PROGRAMMARBLE
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CELLS

All programmable ASICs or FPGAs contain abasic logic cell replicated in aregular array across the
chip (analogous to a base cell in an MGA). There are the following three different types of basic logic
cells: (1) multiplexer based, (2) look-up table based, and (3) programmable array logic. The choice
among these depends on the programming technology. We shall see examples of each in this chapter.

5.1Actel ACT
5.2 Xilinx LCA
5.3 Altera FLEX
5.4 AlteraMAX
5.5 Summary
5.6 Problems
5.7 Bibliography

5.8 References

5.1 Actel ACT

The basic logic cellsin the Actel ACT family of FPGAs are called Logic Modules. The ACT 1 family
uses just one type of Logic Module and the ACT 2 and ACT 3 FPGA families both use two different
types of Logic Module.

5.1.1 ACT 1Logic Module

The functional behavior of the Actel ACT 1 Logic Moduleis shownin Figure 5.1 (a). Figure 5.1 (b)
represents a possible circuit-level implementation. We can build alogic function using an Actel Logic
Module by connecting logic signalsto some or all of the Logic Module inputs, and by connecting any
remaining Logic Module inputsto VDD or GND. As an example, Figure 5.1 (¢) shows the connections
to implement the function F=A - B + B’ - C + D. How did we know what connections to make? To
understand how the Actel Logic Module works, we take a detour via multiplexer logic and some theory.
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FIGURE 5.1 The Actel ACT architecture. (a) Organization of the basic logic cells. (b) The ACT 1
Logic Module. (c) An implementation using pass transistors (without any buffering). (d) An example
logic macro. (Source: Actel.)

5.1.2 Shannon’s Expansion Theorem

In logic design we often have to deal with functions of many variables. We need a method to break
down these large functions into smaller pieces. Using the Shannon expansion theorem, we can expand a
Boolean logic function F in terms of (or with respect to) a Boolean variable A,
F=A-F(A="1)+A"-F(A='0),5.2)

where F (A = 1) represents the function F evaluated with A set equal to’ 1.

For example, we can expand the following function F with respect to (I shall use the abbreviation wrt )
A,

F=A’.-B+A-B-C +A' -B' -C
=A-(B-C)+A’-(B+B' -C).(52)

We have split F into two smaller functions. Wecall F (A =’1') =B - C' the cofactor of Fwrt A in Eq.
5.2 . | shall sometimes write the cofactor of Fwrt A asF , (the cofactor of Fwrt A’ isF . ). We may

expand a function wrt any of its variables. For example, if we expand F wrt B instead of A,
F=A"-B+A:-B-C+A"-B"-C

=B-(A"+A-C)+B (A’ -C).(5.3

We can continue to expand a function as many times as it has variables until we reach the canonical
form (a unique representation for any Boolean function that uses only minterms. A minterm is a product
term that contains all the variables of F-suchas A - B’ - C). Expanding Eg. 5.3 again, thistimewrt C,
gives

F=C-(A"-B+A -B)+C -(A-B+A’-B).(54)



As another example, we will use the Shannon expansion theorem to implement the following function
using the ACT 1 Logic Module:

F=(A-B)+ (B’ -C)+D.(55)
First we expand F wrt B:
F=B:-(A+D)+B’ - (C+D)
=B-F2+B' -FL(5.6)

Equation 5.6 describes a2:1 MUX, with B selecting between two inputs: F(A ="1")and F (A ="0"). In
fact Eq. 5.6 also describes the output of the ACT 1 Logic Modulein Figure 5.1 ! Now we need to split
up Fland F2inEq. 5.6 . Supposeweexpand F2=FgwrtA,and F1=F g, wrt C:

F2=A+D=(A-1)+ (A’ -D),(5.7)
F1=C+D=(C-1) +(C -D).(5.8)

From Egs. 5.6 - 5.8 we see that we may implement F by arranging for A, B, C to appear on the select
linesand 1’ and D to be the data inputs of the MUXesinthe ACT 1 Logic Module. Thisisthe
implementation shown in Figure 5.1 (d), with connections: AO=D,A1="1,B0=D,B1="1,SA =C,
SB=A,S0="0",and S1=B.

Now that we know that we can implement Boolean functions using MUXes, how do we know which
functions we can implement and how to implement them?

5.1.3 Multiplexer Logic as Function Generators

Figure 5.2 illustrates the 16 different ways to arrange * 1's on a Karnaugh map corresponding to the 16
logic functions, F (A, B), of two variables. Two of these functions are not very interesting (F="0’", and
F="1"). Of the 16 functions, Table 5.1 shows the 10 that we can implement using just one 2:1 MUX. Of
these 10 functions, the following six are useful:

® INV. The MUX acts as an inverter for oneinput only.
® BUF. The MUX just passes one of the MUX inputs directly to the output.
® AND. A two-input AND.
® OR. A two-input OR.

® ANDI1-1. A two-input AND gate with inverted input, equivalent to an NOR-11.
® NORI1-1. A two-input NOR gate with inverted input, equivalent to an AND-11.
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TABLE 5.1 Boolean functionsusing a2:1 MUX.

. . Mi Functi 4
Function, F F=  Canonica form Minterms? '”“gm unctlor; M1
code number A0 Al SA
10 0 0 none 0000 0 0O 0 O
2 NORI-1(A, B) (BA,),’L A B 1 0010 2 B O A
3 NOT(A) A A .B+A.B 01 0011 3 0 1 A
4 AND1-1(A,B)A-B" A:PB 2 0100 4 A O B
5 NOT(B) B A .B+A-B 02 0101 5 0 1 B
6 BUF(B) B A -B+A-B 1,3 1010 6 0 B 1
7 AND(A,B) A-B A-B 3 1000 8 0 B A
8 BUF(A) A A-B+A-B 23 1100 9 0 A 1
9 ORA,B) A+B ﬁ’.'BBJ’A'B’ *123 1110 13 B 1 A
119 119 A’ - B, +A, ) B
10'1 1 +A.B +A-B 0,123 1111 15 1 1 1

Figure 5.3 (a) shows how we might view a2:1 MUX as afunction wheel , athree-input black box that
can generate any one of the six functions of two-input variables: BUF, INV, AND-11, AND1-1, OR,
AND. We can write the output of afunction wheel as

F1=WHEELL1 (A, B).(5.9)

where | define the wheel function asfollows:

WHEEL1 (A, B) = MUX (A0, A1, SA).(5.10)

The MUX function is not unique; we shall defineit as

MUX (A0, A1, SA)=A0-SA’ + Al-SA.(5.11)

Theinputs (A0, A1, SA) are described using the notation

A0, Al, SA={A,B,’0,'1}(5.12)

to mean that each of theinputs (A0, A1, and SA) may be any of thevalues: A, B, 0", or ’1’. | chosethe
name of the wheel function because it is rather like adial that you set to your choice of function.

Figure 5.3 (b) shows that the ACT 1 Logic Module is afunction generator built from two function
wheels, a2:1 MUX, and atwo-input OR gate.
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FIGURE 5.3 The ACT 1 Logic Module as a Boolean function generator. (a) A 2:1 MUX viewed as a
function wheel. (b) The ACT 1 Logic Module viewed as two function wheels, an OR gate, and a2:1
MUX.

We can describe the ACT 1 Logic Module in terms of two WHEEL functions:
F=MUX [ WHEEL1, WHEEL2, OR (S0, S1) ](5.13)

Now, for example, to implement atwo-input NAND gate, F = NAND (A, B) = (A - B)’,usingan ACT 1
Logic Module we first express F as the output of a2:1 MUX. To split up F we expand it wrt A (or wrt
B; since Fis symmetric in A and B):

F=A.(B)+A - (1)(5.14)

Thus to make atwo-input NAND gate we assign WHEEL 1 to implement INV (B), and WHEEL 2 to
implement ' 1'. We must also set the select input to the MUX connecting WHEEL 1 and WHEEL 2, SO +
S1=A-wecandothiswithSO=A,S1="1".

Before we get too carried away, we need to realize that we do not have to worry about how to use Logic
Modules to construct combinational logic functions-this has already been done for us. For example, if
we need atwo-input NAND gate, we just use a NAND gate symbol and software takes care of
connecting the inputs in the right way to the Logic Module.

How did Actel design its Logic Modules? One of Actel’ s engineers wrote a program that cal cul ates how
many functions of two, three, and four variables a given circuit would provide. The engineers tested
many different circuits and chose the best one: asmall, logically efficient circuit that implemented many
functions. For example, the ACT 1 Logic Module can implement all two-input functions, most functions
with three inputs, and many with four inputs.

Apart from being able to implement awide variety of combinational logic functions, the ACT 1 module
can implement sequential logic cellsin aflexible and efficient manner. For example, you can use one
ACT 1 Logic Module for atransparent latch or two Logic Modules for aflip-flop. The use of latches
rather than flip-flops does require a shift to a two-phase clocking scheme using two nonoverlapping
clocks and two clock trees. Two-phase synchronous design using latches is efficient and fast but, to
handle the timing complexities of two clocks requires changes to synthesis and simulation software that
have not occurred. This means that most people still use flip-flopsin their designs, and these require two



Logic Modules.

514 ACT 2and ACT 3 Logic Modules

Using two ACT 1 Logic Modules for aflip-flop also requires added interconnect and associated
parasitic capacitance to connect the two Logic Modules. To produce an efficient two-module flip-flop
macro we could use extra antifuses in the Logic Module to cut down on the parasitic connections.
However, the extra antifuses would have an adverse impact on the performance of the Logic Module in
other macros. The alternative is to use a separate flip-flop module, reducing flexibility and increasing
layout complexity. Inthe ACT 1 family Actel chose to use just one type of Logic Module. The ACT 2
and ACT 3 architectures use two different types of Logic Modules, and one of them does include the
equivalent of aD flip-flop.

Figure 5.4 showsthe ACT 2 and ACT 3 Logic Modules. The ACT 2 C-Moduleissimilar to the ACT 1
Logic Module but is capable of implementing five-input logic functions. Actel callsits C-module a
combinatorial module even though the module implements combinational logic. John Wakerly blames
MMI for the introduction of the term combinatorial [Wakerly, 1994, p. 404].

The use of MUXes in the Actel Logic Modules (and in other places) can cause confusion in using and
creating logic macros. For the Actdl library, setting S="0" selectsinput A of atwo-input MUX. For
other libraries setting S="1" selectsinput A. This can lead to some very hard to find errors when
moving schematics between libraries. Similar problems arise in flip-flops and latches with MUX inputs.
A safer way to label the inputs of atwo-input MUX iswith’0’ and’1’, corresponding to the input
selected when the select input is’1' or *0'. This notation can be extended to bigger MUXes, but in
Figure 5.4 , doesthe input combination SO="1" and S1 ="0" select input D10 or input DO1? These
problems are not caused by Actel, but by failure to use the |EEE standard symbolsin this area.

The S-Module ( sequential module ) contains the same combinational function capability as the
C-Module together with a sequential element that can be configured as a flip-flop. Figure 5.4 (d) shows
the sequential element implementation in the ACT 2 and ACT 3 architectures.
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FIGURE 5.4 TheActel ACT 2and ACT 3 Logic Modules. (a) The C-Module for combinational logic.
(b) The ACT 2 S-Module. (c) The ACT 3 S-Module. (d) The equivalent circuit (without buffering) of
the SE (sequential element). (e) The sequential element configured as a positive-edge-triggered D
flip-flop. (Source: Actel.)

5.1.5 Timing Model and Critical Path

Figure 5.5 (a) shows the timing model for the ACT family. ® Thisis asimple timing model sinceit deals
only with logic buried inside a chip and allows us only to estimate delays. We cannot predict the exact
delays on an Actel chip until we have performed the place-and-route step and know how much delay is
contributed by the interconnect. Since we cannot determine the exact delay before physical layout is
complete, we call the Actel architecture nondeterministic .

Even though we cannot determine the preroute delays exactly, it is still important to estimate the delay
on alogic path. For example, Figure 5.5 (a) shows atypical situation deep inside an ASIC. Internal
signa 11 may be from the output of aregister (flip-flop). We then pass through some combinational
logic, C1, through aregister, S1, and then another register, S2. The register-to-register delay consists of
aclock-Q delay, plus any combinational delay between registers, and the setup time for the next
flip-flop. The speed of our system will depend on the slowest register-register delay or critical path
between registers. We cannot make our clock period any longer than this or the signal will not reach the
second register in time to be clocked.

Figure 5.5 (a) shows an internal logic signal, 11, that isan input to a C-module, C1. Clisdrawnin
Figure 5.5 (a) as a box with asymbol comprising the overlapping letters"C" and "L" (borrowed from
carpenters who use this symbol to mark the centerline on a piece of wood). We use this symbol to
describe combinational logic. For the standard-speed grade ACT 3 (we shall look at speed grading in
Section 5.1.6 ) the delay between the input of a C-module and the output is specified in the data book as
aparameter,t , with amaximum value of 3.0 ns.
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The output of C1 isan input to an S-Module, S1, configured to implement combinational logic and aD
flip-flop. The Actel data book specifies the minimum setup time for this D flip-flop ast g = 0.8 ns.

This means we need to get the data to the input of S1 at least 0.8 ns before the rising clock edge (for a
positive-edge-triggered flip-flop). If we do this, then there is still enough time for the data to go through
the combinational logic inside S1 and reach the input of the flip-flop inside S1 in time to be clocked. We
can guarantee that this will work because the combinational logic delay inside Sl is fixed.
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FIGURE 5.5 The Actel ACT timing model. (@) Timing parametersfor a’ Std’ speed grade ACT 3.
(Source: Actel.) (b) Flip-flop timing. (c) An example of flip-flop timing based on ACT 3 parameters.

The S-Module seems like good value-we get all the combinational logic functions of a C-module (with
delay t oy of 3 ns) aswell asthe setup time for aflip-flop for only 0.8 ns?...not really. Next | will

explain why not.

Figure 5.5 (b) shows what is happening inside an S-Module. The setup and hold times, as measured
inside (not outside) the S-Module, of the flip-flop aret’ g and t' |, (a prime denotes parameters that

are measured inside the S-Module). The clock-Q propagation delay ist’ ~ . The parameterst’ ¢y, t'
,and t’ ~ are measured using the internal clock signal CLKi. The propagation delay of the
combinational logic insidethe S-Moduleist’ o . The delay of the combinational logic that drivesthe



flip-flop clock signal ( Figure 5.4 d) ist’ | «p -

From outside the S-Module, with reference to the outside clock signal CLK1:
tsup=Vsup* U pp-t cLkp)

th=tu+{pp-tcrkp):

teco=t co*+t cLkp -(5:15)

Figure 5.5 (c) shows an example of flip-flop timing. We have no way of knowing what the internal
flip-flop parameterst’ o5, t' |y, and t’ o actualy are, but we can assume some reasonable values (just

for illustration purposes):

' gup=04nst ,=01lnst -5=04ns(5.16)

We do know the delay, t' ppy , of the combinational logic inside the S-Module. It is exactly the same as
the C-Module delay, sot’ gy = 3 nsfor the ACT 3. We do not know t' ~, \p ; We shall assume a
reasonable value of t' ~ . p = 2.6 ns (the exact value does not matter in the following argument).

Next we calculate the external S-Module parameters from Eq. 5.15 asfollows:

tgyp=08nst,=05nst,5=30ns(517)

These are the same asthe ACT 3 S-Module parameters shown in Figure 5.5 (a), and | choset’ | «pp and

thevaluesin Eq. 5.16 so that they would be the same. So now we see where the combinational logic
delay of 3.0 ns has gone: 0.4 ns went into increasing the setup time and 2.6 ns went into increasing the
clock-output delay, t ~ -

From the outside we can say that the combinational logic delay is buried in the flip-flop setup time.
FPGA vendors will point this out as an advantage that they have. Of course, we are not getting
something for nothing here. It is like borrowing money-you have to pay it back.

5.1.6 Speed Grading

Most FPGA vendors sort chips according to their speed ( the sorting is known as speed grading or speed
binning , because parts are automatically sorted into plastic bins by the production tester). Y ou pay more
for the faster parts. In the case of the ACT family of FPGAS, Actel measures performance with a special
binning circuit , included on every chip, that consists of an input buffer driving a string of buffers or
inverters followed by an output buffer. The parts are sorted from measurements on the binning circuit
according to Logic Module propagation delay. The propagation delay, t o , is defined as the average of

therising (t 5 1y ) and faling (t ;) propagation delays of aLogic Module

t =(t +t )2(5.18)
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Since the transistor properties match so well across a chip, measurements on the binning circuit closely
correlate with the speed of the rest of the Logic Modules on the die. Since the speeds of die on the same
wafer also match well, most of the good die on awafer fall into the same speed bin. Actel speed grades
are: a’ Std’ speed grade, a’ 1’ speed grade that is approximately 15 percent faster, a’2" speed grade that
is approximately 25 percent faster than ' Std’, and a’ 3’ speed grade that is approximately 35 percent
faster than ' Std'.

5.1.7 Worst-Case Timing

If you use fully synchronous design techniques you only have to worry about how slow your circuit may
be-not how fast. Designers thus need to know the maximum delays they may encounter, which we call
the worst-case timing . Maximum delays in CMOS logic occur when operating under minimum voltage,
maximum temperature, and slow-slow process conditions. (A slow-slow process refers to a process
variation, or process corner , which resultsin slow p -channel transistors and slow n -channel
transistors-we can aso have fast-fast, slow-fast, and fast-slow process corners.)

Electronic equipment has to survive in avariety of environments and ASIC manufacturers offer several
classes of qualification for different applications:

® Commercial. VDD=5V +*5%,T A (ambient) = 0 to +70 °C.
® Industrial. VDD =5V £ 10 %, T 5 (ambient) = -40 to +85 °C.
® Military: VDD=5V 10 %, T c (case) = -55 to +125 °C.

® Military: Standard MIL-STD-883C Class B.
® Military extended: Unmanned spacecraft.

ASICsfor commercial application are cheapest; ASICsfor the Cruise missile are very, very expensive.
Notice that commercial and industrial application parts are specified with respect to the ambient
temperature T , (room temperature or the temperature inside the box containing the ASIC). Military

specifications are relative to the package case temperature, T ~ . What is really important is the
temperature of the transistors on the chip, the junction temperature, T 5, which is always higher than T
a (unless we dissipate zero power). For most applications that dissipate a few hundred mW, T jisonly
5-10 °C higher than T , . To calculate the value of T ;we need to know the power dissipated by the chip
and the thermal properties of the package-we shall return to thisin Section 6.6.1, "Power Dissipation.”

Manufacturers have to specify their operating conditions with respectto T jand not T , , since they have

no idea how much power purchasers will dissipate in their designs or which package they will use. Actel
used to specify timing under nominal operating conditions: VDD =5.0V, and T ;=25 °C. Actel and

most other manufacturers now specify parameters under worst-case commercial conditions: VDD = 4.75
V,and T j=+70 °C.

Table 5.2 shows the ACT 3 commercial worst-case timing. © In this table Actel hasincluded some
estimates of the variable routing delay shown in Figure 5.5 (a). These delay estimates depend on the



number of gates connected to a gate output (the fanout).

When you design microelectronic systems (or design anything ) you must use worst-case figures ( just as
you would design a bridge for the worst-case load). To convert nominal or typical timing figures to the
worst case (or best case), we use measured, or empirically derived, constants called derating factors that
are expressed either as atable or agraph. For example, Table 5.3 shows the ACT 3 derating factors from
commercial worst-case to industrial worst-case and military worst-case conditions (assuming T ;=T , ).

The ACT 1 and ACT 2 derating factors are approximately the same.

TABLE 5.2 ACT 3 timing parameters. 8
Fanout

Family Delay?® 1 2 3 4 8

ACT 3-3 (databook) tpp 29 32 34 37 48
ACT3-2 (calculated) tpp/0.853.41 3.76 4.00 4.35 5.65
ACT3-1 (calculated) tpp/0.75 3.87 4.27 4.53 4.93 6.40

ACT3-Std (calculated) t pp /0.65 4.46 4.92 5.23 5.69 7.38
Source: Actel.

TABLE 5.3 ACT 3 derating factors. 10
Temperature T ;5 ( junction) / °C

Vpp/V-55 -40 0 25 70 85 125

4.5 0.72 0.76 0.85 0.90 1.04 1.07 1.17
4.75 0.70 0.73 0.82 0.87 1.00 1.03 1.12
5.00 0.68 0.71 0.79 0.84 0.97 1.00 1.09
5.25 0.66 0.69 0.77 0.82 0.94 0.97 1.06
55 0.63 0.66 0.74 0.79 0.90 0.93 1.01
Source: Actel.

As an example of atiming calculation, suppose we have aLogic Moduleon a’ Std’ speed grade
A1415A (an ACT 3 part) that drives four other Logic Modules and we wish to estimate the delay under
worst-case industrial conditions. From the datain Table 5.2 we see that the Logic Module delay for an
ACT 3'Sd’ part with afanout of four ist py = 5.7 ns (commercial worst-case conditions, assuming T

=T,)

If this were the slowest path between flip-flops (very unlikely since we have only one stage of
combinational logic in this path), our estimated critical path delay between registers, t ~g 1, would be

the combinational logic delay plus the flip-flop setup time plus the clock-output delay:

t criT (W-c commercial) =tpy +tgyp +t g



=57ns+0.8ns+3.0ns=9.5ns.(5.19)

(I use w-c as an abbreviation for worst-case.) Next we need to adjust the timing to worst-case industrial
conditions. The appropriate derating factor is 1.07 (from Table 5.3 ); so the estimated delay is

t criT (W-cindustrial) = 1.07 ¥ 9.5 ns = 10.2 ns .(5.20)

Let usjump ahead alittle and assume that we can calculatethat T ;=T , + 20 °C = 105 °C in our

application. To find the derating factor at 105 °C we linearly interpolate between the values for 85 °C
(1.07) and 125 °C (1.17) from Table 5.3 ). The interpolated derating factor is 1.12 and thus

t cgiT (W-cindustrial, T 3= 105 °C) = 1.12 ¥ 9.5 ns = 10.6 ns ,(5.21)

giving us an operating frequency of just less than 100 MHz.

It may seem unfair to calculate the worst-case performance for the slowest speed grade under the
harshest industrial conditions-but the examples in the data books are always for the fastest speed grades
under less stringent commercia conditions. If we want to illustrate the use of derating, then the delays
can only get worse than the data book values! The ultimate word on logic delays for all FPGAsisthe
timing analysis provided by the FPGA design tools. However, you should be able to calculate whether
or not the answer that you get from such atool is reasonable.

5.1.8 Actel Logic Module Analysis

The sizes of the ACT family Logic Modules are close to the size of the base cell of an MGA. We say
that the Actel ACT FPGAs use afine-grain architecture . An advantage of afine-grain architectureis
that, whatever the mix of combinational logic to flip-flopsin your application, you can probably still use
90 percent of an Actel FPGA. Another advantage is that synthesis software has an easier time mapping
logic efficiently to the simple Actel modules.

The physical symmetry of the ACT Logic Modules greatly simplifies the place-and-route step. In many
cases the router can swap equivalent pins on opposite sides of the module to ease channel routing. The
design of the Actel Logic Modulesis abalance between efficiency of implementation and efficiency of
utilization. A simple Logic Module may reduce performance in some areas-as | have pointed out-but
allows the use of fast and robust place-and-route software. Fast, robust routing is an important part of
Actel FPGAS (see Section 7.1, "Actel ACT").

1. The minterm numbers are formed from the product terms of the canonical form. For example, A - B’
=10=2.

2. The minterm code is formed from the minterms. A ' 1’ denotes the presence of that minterm.
3. The function number is the decimal version of the minterm code.

4. Connectionsto atwo-input MUX: A0 and A1l are the datainputs and SA is the select input (see Eq.



5.11).

5. 1994 data book, p. 1-101.

6. ACT 3: May 1995 data sheet, p. 1-173. ACT 2: 1994 data book, p. 1-51.

7.1994 data book, p. 1-12 (ACT 1), p. 1-52 (ACT 2), May 1995 data sheet, p. 1-174 (ACT 3).

8.V pp=4.75V, T ;(junction) = 70 °C. Logic module plus routing delay. All propagation delays in
nanoseconds.

9. The Actel "1’ speed grade is 15 % faster than 'Std’; ' 2" is 25 % faster than’ Std’; '3’ is 35 % faster
than ' Std'.
10. Worst-case commercid: V 5 =4.75V, T 5 (ambient) = +70 °C. Commercial: V 55 =5V +5%, T

a (ambient) = 0 to +70 °C. Industrial: V 5 =5V £ 10 %, T 5 (ambient) = -40 to +85 °C. Military V 5
=5V x10%,T - (case) =-55 to +125 °C.

5.2 Xilinx LCA

Xilinx LCA (atrademark, denoting logic cell array) basic logic cells, configurable logic blocks or CLBs
, are bigger and more complex than the Actel or QuickLogic cells. The Xilinx LCA basic logic cell isan
example of acoarse-grain architecture . The Xilinx CLBs contain both combinational logic and
flip-flops.

5.2.1 XC3000CLB

The XC3000 CLB, shown in Figure 5.6 , has five logic inputs (A-E), acommon clock input (K), an
asynchronous direct-reset input (RD), and an enable (EC). Using programmable MUXes connected to
the SRAM programming cells, you can independently connect each of the two CLB outputs (X and Y)
to the output of the flip-flops (QX and QY) or to the output of the combinational logic (F and G).
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FIGURE 5.6 The Xilinx XC3000 CLB (configurable logic block). (Source: Xilinx.)

A 32-hit look-up table ( LUT ), stored in 32 bits of SRAM, provides the ability to implement
combinational logic. Suppose you need to implement the function F=A -B - C - D - E (afive-input
AND). You set the contents of LUT cell number 31 (with address’11111") in the 32-bit SRAM toa’1’;
all the other SRAM cells are set to ’0’. When you apply the input variables as an address to the 32-bit
SRAM, only when ABCDE ="11111" will the output F bea’1’. This means that the CLB propagation
delay isfixed, equal to the LUT access time, and independent of the logic function you implement.

There are seven inputs for the combinational logic in the XC3000 CLB: the five CLB inputs (A-E), and
the flip-flop outputs (QX and QY). There are two outputs from the LUT (F and G). Since a 32-bit LUT

requires only five variables to form a unique address (32 = 2°), there are several waysto usethe LUT:

® You can use five of the seven possible inputs (A-E, QX, QY) with the entire 32-bit LUT. The CLB
outputs (F and G) are then identical.

® You can split the 32-bit LUT in half to implement two functions of four variables each. Y ou can
choose four input variables from the seven inputs (A-E, QX, QY). You have to choose two of the
inputs from the five CLB inputs (A-E); then one function output connects to F and the other output
connectsto G.

® You can split the 32-bit LUT in half, using one of the seven input variables as a select input to a
2:1 MUX that switches between F and G. This allows you to implement some functions of six and
seven variables.

5.2.2 XC4000 L ogic Block

Figure 5.7 shows the CLB used in the XC4000 series of Xilinx FPGAs. Thisisafairly complicated
basic logic cell containing 2 four-input LUTs that feed a three-input LUT. The XC4000 CLB aso has
special fast carry logic hard-wired between CLBs. MUX control logic maps four control inputs (C1-C4)
into the four inputs: LUT input H1, direct in (DIN), enable clock (EC), and a set / reset control (S/R) for
the flip-flops. The control inputs (C1-C4) can also be used to control the use of the F and G' LUTsas
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FIGURE 5.7 The Xilinx XC4000 family CLB (configurable logic block). ( Source: Xilinx.)

5.2.3 XC5200 L ogic Block

Figure 5.8 showsthe basic logic cell, aLogic Cell or LC, used in the XC5200 family of Xilinx LCA

FPGAs. 1 The LC is similar to the CLBs in the X C2000/3000/4000 CLBs, but simpler. Xilinx retained
the term CLB in the XC5200 to mean a group of four LCs (LCO-LC3).

The XC5200 L C contains afour-input LUT, aflip-flop, and MUXes to handle signal switching. The
arithmetic carry logic is separate from the LUTSs. A limited capability to cascade functionsis provided
(using the MUX labeled F5_MUX inlogic cellsLCO and LC2 in Figure 5.8 ) to gang two LCsin
parallel to provide the equivalent of afive-input LUT.
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(Source: Xilinx.)

5.2.4 Xilinx CLB Analysis

Theuseof aLUT inaXilinx CLB to implement combinational logic is both an advantage and a
disadvantage. It means, for example, that an inverter is as slow as afive-input NAND. On the other hand
aLUT simplifiestiming of synchronouslogic, smplifiesthe basic logic cell, and matches the Xilinx
SRAM programming technology well. A LUT also provides the possibility, used in the XC4000, of
using the LUT directly as SRAM. Y ou can configure the XC4000 CLB as a memory-either two 16 ¥ 1
SRAMsor a32 ¥ 1 SRAM, but thisis expensive RAM.

Figure 5.9 shows the timing model for Xilinx LCA FPGAS. 2 Xilinx uses two speed-grade systems. The
first uses the maximum guaranteed toggle rate of a CLB flip-flop measured in MHz as a suffix-so higher
isfaster. For example a Xilinx XC3020-125 has atoggle frequency of 125 MHz. The other Xilinx
naming system (which supersedes the old scheme, since toggle frequency is rather meaningless) uses the
approximate delay time of the combinational logic in a CLB in nanoseconds-so lower is faster in this
case. Thus, for example, an XC4010-6 hast || 5 = 6.0 ns (the correspondence between speed grade and t

Lo Isfairly accurate for the XC2000, X C4000, and XC5200 but is |ess accurate for the XC3000).
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Theinclusion of flip-flops and combinational logic inside the basic logic cell leads to efficient



implementation of state machines, for example. The coarse-grain architecture of the Xilinx CLBs
maximizes performance given the size of the SRAM programming technology element. As aresult of
the increased complexity of the basic logic cell we shall see (in Section 7.2, "Xilinx LCA") that the
routing between cells is more complex than other FPGASs that use a ssmpler basic logic cell.

1. Xilinx decided to use Logic Cell as atrademark in 1995 rather asif IBM were to use Computer as a
trademark today. Thus we should now only talk of a Xilinx Logic Cell (with capital letters) and not
Xilinx logic cells.

2. October 1995 (Version 3.0) data sheet.

5.3 AlteraFLEX

Figure 5.10 shows the basic logic cell, aLogic Element ( LE ), that Alterausesin its FLEX 8000 series
of FPGAs. Apart from the cascade logic (which is slightly simpler in the FLEX LE) the FLEX cell
resembles the X C5200 L C architecture shown in Figure 5.8 . Thisis not surprising since both
architectures are based on the same SRAM programming technology. The FLEX LE uses a four-input
LUT, aflip-flop, cascade logic, and carry logic. Eight LEs are stacked to form aLogic Array Block (the
same term as used in the MAX series, but with a different meaning).

54 AlteraMAX

Suppose we have a simple two-level logic circuit that implements a sum of products as shown in

Figure 5.11 (a). We may redraw any two-level circuit using aregular structure ( Figure 5.11 b): a vector
of buffers, followed by avector of AND gates (which construct the product terms) that feed OR gates
(which form the sums of the product terms). We can simplify this representation still further (

Figure 5.11 c), by drawing the input lines to a multiple-input AND gate as if they were one horizontal
wire, which we call aproduct-term line . A structure such as Figure 5.11 (c) is called programmable
array logic, first introduced by Monolithic Memories as the PAL series of devices.
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Because the arrangement of Figure 5.11 (c) is very similar to a ROM, we sometimes call a horizontal
product-term line, which would be the bit output from a ROM, the bit line . The vertical input lineisthe
word line . Figure 5.11 (d) and (€) show how to build the programmable-AND array (or product-term
array) from EPROM transistors. The horizontal product-term lines connect to the vertical input lines
using the EPROM transistors as pull-downs at each possible connection. Applyinga’1’ to the gate of an
unprogrammed EPROM transistor pulls the product-term linelow toa’0’. A programmed n -channel
transistor has athreshold voltage higher than V 5 and is therefore always off . Thus a programmed

transistor has no effect on the product-term line.

Notice that connecting the n -channel EPROM transistors to a pull-up resistor as shown in Figure 5.11
(e) produces awired-logic function-the output is high only if al of the outputs are high, resulting in a
wired-AND function of the outputs. The product-term line is low when any of the inputs are high. Thus,
to convert the wired-logic array into a programmable-AND array, we need to invert the sense of the
inputs. We often conveniently omit these details when we draw the schematics of logic arrays, usually
implemented as NOR-NOR arrays (so we need to invert the outputs as well). They are not minor details
when you implement the layout, however.

Figure 5.12 shows how a programmable-AND array can be combined with other logic into a macrocell
that contains a flip-flop. For example, the widely used 22V 10 PLD, aso called aregistered PAL,
essentially contains 10 of the macrocells shown in Figure 5.12 . The part number, 22V 10, denotes that
there are 22 inputs (44 vertical input lines for both true and complement forms of the inputs) to the
programmable AND array and 10 macrocells. The PLD or registered PAL shown in Figure 5.12 has an 2
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5.4.1 Logic Expanders

The basic logic cell for the Altera MAX architecture, amacrocell, is a descendant of the PAL. Using the
logic expander , shown in Figure 5.13 to generate extralogic terms, it is possible to implement functions
that require more product terms than are available in asimple PAL macrocell. As an example, consider
the following function:

F=A'-C-D+B' -C-D+A-B+B-C.(522

This function has four product terms and thus we cannot implement F using a macrocell that has only a
three-wide OR array (such as the one shown in Figure 5.13). If we rewrite F as a"sum of (products of
products)" like this:

F=(A’+B)-C-D+(A+C)-B

=(A-B) (C-D)+ (A’ -C) -B;(5.23)

we can use logic expanders to form the expander terms (A - B)’ and (A’ - C)’ (see Figure 5.13). We can

even share these extra product terms with other macrocellsif we need to. We call the extralogic gates
that form these shareable product terms a shared logic expander , or just shared expander .
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The disadvantage of the shared expandersis the extralogic delay incurred because of the second pass
that you need to take through the product-term array. We usually do not know before the logic tools
assign logic to macrocells ( 1ogic assignment ) whether we need to use the logic expanders. Since we
cannot predict the exact timing the Altera MAX architecture is not strictly deterministic . However, once
we do know whether a signal has to go through the array once or twice, we can simply and accurately
predict the delay. Thisis avery important and useful feature of the Altera MAX architecture.

The expander terms are sometimes called hel per terms when you use a PAL. If you use helper termsin a
22V 10, for example, you have to go out to the chip 1/0 pad and then back into the programmable array
again, using two-pass logic .
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FIGURE 5.14 Use of programmed inversion to ssimplify logic: (a) ThefunctionF=A -B' +A - C +
A -D +A’ - C-D requiresfour product terms (P1-P4) to implement while (b) the complement, F’ =
A-B:-C-D+A’-D" +A’ - C requiresonly three product terms (P1-P3).

Another common feature in complex PLDs, also used in some PLDs, isshown in Figure 5.13 .
Programming one input of the XOR gate at the macrocell output allows you to choose whether or not to
invert the output (a’1’ for inversion or to a’0’ for no inversion). This programmable inversion can
reduce the required number of product terms by using a de Morgan equivalent representation instead of
a conventional sum-of-products form, as shown in Figure 5.14 .



As an example of using programmable inversion, consider the function

F=A-B+A-C+A-D+A’-C:-D,524

which requires four product terms-one too many for a three-wide OR array.

If we generate the complement of F instead,

F'=A-B-C-D+A’-D' +A’ -C ,(5.25)

this has only three product terms. To create F we invert F ', using programmable inversion.

Figure 5.15 shows an Altera MAX macrocell and illustrates the architectures of several different product

families. The implementation details vary among the families, but the basic features: wide
programmable-AND array, narrow fixed-OR array, logic expanders, and programmable inversion-are

very similar. 1 Each family has the following individual characteristics:

® A typical MAX 5000 chip has: 8 dedicated inputs (with both true and complement forms); 24

inputs from the chipwide interconnect (true and complement); and either 32 or 64 shared expander

terms (single polarity). The MAX 5000 LAB looks like a 32V 16 PLD (ignoring the expander

terms).

® The MAX 7000 LAB has 36 inputs from the chipwide interconnect and 16 shared expander terms;

the MAX 7000 LAB looks likea36V16 PLD.
® The MAX 9000 LAB has 33 inputs from the chipwide interconnect and 16 local feedback inputs
(aswell as 16 shared expander terms); the MAX 9000 LAB looks likea49Vv16 PLD.
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vary between the MAX families-the functions shown here are closest to those of the MAX 9000
family macrocells.

(a) focar tap s teo )
lacal logic  setup  register lacal 1 NELGTEA
aray  anay delay aray atray
05 4.0 2.0 1.0 total = &.5ns t o
intem al intem al -
signal L : :M . sianal %[ 14 ]
L& e
(e} focar tap e 'mo tRD (d)
lacal logic  parallel setup  register 12
away aray  erpandar delay
05 4.0 1.0 30 10 towl=93ns 1,
intem al intetn al H
signal L% ; :M M ,=anal ite 5 |M
B 5 ; ’ t
(2o IR o 3 oy K e o 3D S O | 45| o
|' [ L& WE
(=) focar tap 'mwr Nocal 'cone ] ||3
lacal logic:  shared local  combinational I
away aray  erpander  anay 1 A —|h
03 4.0 5.0 03 1.0  toal=11n= "
irtetn al 4
signal 5 | o3
LA Mo

FIGURE 5.16 Thetiming model for the AlteraMAX architecture. (&) A direct path through the
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(d) Parallel expander timing. (€) Making two passes through the logic array to use a shared
expander. (f) Timing for the shared expander (thereis no register in this path). All timing values
are in nanoseconds for the MAX 9000 series, ' 15 speed grade. ( Source: Altera.)

5.4.2 Timing M odd

Figure 5.16 shows the Altera MAX timing model for local signals. 2 For example, in Figure 5.16 (a) an
internal signal, |1, entersthe local array (the LAB interconnect with afixed delay t ; =t| 55 = 0.5

ns), passes through the AND array (delay t , =t o = 4.0 ns), and to the macrocell flip-flop (with setup
time, t 3 =tg,=3.0ns, and clock-Q or register delay , t , =ty = 1.0 ns). The path delay isthus: 0.5 +
4+3+1=85ns

Figure 5.16 (c) illustrates the use of a parallel logic expander . Thisis different from the case of the
shared expander ( Figure 5.13 ), which required two passes in series through the product-term array.
Using a parallel logic expander, the extra product term is generated in an adjacent macrocell in parallel
with other product terms (not in series-as in a shared expander).

We can illustrate the difference between a parallel expander and a shared expander using an example
function that we have used before (Eq. 5.22),



F=A'.C-D+B -C-D+A-B+B-C .(5.26)

Thistime we shall use macrocell M1 in Figure 5.16 (d) to implement F1 equal to the sum of the first
three product termsin Eq. 5.26 . We use F1 (using the parallel expander connection between adjacent
macrocells shown in Figure 5.15 ) as an input to macrocell M2. Now wecanfoomF=F1+B - C
without using more than three inputs of an OR gate (the MAX 5000 has athree-wide OR array in the
macrocell, the MAX 9000, as shown in Figure 5.15 , is capable of handling five product termsin one
macrocell-but the principle is the same). The total delay is the same as before, except that we add the
delay of aparallel expander, t peyp = 1.0 ns. Total delay isthen 8.5+ 1=9.5ns.

Figure 5.16 (e) and (f) shows the use of a shared expander-similar to Figure 5.13 .

The AlteraMAX macrocell is more like a PLD than the other FPGA architectures discussed here; that is
why Alteracalls the MAX architecture acomplex PLD. This means that the MAX architecture works
well in applications for which PLDs are most useful: ssimple, fast logic with many inputs or variables.

5.4.3 Power Dissipation in Complex PLDs

A programmable-AND array in any PLD built using EPROM or EEPROM transistors uses a passive
pull-up (aresistor or current source), and these macrocells consume static power . Altera uses a switch
called the Turbo Bit to control the current in the programmable-AND array in each macrocell. For the
MAX 7000, static current varies between 1.4 mA and 2.2 mA per macrocell in high-power mode (the
current depends on the part-generaly, but not always, the larger 7000 parts have lower operating
currents) and between 0.6 mA and 0.8 mA in low-power mode. For the MAX 9000, the static current is
0.6 mA per macrocell in high-current mode and 0.3 mA in low-power mode, independent of the part

size. 3 Since there are 16 macrocellsin aLAB and up to 35 LABs on the largest MAX 9000 chip (16 ¥
35 = 560 macrocells), just the static power dissipation in low-power mode can be substantial (560 ¥ 0.3
mA ¥ 5V =840 mW). If all the macrocells are in high-power mode, the static power will double. Thisis
the price you pay for having an (up to) 114-wide AND gate delay of afew nanoseconds (t | 5 = 4.0 ns)
in the MAX 9000. For any MAX 9000 macrocell in the low-power mode it is necessary to add a delay

of between 15 nsand 20 ns to any signal path through the local interconnect and logic array (including t

LaD @Ndtpeyp).

1. 1995 data book p. 274 (5000), p. 160 (7000), p. 126 (9000).
2. March 1995 data sheet, v2.

3. 1995 data book, p. 1-47.

5.5 Summary

Table 5.4 isalook-up table to Tables 5.5 - 5.9, which summarize the features of the logic cells used by
the various FPGA vendors.



TABLE 5.4 Logic cell tables.
Programmable ASIC family
Actel (ACT 1)

Programmable ASIC family

Actel (ACT 3)
Xilinx (XC3000)
Table5.5
Actel (ACT 2)

Table5.8 Xilinx LCA (XC5200)

Altera FLEX (8000/10K)
Xilinx (X C4000)

AlteraMAX (EPM 5000) AMD MACH 5
Table5.6 Xilinx EPLD (XC7200/7300) Table5.9 Actel 3200DX

QuickLogic (pPASIC 1)
Crosspoint (CP20K)

AlteraMAX (EPM 9000)

Table 5.7 AlteraMAX (EPM 7000)

Atmel (AT6000)
TABLE 5.5 Logic cells used by programmable ASICs.

Actel ACT 1 Xilinx XC3000 Actel ACT 2
CLB C-Module
Basic Logic module (Configurable (combinatorial-module) and
logic cell (LM) L ogic Block) i(l:ga;jsle (sequential
C-Module: 4:1 MUX,
Logic cel Three 3_2—bit LUT, 2D 2-input OR, 2-input AND
contents 2i ﬁg/lgé( &Zte ];\l/l' BQ ggs, 9 S-Module: 4-input MUX,
P 9 2-input OR, latch or D
flip-flop
Logic path , Fixed with ability _.
delay Fixed t0 bypass FF Fixed
Most 3-input,
Combinational many 4-input  All 5-input i r
logic functions functions plus2 D mggiﬁnsr(?oﬁ aII g%%t macros)
functions (total 702 flip-flops
macros)
Flip-flop (fF) £ LM required 2 D-flip-flopsper ;o vy 416 per D flip-flop:

for latch, 2 CLB, latches can

Xilinx XC4000

CLB (Configurable
Logic Block)

32-bit LUT, 2D
flip-flops, 10
MUXes, including
fast carry logic

E-suffix parts
contain dual-port
RAM.

Fixed with ability to
bypass FF

Two 4-input LUTs
plus combiner with
ninth input

CLB as 32-hit

SRAM (except
D-suffix parts)

2 D flip-flops per



implementation

Basic logic cells
in each chip

VI ALl 1, £

for flip-flops pre-FF logic.
64
(XC3020/A/L,
LMs: XC3120/A)
100
(XC3030/A/L,
A1010: 352 XC3130/A)
(8R ¥ 44C)
144
=295+57 (XC3042/AlL,
/10 XC3142/A)
224
(XC3064/A/L,
A1020: 616 XC3164/A)
(14 R¥44C)
320
=547+69 (XC3090/A/L,
/0 XC3190/A)
484 (XC3195/A)

LD, Ilaulico ual

LMsrequired be built from

some FFsrequire 2
modules.

A1225:

451=231S+220C

A1240:

684=348S+336C

A1280:

1232 =624 S+ 608 C

TABLE 5.6 Logic cellsused by programmable ASICs.

Basic
logic cell

Logic cell
contents

Logic path
delay
Combinationa
logic functions
per logic cell

Flip-flop (FF)

implementation

AlteraMAX 5000

16 macrocellsinaLAB (Logic
Array Block) except EPM5032,
which has 32 macrocellsin a

single LAB

Macrocell: 64-106-wide AND,
3-wide OR array, 1 flip-flop, 2 Macrocell: 21-wide AND,

MUXes, programmable

inversion. 32-64 shared logic

expander OR terms.

LAB lookslikea32V16 PLD.
Fixed (unless using shared logic

expanders)

Wide input functions with
ability to share product terms

1 D flip-flop or latch per

macrocell. More can be
constructed in arrays.

Xilinx XC7200/7300

9 macrocells within aFB
(Functional Block), fast
FBs (FFBs) omit ALU

16-wide OR array, 1
flip-flop, 1ALU

FB lookslike 21V9 PLD.

Fixed

Wide input functions with

added 2-input ALU

1 D flip-flop or latch per
macrocell

FBs:

£ U HITPImTTUPD el

CLB

64 (XC4002A)

100
(X C4003/A/E/H)

144 (X C4004A)

196
(X C4005/A/E/H)

256 (X C4006/E)
324 (X C4008/E)
400 (X C4010/D/E)
576 (X C4013/D/E)
784 (X C4020/E)

1024 (XC4025/E)
QuickLogic pASIC 1
Logic Cell (LC)

Four 2-input and two
6-input AND, three 2:1

MUXesand one D
flip-flop

Fixed

All 3-input functions

1 D flip-flop per LC.
LCsfor other flip-flops
not specified.



LABs:
8 (XCT7272A)
32 (EPM5032)
2 (XC7318)
Basic logic cells 64 (EPM5064) 4 (XC7336)
in each chip 128 (EPM5128)
6 (XC7354)
128 (EPM5130)
8 (XC7372)
192 (EPM5192)
12 (XC73108)
16 (XC73144)
TABLE 5.7 Logic cells used by programmable ASICs.
Crosspoint CP20K AlteraMAX 7k
Basic Transistor-pair tile (TPT), 16 macrocellsinalLAB
logic cell RAM-logic Tile (RLT) (Logic Array Block)

Macrocell: wide AND,

4 (XCT7236A)

5-wide OR array, 1

TPT: 2 transistors (0.5
gate). RLT: 3inverters,

Logic cell : 16 shared logic expander
two 3-input NANDs,
contents 2-input NAND, 2-input IOR terms, plus parallel
AND. ogic expander.
LAB looks like a36V 16
PLD.
Logic path . Fixed (unless using shared
delay Variable logic expanders)
Combinational . Wide input functions with
functions TPt;)s( s;n{sflll;_errstr_]a;l aa%gte, ability to share product
per logic cell approx. 99 terms

Flip-lop (FF) b flip-flop requires 2

implementation RLTs&nd 9 TPTs constructed in arrays.
Macrocells:
TPTs:
32 (EPM7032/V)
1760 (20220)

flip-flop, 3 MUXes,
programmable inversion.

1 D flip-flop or latch per
macrocell. More can be

64 (EPM7064)

48 (QL6X8)
96 (QL8X12)
192 (QL12X16)

384 (QL16X24)

Atmel AT6000
Cell

Two 5:1 MUXes, two 4:1
MUXes, 3:1 MUX, three
2:1 MUXes, 6 pass gates,
four 2-input gates, 1 D
flip-flop

Variable
1-, 2-, and 3-input

combinational
configurations:

44 |ogical statesand 72
physical states

1 D flip-flop per cell

1024 (AT6002)



15,876 (22000)

Basic logic cells 96 (EPM7096)
in each chip 128 (EPM70128E)
RLTs:
160 (EPM 70160E)
440 (20220)
192 (EPM70192E)
3969 (22000)
256 (EPM 70256E)

TABLE 5.8 Logic cells used by programmable ASICs.

Basic
logic cell

Logic cell contents
(LUT = look-up
table)

Logic path delay
Combinational

functions
per logic cell

Flip-flop (FF)

implementation

Actel ACT 3 Xilinx XC5200
2 typesof Logic

Module: C-Module

and 4LogicCells(LC)ina

CLB (Configurable Logic

S-Module (similar but B19%K)

not identical to
ACT 2)

C-Module: 4:1 MUX,

2-input OR, 2-input

AND. LC has 16-bit LUT, 1
flip-flop (or latch), 4

S-Module: 4:1 MUX, MUXes

2-input OR, latch or D

flip-flop.

Fixed Fixed

One4-input LUT per LC

Most 3- and 4-input may be combined with

functions (total 766

mMacros) LUT

1 D flip-flop (or latch)

per S-Module; some 1D flip-flop (or latch) per
FFsrequire 2 LC (4 per CLB)

modules.

adjacent L C to form 5-input

1600 (AT6003)
3136 (AT6005)

6400(AT6010)

Altera FLEX 8000/10k

8 Logic Elements (LE) ina
Logic Array Block (LAB)

16-bit LUT,

1 programmabl e flip-flop or
latch, MUX logic for control,
carry logic, cascade logic

Fixed with ability to
bypass FF

4-input LUT may be
cascaded with adjacent LE

1 D flip-flop (or latch) per LE

LEs:
208 (EPF8282/V/A [AV)
336 (EPF8452/A)

504 (EPF8636A)



Basic logic cells
in each chip

A1415:104 S+ 96 C 64 CLB (XC5202)

A1425:160 S+ 150 C 120 CLB (XC5204)

A1440: 288 S+ 276 C 196 CLB (X C5206)

A14100: 697 S+ 680

A 484 CLB (XC5215)

TABLE 5.9 Logic cellsused by programmable ASICs.

Basic
logic cell

Logic cell
contents

Logic path
delay
Combinational

functions per logic
cell

Flip-flop (FF)

AMD MACH 5 Actel 3200DX
4 PAL Blocksina Sisseg_orrr‘] oAdaTe %
Segment, 16 macrocellsin (decode) and

aPAL Block dual-port SRAM

C-Module: 4:1 MUX,
2-input OR, 2-input
AND

20-bit to 32-bit wide OR  S-Module: 4-input
array, switching logic, MUX, 2-input OR,
XOR gate, programmable latch or D flip-flop
flip-flop

D-module: 7-input
AND, 2-input XOR

Fixed Fixed

Most 3- and 4-input
Wide input functions functions (total 766
macros)

1 D flip-flop or latch
1D flip-flop or latchper  per S-Module; some

672 (EPF8820/A)
1008 (EPF81188/A)

1296 (EPF81500/A)

576 (EPF10K 10)
1152 (EPF10K 20)
1728 (EPF10K 30)
2304 (EPF10K 40)
2880 (EPF10K 50)
3744 (EPF10K 70)

4992 (EPF10K 100)

AlteraMAX 9000

16 macrocellsinaLAB
(Logic Array Block)

Macrocell: 114-wide AND,
5-wide OR array, 1 flip-flop,
5 MUXes, programmable
inversion. 16 shared logic
expander OR terms, plus
parallel logic expander.

LAB looks like a49Vv 16
PLD.

Fixed (unless using
expanders)

Wide input functions with
ability to share product terms

1 D flip-flop or latch per
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implementation macrocell

128 (M5-128)

192 (M5-192)

Basic logic cells

i each chip 256 (M5-256)

320 (M5-320)
384 (M5-384)

512 (M5-512)

The key pointsin this chapter are:

ME1 OTIVIVUUIG, DUITIC
FFsrequire 2
modules.

A3265DX: 510 S+
475C+20D

A32100DX: 700 S +
662C+20D +2
kSRAM

A32140D): 954 S +
912 C + 24D

A32200DX: 1230 S
+1184C+24D +
2.5kSRAM

A32300DX: 1888 S
+1833C+28D +
3kSRAM

A32400DX: 2526 S
+2466C+28D+4
kSRAM

macrocell. More can be
constructed in arrays.

Macrocdlls:

320 (EPM9320) 4 ¥5
LABs
400 (EPM9400) 5 ¥ 5
LABs
480 (EPM9480) 6 ¥ 5
LABs
560 (EPM9560) 7 ¥ 5

LABs

The use of multiplexers, look-up tables, and programmable logic arrays
The difference between fine-grain and coarse-grain FPGA architectures

Worst-case timing design

Timing models

Components of power dissipation in programmable ASICs
Deterministic and nondeterministic FPGA architectures

°

°

°

® Flip-flop timing
°

°

°

5.6 Problems

* = Difficult, ** = Very difficult, *** = Extremely difficult

5.1 (Usingthe ACT 1 Logic Module, 30 min.) Consider the Actel ACT 1 Logic Module shownin

Figure 5.1 . Show how to implement: (a) athree-input NOR gate, (b) athree-input majority function

gate, (¢) a2:1 MUX, (d) ahalf adder, () athree-input XOR gate, and (f) afour-input MUX.

5.2 (Worst-case and best-case timing, 10 min.) Seasoned digital CMOS designers do not worry too

much when their designs stop working when they get too hot or when they reduce the supply voltage,
but an ASIC that stops working either when increasing the supply voltage above normal or when it gets

cold causes panic. Why?



5.3 (Typical to worst-case variation, 10 min.) The 1994 Actel data book (p. 1-5) remarks that: "the total
derating factor from typical to worst-case for astandard ACT 1 array isonly 1.19:1, compared to 2:1 for
amasked gate array."

® a Canyou explain why thisiswhen the basic ACT 1 CMOS processisidentical toaCMOS
process for masked gate arrays?

® b. Thereisapriceto pay for the reduced spread in timing delays from typical to worst-case in an
ACT 1 array. What is this disadvantage of the ACT 1 array over a masked gate array?

5.4 (ACT 2/3 sequential element, 30 min.). Show how the Actel ACT 2 and ACT 3 sequentia element
of Figure 5.4 (used in the S-Module) can be wired to implement:

® a apositive-edge-triggered flip-flop with clear,
® b. anegative-edge-triggered flip-flop with clear,
® c. atransparent-high latch,

® d. atransparent-low latch, and

® e. how it can be made totally transparent.

5.5 (*ACT 1 logic functions, 40 min.+)

® a. How many different combinational functions of four logic variables are there?

b. of n variables? Hint: Consider the truth table.

c. The ACT 1 module can implement 213 of the 256 functions with three variables. How many of

the 43 three-input functions that it cannot implement can you find?

® d. (harder) Show that if you have access to both the true and complement form of the input
variables you can implement all 256 logic functions of three variables with the ACT 1 Logic
Module.

5.6 (Actel and Xilinx, 10 min.) The Actel Logic Modules (ACT 1, ACT 2, and ACT 3) have eight inputs
and can implement most three-input logic functions and afew logic functions with four input variables.
In contrast, the Xilinx XC5200 CLB, for example, has only four inputs but can implement all logic
functions with four or fewer variables. Why would Actel choose these logic cell designs and how can
they be competitive with the Xilinx FPGA (which they are)?

5.7 (Actel address decoders, 10 min.) The maximum number of inputs that the ACT 1 Logic Module can
handleisfour. The ACT 2/ACT 3 C-module increases thisto five.

® a How many ACT 1 Logic Modules do you need to implement a 32-bit wide address decoder (a
32-input AND gate)?
® b. How many ACT 2/ACT 3 C-modules do you need?

5.8 (Altera shared logic expanders, 30 min.) Consider an AlteraMAX 5000 logic array with three
product-term lines. Y ou cannot directly implement thefunctionZ=A -B-C+A-B'-C +A’ -B-C
+ A’ - B’ - Cwith aprogrammable array logic macrocell that has only three product-term lines, since Z
has four product terms.

® a. How many Boolean functions of three variables are there that cannot be implemented with a
programmable array logic macrocell that has only three product terms? Hint: Use a Karnaugh map



to consider how many Boolean functions of three variables have more than three product termsin
their sum-of-products representation.

® b. Show how to use shared logic expanders that feed terms back into the product-term array to
implement the function Z using a macrocell with three product terms.

® c. How many shared expander lines do you need to add to be able to implement all the Boolean
functions of three variables?

® d. What isthe largest number of product terms that you need to implement a Boolean function
with n variables?

5.9 (Splitting the X C3000 CLB, 20 min.) In Section 5.2.1 we noted "Y ou can split the (XC3000) 32-bit
LUT in half, using one of the seven input variables to switch between the F and G outputs. This
technique can implement some functions of six and seven variables.”

® a. Show which functions of six and seven variables can, and
® b. which functions cannot, be implemented using this method.

5.10 (Programmable inversion, 20 min.) Section 5.4 described how the Altera MAX serieslogic cells
can use programmable inversion to reduce the number of product terms needed to implement a function.
Give another example of afunction of four variables that requires four product terms. Isthere away to
tell how many product terms a function may require?

5.11 (Table look-up mapping, 20 min.) Consider afour-input LUT (used in the CLB in the Xilinx
XC2000, thefirst generation of Xilinx FPGAS, and in the XC5200 LE). This CLB can implement any
Boolean function of four variables. Consider the function
Z=(A-(B+C)+(B-D)+(E-F-G-H-1).(5.27)

We can use four CLBsto implement Z asfollows:

CLBl1.z=7z1+(B-D)+Z3,

CLB2:Zz1=A - (B+C),

CLB3:Z3=E-F-G-Z5,

CLB4: Z5=H -1 .(5.28)

What is the length of the critical path? Find a better assignment in terms of area and critical path.

5.12 (Multiplexer mapping, 10 min.) Consider the function:

F=(A-B)+(B' -C)+D.5.29)

Use Shannon’ s expansion theorem to expand F wrt B:

F=B-F1+B' .F2.(5.30)

In other words express F interms of B, B’, F1, and F2 ( Hint: F1isafunction of A and D only, F2isa



function of C and D only). Now expand F1 wrt A, and F2 wrt C. Using your answer, implement F using
asingle ACT 1 Logic Module.

5.13 (* Xilinx hazards, 10 min.) Explain why the outputs of the Xilinx CLBs are hazard-free for input
changesin only one variable. Is this important?

5.14 (** Actel S-Modules, 10 min.) Notice that CLR istied to the input corresponding to BO of the
C-moduleinthe ACT 2 S-Module but the CLR input is separate from the BO input in the ACT 3
version. Why?

5.15 (**Timing estimates, 60 min.) Using data book values for an FPGA architecture that you choose,
and explaining your calculations carefully, estimate the (worst-case commercial) delay for the following
functions: (a) 16-bit address decoder, (b) 8-bit ripple-carry adder, (c) 8-bit ripple-carry counter. Give
your answers in terms of the data book symbols, and using actual parameters, for a speed grade that you
specify, give an example calculation with the delay in ns.

5.16 (Actel logic. 30 min.) Table 5.10 shows how to use the Actel ACT 1 Logic Module to implement
some of the 16 functions of two input variables. Complete this table.

TABLE 5.10 Boolean functions using the ACT 1 Logic Module (Problem 5.16).

. . . M1 M2 OR1

Function, F F= Canonical form Minterms
AO A1 SA BO B1 SB S0 Ss1

10 0 0 - O 0 O
2 AND(A, B) A-B A-B 3 0 B A
3 ANDI1-1(A,B) A-B AP 2 A 0 B
4 NOR(A, B) A+B A B 0
5 NORI1-1(A,B) A+B A’ -B 1 B 0 A
6 A A A-B+A-B 2,3 0 A1
7 B B A’ -B+A: B 1,3 0 B 1
8 NOT(A) A’ A -B +A-B 0,1 0O 1 A
9 NOT(B) B’ A -B +A-B 0,2 0O 1 B
10 EXOR(A, B) A?B A -B+A:-B 1,2
11 EXNOR(A,B) (A?B) A'-B'+A-B 0,3
12 OR(A, B) A+B A -B+A-B+A-B 1,23 B 1 A

130R1-1(A,B) A+B A -B +A-B +A-B 0,23
14 NAND(A,B) (A-B) A’ -B'+A’ -B+A-B 0,1,2
15 NAND1-1(A,B) (A -B') A’ B’ +A’ -B+A-B  0,1,3

16 1 1 N TABTAB Y 91231 1 1

5.17 (ACT 1 module implementation, 120 min.)



® a Show that the circuit shown in Figure 5.17 , with buffered inputs and outputs, is equivalent to
the one shown in Figure 5.1 .
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FIGURE 5.17 An dternative implementation of the ACT 1 :‘ﬁ—t‘ﬁ——u—

Logic Module shown in Figure 5.1 (Problem 5.17). EO
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® b. Show that the circuit for the ACT 1 Logic Module shown in Figure 5.18 is also the same.

® c. Convert the circuit of Figure 5.18 to one that uses more efficient CMOS gates: inverters, AOI,
and NAND gates.

® d. (harder) Assume that the ACT 1 Logic Module has the equivalent of a2X drive and the logic
ratio is close to one. Compare your answer to part ¢ against Figure 5.17 in terms of logical
efficiency and logical area.
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FIGURE 5.18 A schematic equivaent of the B

Actel ACT 1 Logic Module (Problem 5.17). NG
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5.18 (**Xilinx CLB analysis, 60 min.) Table 5.11 shows some information derived from a die photo in
the AT&T ATT3000 series data book that shows the eight by eight CLB matrix on an ATT3020
(equivalent to a XC3020) clearly. By measuring the die size in the photo and knowing the actual die size
we can calculate the size of a CLB matrix element ( ME ) that includes asingle XC3000 CLB as

approximately 277 mil 2 The ME includes interconnect, SRAM, programming, and other resources as
well asa CLB.

TABLE 5.11 ATT3020 die information (Problem 5.18). 1
Parameter Databook Diephoto  Calculated

3020 diewidth 183.5mil 4.1cm -

3020 dieheight 219.3mil 4.9cm -

3000 ME width - 0.325cm 14.55 mil =370 mm
3000 ME height - 0.425 cm 19.02 mil =483 mm
3000 ME area - - 277 mil 2



3020 pad pitch - 1.6 mm/ pad 7.21 mil / pad

® a The minimum feature size inthe AT& T Holmdel twin-tub V process used for the ATT3000

family is0.9 m m. Using avalue of | = 0.45 m m, calculate the Xilinx XC3000 ME sizein| 2.
® b. Estimate, explaining your assumptions, the area of the XC4000 ME, and the XC5200 ME (both

inl2).
® c. Table5.12 showsthe ATT3000 die information. Using avalue of 277 mil 2 for the
ATT/XC3000 ME area, complete this table.

TABLE 5.12 ATT3000 die information (Problem 5.18). 2

Dieheight Diewidth Die area ME area ME area
Die Die areamil 2 CLBs

mil mil cm2 mil2 cm2
3020 219.3 183.5 40,242 0.26 8¥8
3030 259.8 215.0 55,857 0.36 10 ¥ 10
3042 295.3 2425 71,610 0.46 12 ¥12
3064 270.9 366.5 99,285 0.64 16 ¥ 14
3090 437.0 299.2 130,750 0.84 16 ¥ 20

1. Datafrom AT& T data book, July 1992, p. 3-76, MN92-024FPGA

2. Datafrom AT& T data book, July 1992, p. 3-75, MN92-024FPGA. 1 mil 2=10%in2=2542¥ 10
cm2=6.452¥10%cm?

5.7 Bibliography

The book by Brown et a. [ 1992] on FPGASs deals with commercially available FPGAs and logic block
architecture. There are several easily readable articles on FPGASs in the July 1993 issue of the IEEE
Proceedingsincluding articles by Rose et a. [ 1993] and Greene et al. [ 1993]. Greene' s article is a good
place to start digging deeper into the Actel FPGA architecture and gives an idea of the very complex
problem of programming antifuses, something we have not discussed. Trimberger, who works at Xilinx,
has edited a book on FPGAs[ 1994]. For those wishing to understand even more about the trade-offsin
the different programmable ASIC architectures, a student of Stanford Professor Abbas EI Gamal (one of
the cofounders of Actel) has completed aPh.D. on thistopic [Kouloheris, 1993]. The best resources for
information on FPGAs and their logic cells are the manufacturer’ s data sheets, data books, and
application notes. The data books change every year or so as new products are released, so it is difficult
to give specific references, but Xilinx, Actel, and Altera currently produce huge volumes complete with
excellent design guides and application notes-you should obtain each of these even if you are not
currently using that particular technology. Many of these are also onlinein Adobe Acrobat and

PostScript
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