . (3.20)

So we can further partition delay into the following terms:

delay = logical effort ¥ electrical effort + parasitic delay + nonideal delay . (3.21)

The logical effort g is a function of the type of logic cell,

g = RC/ t . (3.22)

What size of logic cell do the R and C refer to? It does not matter because the R and C will change as we
scale a logic cell, but the RC product stays the same-the logical effort is independent of the size of a
logic cell. We can find the logical effort by scaling down the logic cell so that it has the same drive
capability as the 1X minimum-size inverter. Then the logical effort, g , is the ratio of the input
capacitance, C in , of the 1X version of the logic cell to C inv (see Figure 3.8).

FIGURE 3.8 Logical effort. (a) The input capacitance, C inv , looking into the input of a

minimum-size inverter in terms of the gate capacitance of a minimum-size device. (b) Sizing a logic
cell to have the same drive strength as a minimum-size inverter (assuming a logic ratio of 2). The input
capacitance looking into one of the logic-cell terminals is then C in . (c) The logical effort of a cell is C

in / C inv . For a two-input NAND cell, the logical effort, g = 4/3.

The electrical effort h depends only on the load capacitance C out connected to the output of the logic

cell and the input capacitance of the logic cell, C in ; thus

h = C out / C in . (3.23)

The parasitic delay p depends on the intrinsic parasitic capacitance C p of the logic cell, so that

p = RC p / t . (3.24)

Table 3.2 shows the logical efforts for single-stage logic cells. Suppose the minimum-size inverter has
an n -channel transistor with W/L = 1 and a p -channel transistor with W/L = 2 (logic ratio, r , of 2).
Then each two-input NAND logic cell input is connected to an n -channel transistor with W/L = 2 and a
p -channel transistor with W/L = 2. The input capacitance of the two-input NAND logic cell divided by
that of the inverter is thus 4/3. This is the logical effort of a two-input NAND when r = 2. Logical effort
depends on the ratio of the logic. For an n -input NAND cell with ratio r , the p -channel transistors are
W/L = r /1, and the n -channel transistors are W/L = n /1. For a NOR cell the n -channel transistors are
1/1 and the p -channel transistors are nr /1.

TABLE 3.2 Cell effort, parasitic delay, and nonideal delay (in units of t) for single-stage CMOS cells.

Cell
Cell effort

(logic ratio = 2)

Cell effort

(logic ratio = r)
Parasitic delay/ t Nonideal delay/ t

inverter 1 (by definition) 1 (by definition) p inv (by definition) 1 q inv (by definition) 1

n -input NAND (n + 2)/3 (n + r)/(r + 1) n p inv n q inv

n -input NOR (2 n + 1)/3 (nr + 1)/(r + 1) n p inv n q inv

The parasitic delay arises from parasitic capacitance at the output node of a single-stage logic cell and
most (but not all) of this is due to the source and drain capacitance. The parasitic delay of a
minimum-size inverter is

p inv = C p / C inv . (3.25)

The parasitic delay is a constant, for any technology. For our C5 technology we know RC p = 0.06 ns

and, using Eq. 3.17 for a minimum-size inverter, we can calculate p inv = RC p / t = 0.06/0.06 = 1 (this

is purely a coincidence). Thus C p is about equal to C inv and is approximately 0.036 pF. There is a large

error in calculating p inv from extracted delay values that are so small. Often we can calculate p inv more

accurately from estimating the parasitic capacitance from layout.

Because RC p is constant, the parasitic delay is equal to the ratio of parasitic capacitance of a logic cell

to the parasitic capacitance of a minimum-size inverter. In practice this ratio is very difficult to
calculate-it depends on the layout. We can approximate the parasitic delay by assuming it is proportional
to the sum of the widths of the n -channel and p -channel transistors connected to the output. Table 3.2
shows the parasitic delay for different cells in terms of p inv .

The nonideal delay q is hard to predict and depends mainly on the physical size of the logic cell
(proportional to the cell area in general, or width in the case of a standard cell or a gate-array macro),

q = st q / t . (3.26)

We define q inv in the same way we defined p inv . An n -input cell is approximately n times larger than

an inverter, giving the values for nonideal delay shown in Table 3.2 . For our C5 technology, from Eq.
3.17 , q inv = t q inv / t = 0.1 ns/0.06 ns = 1.7.

3.3.1 Predicting Delay

As an example, let us predict the delay of a three-input NOR logic cell with 2X drive, driving a net with
a fanout of four, with a total load capacitance (comprising the input capacitance of the four cells we are
driving plus the interconnect) of 0.3 pF.

From Table 3.2 we see p = 3 p inv and q = 3 q inv for this cell. We can calculate C in from the fact that

the input gate capacitance of a 1X drive, three-input NOR logic cell is equal to gC inv , and for a 2X

logic cell, C in = 2 gC inv . Thus,

 C out g ·(0.3 pF) (0.3 pF)

gh = g ----- = ----------- = ------------ . (3.27)

 C in 2 g C inv (2)·(0.036 pF)

(Notice that g cancels out in this equation, we shall discuss this in the next section.)

The delay of the NOR logic cell, in units of t , is thus

 0.3 ¥ 10 -12

d = gh + p + q = -------------------- + (3)·(1) + (3)·(1.7)

 (2)·(0.036 ¥ 10 -12)

 = 4.1666667 + 3 + 5.1

 = 12.266667 t . (3.28)

equivalent to an absolute delay, t PD ª 12.3 ¥ 0.06 ns = 0.74 ns.

The delay for a 2X drive, three-input NOR logic cell in the C5 library is

t PD = (0.03 + 0.72 C out + 0.60) ns . (3.29)

With C out = 0.3 pF,

t PD = 0.03 + (0.72)·(0.3) + 0.60 = 0.846 ns . (3.30)

compared to our prediction of 0.74 ns. Almost all of the error here comes from the inaccuracy in
predicting the nonideal delay. Logical effort gives us a method to examine relative delays and not
accurately calculate absolute delays. More important is that logical effort gives us an insight into why
logic has the delay it does.

3.3.2 Logical Area and Logical Efficiency

Figure 3.9 shows a single-stage OR-AND-INVERT cell that has different logical efforts at each input.
The logical effort for the OAI221 is the logical-effort vector g = (7/3, 7/3, 5/3). For example, the first
element of this vector, 7/3, is the logical effort of inputs A and B in Figure 3.9 .

FIGURE 3.9 An OAI221 logic cell with different logical
efforts at each input. In this case g = (7/3, 7/3, 5/3). The
logical effort for inputs A and B is 7/3, the logical effort for
inputs C and D is also 7/3, and for input E the logical effort is
5/3. The logical area is the sum of the transistor areas, 33
logical squares.

We can calculate the area of the transistors in a logic cell (ignoring the routing area, drain area, and
source area) in units of a minimum-size n -channel transistor-we call these units logical squares . We
call the transistor area the logical area . For example, the logical area of a 1X drive cell, OAI221X1, is
calculated as follows:

n -channel transistor sizes: 3/1 + 4 ¥ (3/1)
p -channel transistor sizes: 2/1 + 4 ¥ (4/1)
total logical area = 2 + (4 ¥ 4) + (5 ¥ 3) = 33 logical squares

Figure 3.10 shows a single-stage AOI221 cell, with g = (8/3, 8/3, 6/3). The calculation of the logical
area (for a AOI221X1) is as follows:

n -channel transistor sizes: 1/1 + 4 ¥ (2/1)
p -channel transistor sizes: 6/1 + 4 ¥ (6/1)
logical area = 1 + (4 ¥ 2) + (5 ¥ 6) = 39 logical squares

FIGURE 3.10 An AND-OR-INVERT cell, an AOI221,
with logical-effort vector, g = (8/3, 8/3, 7/3). The logical
area is 39 logical squares.

These calculations show us that the single-stage AOI221, with an area of 33 logical squares and logical
effort of (7/3, 7/3, 5/3), is more logically efficient than the single-stage OAI221 logic cell with a larger
area of 39 logical squares and larger logical effort of (8/3, 8/3, 6/3).

3.3.3 Logical Paths

When we calculated the delay of the NOR logic cell in Section 3.3.1, the answer did not depend on the
logical effort of the cell, g (it cancelled out in Eqs. 3.27 and 3.28). This is because g is a measure of the
input capacitance of a 1X drive logic cell. Since we were not driving the NOR logic cell with another
logic cell, the input capacitance of the NOR logic cell had no effect on the delay. This is what we do in a

data book-we measure logic-cell delay using an ideal input waveform that is the same no matter what
the input capacitance of the cell. Instead let us calculate the delay of a logic cell when it is driven by a
minimum-size inverter. To do this we need to extend the notion of logical effort.

So far we have only considered a single-stage logic cell, but we can extend the idea of logical effort to a
chain of logic cells or logical path . Consider the logic path when we use a minimum-size inverter (g 0 =

1, p 0 = 1, q 0 = 1.7) to drive one input of a 2X drive, three-input NOR logic cell with g 1 = (nr + 1)/(r +

1), p 1 = 3, q 1 =3, and a load equal to four standard loads. If the logic ratio is r = 1.5, then g 1 = 5.5/2.5

= 2.2.

The delay of the inverter is

d = g 0 h 0 + p 0 + q 0 = (1) · (2g 1) · (C inv /C inv) +1 + 1.7 (3.31)

 = (1)(2)(2.2) + 1 + 1.7

 = 7.1 .

Of this 7.1 t delay we can attribute 4.4 t to the loading of the NOR logic cell input capacitance, which is
2 g 1 C inv . The delay of the NOR logic cell is, as before, d 1 = g 1 h 1 + p 1 + q 1 = 12.3, making the

total delay 7.1 + 12.3 = 19.4, so the absolute delay is (19.4)(0.06 ns) = 1.164 ns, or about 1.2 ns.

We can see that the path delay D is the sum of the logical effort, parasitic delay, and nonideal delay at
each stage. In general, we can write the path delay as

D = ? g i h i + ? (p i + q i) . (3.32)

 i ? path i ? path

3.3.4 Multistage Cells

Consider the following function (a multistage AOI221 logic cell):

 ZN(A1, A2, B1, B2, C)

= NOT(NAND(NAND(A1, A2), AOI21(B1, B2, C)))

= (((A1·A2)’ · (B1·B2 + C)’)’)’

= (A1·A2 + B1·B2 + C)’

= AOI221(A1, A2, B1, B2, C) . (3.33)

Figure 3.11 (a) shows this implementation with each input driven by a minimum-size inverter so we can
measure the effect of the cell input capacitance.

FIGURE 3.11 Logical paths. (a) An AOI221 logic cell constructed as a multistage cell from smaller
cells. (b) A single-stage AOI221 logic cell.

The logical efforts of each of the logic cells in Figure 3.11 (a) are as follows:

g 0 = g 4 = g (NOT) = 1 ,

g 1 = g (AOI21) = (2, (2 r + 1)/(r + 1)) = (2, 4/2.5) = (2, 1.6) ,

g 2 = g 3 = g (NAND2) = (r + 2)/(r + 1) = (3.5)/(2.5) = 1.4 . (3.34)

Each of the logic cells in Figure 3.11 has a 1X drive strength. This means that the input capacitance of
each logic cell is given, as shown in the figure, by gC inv .

Using Eq. 3.32 we can calculate the delay from the input of the inverter driving A1 to the output ZN as

d 1 = (1)·(1.4) + 1 + 1.7 + (1.4)·(1) + 2 + 3.4

 + (1.4)·(0.7) + 2 + 3.4 + (1)· C L + 1 + 1.7

 = (20 + C L) . (3.35)

In Eq. 3.35 we have normalized the output load, C L , by dividing it by a standard load (equal to C inv).

We can calculate the delays of the other paths similarly.

More interesting is to compare the multistage implementation with the single-stage version. In our C5
technology, with a logic ratio, r = 1.5, we can calculate the logical effort for a single-stage AOI221 logic
cell as

g (AOI221) = ((3 r + 2)/(r + 1), (3 r + 2)/(r + 1), (3 r + 1)/(r + 1))

 = (6.5/2.5, 6.5/2.5, 5.5/2.5)

 = (2.6, 2.6, 2.2) . (3.36)

This gives the delay from an inverter driving the A input to the output ZN of the single-stage logic cell
as

d1 = ((1)·(2.6) + 1 + 1.7 + (1)· C L + 5 + 8.5)

 = 18.8 + C L . (3.37)

The single-stage delay is very close to the delay for the multistage version of this logic cell. In some
ASIC libraries the AOI221 is implemented as a multistage logic cell instead of using a single stage. It
raises the question: Can we make the multistage logic cell any faster by adjusting the scale of the
intermediate logic cells?

3.3.5 Optimum Delay

Before we can attack the question of how to optimize delay in a logic path, we shall need some more
definitions. The path logical effort G is the product of logical efforts on a path:

 G = ? g i . (3.38)

 i ? path

The path electrical effort H is the product of the electrical efforts on the path,

 C out

 H = ? h i ----- , (3.39)

 i ? path C in

where C out is the last output capacitance on the path (the load) and C in is the first input capacitance on

the path.

The path effort F is the product of the path electrical effort and logical efforts,

 F = GH . (3.40)

The optimum effort delay for each stage is found by minimizing the path delay D by varying the
electrical efforts of each stage h i , while keeping H , the path electrical effort fixed. The optimum effort

delay is achieved when each stage operates with equal effort,

 f^ i = g i h i = F 1/ N . (3.41)

This a useful result. The optimum path delay is then

 D^ = NF 1/ N = N (GH) 1/ N + P + Q , (3.42)

where P + Q is the sum of path parasitic delay and nonideal delay,

P + Q = ? p i + h i . (3.43)

 i ? path

We can use these results to improve the AOI221 multistage implementation of Figure 3.11 (a). Assume
that we need a 1X cell, so the output inverter (cell 4) must have 1X drive strength. This fixes the
capacitance we must drive as C out = C inv (the capacitance at the input of this inverter). The input

inverters are included to measure the effect of the cell input capacitance, so we cannot cheat by altering
these. This fixes the input capacitance as C in = C inv . In this case H = 1.

The logic cells that we can scale on the path from the A input to the output are NAND logic cells labeled
as 2 and 3. In this case

G = g 0 ¥ g 2 ¥ g 3 = 1 ¥ 1.4 ¥ 1.4 = 1.95 . (3.44)

Thus F = GH = 1.95 and the optimum stage effort is 1.95 (1/3) = 1.25, so that the optimum delay NF 1/ N

= 3.75. From Figure 3.11 (a) we see that

g 0 h 0 + g 2 h 2 + g 3 h 3 = 1.4 + 1.3 + 1 = 3.8 . (3.45)

This means that even if we scale the sizes of the cells to their optimum values, we only save a fraction of
a t (3.8 - 3.75 = 0.05). This is a useful result (and one that is true in general)-the delay is not very
sensitive to the scale of the cells. In this case it means that we can reduce the size of the two NAND
cells in the multicell implementation of an AOI221 without sacrificing speed. We can use logical effort
to predict what the change in delay will be for any given cell sizes.

We can use logical effort in the design of logic cells and in the design of logic that uses logic cells. If we
do have the flexibility to continuously size each logic cell (which in ASIC design we normally do not,
we usually have to choose from 1X, 2X, 4X drive strengths), each logic stage can be sized using the
equation for the individual stage electrical efforts,

 F 1/ N

 h^ i = ------ . (3.46)

 g i

For example, even though we know that it will not improve the delay by much, let us size the cells in
Figure 3.11 (a). We shall work backward starting at the fixed load capacitance at the input of the last

inverter.

For NAND cell 3, gh = 1.25; thus (since g = 1.4), h = C out / C in = 0.893. The output capacitance, C out ,

for this NAND cell is the input capacitance of the inverter-fixed as 1 standard load, C inv . This fixes the

input capacitance, C in , of NAND cell 3 at 1/0.893 = 1.12 standard loads. Thus, the scale of NAND cell

3 is 1.12/1.4 or 0.8X.

Now for NAND cell 2, gh = 1.25; C out for NAND cell 2 is the C in of NAND cell 3. Thus C in for

NAND cell 2 is 1.12/0.893 = 1.254 standard loads. This means the scale of NAND cell 2 is 1.254/1.4 or
0.9X.

The optimum sizes of the NAND cells are not very different from 1X in this case because H = 1 and we
are only driving a load no bigger than the input capacitance. This raises the question: What is the
optimum stage effort if we have to drive a large load, H >> 1? Notice that, so far, we have only
calculated the optimum stage effort when we have a fixed number of stages, N . We have said nothing
about the situation in which we are free to choose, N , the number of stages.

3.3.6 Optimum Number of Stages

Suppose we have a chain of N inverters each with equal stage effort, f = gh . Neglecting parasitic and
nonideal delay, the total path delay is Nf = Ngh = Nh , since g = 1 for an inverter. Suppose we need to
drive a path electrical effort H ; then h N = H , or N ln h = ln H . Thus the delay, Nh = h ln H /ln h . Since
ln H is fixed, we can only vary h /ln (h). Figure 3.12 shows that this is a very shallow function with a
minimum at h = e ª 2.718. At this point ln h = 1 and the total delay is N e = e ln H . This result is
particularly useful in driving large loads either on-chip (the clock, for example) or off-chip (I/O pad
drivers, for example).

FIGURE 3.12 Stage effort.

 h h/(ln h)

 1.5 3.7

 2 2.9

 2.7 2.7

 3 2.7

 4 2.9

 5 3.1

 10 4.3

Figure 3.12 shows us how to minimize delay regardless of area or power and neglecting parasitic and
nonideal delays. More complicated equations can be derived, including nonideal effects, when we wish

to trade off delay for smaller area or reduced power.

1. For the Compass 0.5 m m technology (C5): p inv = 1.0, q inv = 1.7, R inv = 1.5 k W , C inv = 0.036 pF.

3.4 Library-Cell Design
The optimum cell layout for each process generation changes because the design rules for each ASIC
vendor’s process are always slightly different-even for the same generation of technology. For example,
two companies may have very similar 0.35 m m CMOS process technologies, but the third-level metal
spacing might be slightly different. If a cell library is to be used with both processes, we could construct
the library by adopting the most stringent rules from each process. A library constructed in this fashion
may not be competitive with one that is constructed specifically for each process. Even though ASIC
vendors prize their design rules as secret, it turns out that they are similar-except for a few details.
Unfortunately, it is the details that stop us moving designs from one process to another. Unless we are a
very large customer it is difficult to have an ASIC vendor change or waive design rules for us. We
would like all vendors to agree on a common set of design rules. This is, in fact, easier than it sounds.
The reason that most vendors have similar rules is because most vendors use the same manufacturing
equipment and a similar process. It is possible to construct a highest common denominator library that
extracts the most from the current manufacturing capability. Some library companies and the large
Japanese ASIC vendors are adopting this approach.

Layout of library cells is either hand-crafted or uses some form of symbolic layout . Symbolic layout is
usually performed in one of two ways: using either interactive graphics or a text layout language. Shapes
are represented by simple lines or rectangles, known as sticks or logs , in symbolic layout. The actual
dimensions of the sticks or logs are determined after layout is completed in a postprocessing step. An
alternative to graphical symbolic layout uses a text layout language, similar to a programming language
such as C, that directs a program to assemble layout. The spacing and dimensions of the layout shapes
are defined in terms of variables rather than constants. These variables can be changed after symbolic
layout is complete to adjust the layout spacing to a specific process.

Mapping symbolic layout to a specific process technology uses 10-20 percent more area than
hand-crafted layout (though this can then be further reduced to 5-10 percent with compaction). Most

experience shows this is about 5-15

3.5 Library Architecture
Figure 3.13 (a) shows cell use data from over 150 CMOS gate array designs. These results are
remarkably similar to that from other ASIC designs using different libraries and different technologies
and show that typically 80 percent of an ASIC uses less than 20 percent of the cell library.

(a) (b)

(c)

(d)

FIGURE 3.13 Cell library statistics.

(e)

We can use the data in Figure 3.13 (a) to derive some useful conclusions about the number and types of
cells to be included in a library. Before we do this, a few words of caution are in order. First, the data
shown in Figure 3.13 (a) tells us about cells that are included a library. This data cannot tell us anything
about cells that are not (and perhaps should be) included in a library. Second, the type of design entry
we use-and the type of ASIC we are designing-can dramatically affect the profile of the use of different
cell types. For example, if we use a high-level design language, together with logic synthesis, to enter an
ASIC design, this will favor the use of the complex combinational cells (cells of the AOI family that are
particularly area efficient in CMOS, but are difficult to work with when we design by hand).

Figure 3.13 (a) tells us which cells we use most often, but does not take into account the cell area. What
we really want to know are which cells are most important in determining the area of an ASIC. Figure
3.13 (b) shows the area of the cells-normalized to the area of a minimum-size inverter. If we take the
data in Figure 3.13 (a) and multiply by the cell areas, we can derive a new measure of the contribution
of each cell in a library (Figure 3.13c). This new measure, cell importance , is a measure of how much
area each cell in a library contributes to a typical ASIC. For example, we can see from Figure 3.13 (c)
that a D flip-flop (with a cell importance of 3.5) contributes 3.5 times as much area on a typical ASIC
than does an inverter (with a cell importance of 1).

Figure 3.13 (c) shows cell importance ordered by the cell frequency of use and normalized to an

inverter. We can rearrange this data in terms of cell importance, as shown in Figure 3.13 (d), and
normalized so that now the most important cell, a D flip-flop, has a cell importance of 1. Figure 3.13 (e)
includes the cell use data on the same scale as the cell importance data. Both show roughly the same
shape, reflecting that both measures obey an 80-20 rule. Roughly 20 percent of the cells in a library
correspond to 80 percent of the ASIC area and 80 percent of the cells we use (but not the same 20
percent-that is why cell importance is useful).

Figure 3.13

3.6 Gate-Array Design
Each logic cell or macro in a gate-array library is predesigned using fixed tiles of transistors known as
the gate-array base cell (or just base cell). We call the arrangement of base cells across a whole chip in a
complete gate array the gate-array base (or just base). ASIC vendors offer a selection of bases, with a
different total numbers of transistors on each base. For example, if our ASIC design uses 48k equivalent
gates and the ASIC vendor offers gate arrays bases with 50k-, 75k-, and 100k-gates, we will probably
have to use the 75k-gate base (because it is unlikely that we can use 48/50 or 96 percent of the
transistors on the 50k-gate base).

We isolate the transistors on a gate array from one another either with thick field oxide (in the case of
oxide-isolated gate arrays) or by using other transistors that are wired permanently off (in gate-isolated
gate arrays). Channeled and channelless gate arrays may use either gate isolation or oxide isolation.

Figure 3.14 (a) shows a base cell for a gate-isolated gate array . This base cell has two transistors: one p
-channel and one n -channel. When these base cells are placed next to each other, the n -diffusion and p
-diffusion layers form continuous strips that run across the entire chip broken only at the poly gates that
cross at regularly spaced intervals (Figure 3.14b). The metal interconnect spacing determines the
separation of the transistors. The metal spacing is determined by the design rules for the metal and
contacts. In Figure 3.14 (c) we have shown all possible locations for a contact in the base cell. There is
room for 21 contacts in this cell and thus room for 21 interconnect lines running in a horizontal direction
(we use m1 running horizontally). We say that there are 21 horizontal tracks in this cell or that the cell is
21 tracks high. In a similar fashion the space that we need for a vertical interconnect (m2) is called a
vertical track . The horizontal and vertical track widths are not necessarily equal, because the design
rules for m1 and m2 are not always equal.

We isolate logic cells from each other in gate-isolated gate arrays by connecting transistor gates to the
supply bus-hence the name, gate isolation . If we connect the gate of an n -channel transistor to V SS ,

we isolate the regions of n -diffusion on each side of that transistor (we call this an isolator transistor or
device, or just isolator). Similarly if we connect the gate of a p -channel transistor to V DD , we isolate

adjacent p -diffusion regions.

FIGURE 3.14 The construction of a gate-isolated gate array. (a) The one-track-wide base cell
containing one p -channel and one n -channel transistor. (b) Three base cells: the center base cell is
being used to isolate the base cells on either side from each other. (c) A base cell including all possible
contact positions (there is room for 21 contacts in the vertical direction, showing the base cell has a
height of 21 tracks).

Oxide-isolated gate arrays often contain four transistors in the base cell: the two n -channel transistors
share an n -diffusion strip and the two p -channel transistors share a p -diffusion strip. This means that
the two n -channel transistors in each base cell are electrically connected in series, as are the p -channel
transistors. The base cells are isolated from each other using oxide isolation . During the fabrication
process a layer of the thick field oxide is left in place between each base cell and this separates the p
-diffusion and n -diffusion regions of adjacent base cells.

Figure 3.15 shows an oxide-isolated gate array . This cell contains eight transistors (which occupy six
vertical tracks) plus one-half of a single track that contains the well contacts and substrate connections
that we can consider to be shared by each base cell.

FIGURE 3.15 An oxide-isolated gate-array base cell. The figure shows two base cells, each containing
eight transistors and two well contacts. The p -channel and n -channel transistors are each 4 tracks high
(corresponding to the width of the transistor). The leftmost vertical track of the left base cell includes
all 12 possible contact positions (the height of the cell is 12 tracks). As outlined here, the base cell is 7
tracks wide (we could also consider the base cell to be half this width).

Figure 3.16 shows a base cell in which the gates of the n -channel and p -channel transistors are
connected on the polysilicon layer. Connecting the gates in poly saves contacts and a metal interconnect
in the center of the cell where interconnect is most congested. The drawback of the preconnected gates is
a loss in flexibility in cell design. Implementing memory and logic based on transmission gates will be
less efficient using this type of base cell, for example.

FIGURE 3.16 This oxide-isolated gate-array base cell is 14 tracks high and 4 tracks wide. VDD
(tracks 3 and 4) and GND (tracks 11 and 12) are each 2 tracks wide. The metal lines to the left of the
cell indicate the 10 horizontal routing tracks (tracks 1, 2, 5-10, 13, 14). Notice that the p -channel and n
-channel polysilicon gates are tied together in the center of the cell. The well contacts are short, leaving
room for a poly cross-under in each base cell.

Figure 3.17 shows the metal personalization for a D flip-flop macro in a gate-isolated gate array using a
base cell similar to that shown in Figure 3.14 (a). This macro uses 20 base cells, for a total of 40
transistors, equivalent to 10 gates.

FIGURE 3.17 An example of a flip-flop macro in a gate-isolated gate-array library. Only the
first-level metallization and contact pattern (the personalization) is shown on the right, but this is
enough information to derive the schematic. The base cell is shown on the left. This macro is 20 tracks
wide.

The gates of the base cells shown in Figures 3.14 - 3.16 are bent. The bent gate allows contacts to the
gates to be placed on the same grid as the contacts to diffusion. The polysilicon gates run in the space
between adjacent metal interconnect lines. This saves space and also simplifies the routing software.

There are many trade-offs that determine the gate-array base cell height. One factor is the number of
wires that can be run horizontally through the base cell. This will determine the capacity of the routing
channel formed from an unused row of base cells. The base cell height also determines how easy it is to
wire the logic macros since it determines how much space for wiring is available inside the macros.

There are other factors that determine the width of the base-cell transistors. The widths of the p -channel
and n -channel transistors are slightly different in Figure 3.14 (a). The p -channel transistors are 6 tracks
wide and the n -channel transistors are 5 tracks wide. The ratio for this gate-array library is thus
approximately 1.2. Most gate-array libraries are approaching a ratio of 1.

ASIC designers are using ever-increasing amounts of RAM on gate arrays. It is inefficient to use the
normal base cell for a static RAM cell and the size of RAM on an embedded gate array is fixed. As an
alternative we can change the design of the base cell. A base cell designed for use as RAM has extra
transistors (either four-two n -channel and two p -channel-or two n -channel; usually minimum width)
allowing a six-transistor RAM cell to be built using one base cell instead of the two or three that we
would normally need. This is one of the advantages of the CBA (cell-based array) base cell shown in
Figure 3.18 .

3.7 Standard-Cell Design
Figure 3.19 shows the components of the standard cell from Figure 1.3. Each standard cell in a library is
rectangular with the same height but different widths. The bounding box (BB) of a logic cell is the
smallest rectangle that encloses all of the geometry of the cell. The cell BB is normally determined by
the well layers. Cell connectors or terminals (the logical connectors) must be placed on the cell
abutment box (AB). The physical connector (the piece of metal to which we connect wires) must
normally overlap the abutment box slightly, usually by at least 1 l , to assure connection without leaving
a tiny space between the ends of two wires. The standard cells are constructed so they can all be placed
next to each other horizontally with the cell ABs touching (we abut two cells).

(a)

(b)

(c)

(d)

FIGURE 3.19 (a) The standard cell shown in Figure 1.3. (b) Diffusion, poly, and contact layers.
(c) m1 and contact layers. (d) The equivalent schematic.

A standard cell (a D flip-flop with clear) is shown in Figure 3.20 and illustrates the following features
of standard-cell layout:

Connectors are at the top and bottom of the cell on m2 on a routing grid equal to the vertical (m2)
track spacing. This is a double-entry cell intended for a two-level metal process. A standard cell
designed for a three-level metal process has connectors in the center of the cell.
Transistor sizes vary to optimize the area and performance but maintain a fixed ratio to balance
rise times and fall times.
The cell height is 64 l (all cells in the library are the same height) with a horizontal (m1) track
spacing of 8 l . This is close to the minimum height that can accommodate the most complex cells
in a library.
The power rails are placed at the top and bottom, maintaining a certain width inside the cell and
abut with the power rails in adjacent cells.
The well contacts (substrate connections) are placed inside the cell at regular intervals. Additional
well contacts may be placed in spacers between cells.
In this case both wells are drawn. Some libraries minimize the well or moat area to reduce leakage
and parasitic capacitance.
Most commercial standard cells use m1 for the power rails, m1 for internal connections, and avoid
using m2 where possible except for cell connectors.

FIGURE 3.20 A D flip-flop standard cell. The wide power buses and transistors show this is a
performance-optimized cell. This double-entry cell is intended for a two-level metal process and
channel routing. The five connectors run vertically through the cell on m2 (the extra short
vertical metal line is an internal crossover).

When a library developer creates a gate-array, standard-cell, or datapath library, there is a trade-off
between using wide, high-drive transistors that result in large cells with high-speed performance and
using smaller transistors that result in smaller cells that consume less power. A performance-optimized
library with large cells might be used for ASICs in a high-performance workstation, for example. An
area-optimized library

3.8 Datapath-Cell Design

Figure 3.21 shows a datapath flip-flop. The primary, thicker, power buses run vertically on m2 with
thinner, internal power running horizontally on m1. The control signals (clock in this case) run vertically
through the cell on m2. The control signals that are common to the cells above and below are connected
directly in m2. The other signals (data, q, and qbar in this example) are brought out to the wiring channel
between the rows of datapath cells.

FIGURE 3.21 A datapath D flip-flop cell.

Figure 3.22 is the schematic for Figure 3.21 . This flip-flop uses a pair of cross-coupled inverters for
storage in both the master and slave latches. This leads to a smaller and potentially faster layout than the
flip-flop circuits that we use in gate-array and standard-cell ASIC libraries. The device sizes of the
inverters in the data-path flip-flops are adjusted so that the state of the latches may be changed.
Normally using this type of circuit is dangerous in an uncontrolled environment. However, because the
datapath structure is regular and known, the parasitic capacitances that affect the operation of the logic
cell are also known. This is another advantage of the datapath structure.

FIGURE 3.22 The schematic of the datapath D flip-flop cell shown in Figure 3.21 .

Figure 3.23 shows an example of a datapath. Figure 3.23 (a) depicts a two-level metal version showing
the space between rows or slices of the datapath. In this case there are many connections to be brought
out to the right of the datapath, and this causes the routing channel to be larger than normal and thus
easily seen. Figure 3.23 (b) shows a three-level metal version of the same datapath. In this case more of
the routing is completed over the top of the datapath slices, reducing the size of the routing channel.

3.9 Summary
In this chapter we covered ASIC libraries: cell design, layout, and characterization. The most important
concepts that we covered in this chapter were

Tau, logical effort, and the prediction of delay
Sizes of cells, and their drive strengths
Cell importance
The difference between gate-array macros, standard cells, and datapath cells

