
LOW-LEVEL
DESIGN ENTRY
The purpose of design entry is to describe a microelectronic system to a set of electronic-design
automation (EDA) tools. Electronic systems used to be, and many still are, constructed from
off-the-shelf components, such as TTL ICs. Design entry for these systems now usually consists of
drawing a picture, a schematic . The schematic shows how all the components are connected together,
the connectivity of an ASIC. This type of design-entry process is called schematic entry , or schematic
capture . A circuit schematic describes an ASIC in the same way an architect’s plan describes a building.

The circuit schematic is a picture, an easy format for us to understand and use, but computers need to
work with an ASCII or binary version of the schematic that we call a netlist . The output of a
schematic-entry tool is thus a netlist file that contains a description of all the components in a design and
their interconnections.

Not all the design information may be conveyed in a circuit schematic or netlist, because not all of the
functions of an ASIC are described by the connectivity information. For example, suppose we use a
programmable ASIC for some random logic functions. Part of the ASIC might be designed using a text
language. In this case design entry also includes writing the code. What if an ASIC in our system
contains a programmable memory (PROM)? Is the PROM microcode, the ’1’s and ’0’s, part of design
entry? The operation of our system is certainly dependent on the correct programming of the PROM. So
perhaps the PROM code ought to be considered part of design entry. On the other hand nobody would
consider the operating-system code that is loaded into a RAM on an ASIC to be a part of design entry.
Obviously, then, there are several different forms of design entry. In each case it is important to make
sure that you have completely specified the system-not only so that it can be correctly constructed, but
so that someone else can understand how the system is put together. Design entry is thus an important
part of documentation .

Until recently most ASIC design entry used schematic entry. As ASICs have become more complex,
other design-entry methods are becoming common. Alternative design-entry methods can use graphical
methods, such as a schematic, or text files, such as a programming language. Using a hardware
description language (HDL) for design entry allows us to generate netlists directly using logic synthesis
. We will concentrate on low-level design-entry methods together with their advantages and
disadvantages in this chapter.

9.1 Schematic Entry

9.2 Low-Level Design Languages

9.3 PLA Tools

9.4 EDIF

9.5 CFI Design Representation

9.6 Summary

9.7 Problems

9.8 Bibliography

9.1 Schematic Entry

Schematic entry is the most common method of
design entry for ASICs and is likely to be useful
in one form or another for some time. HDLs are
replacing conventional gate-level schematic
entry, but new graphical tools based on
schematic entry are now being used to create
large amounts of HDL code.

Circuit schematics are drawn on schematic
sheets . Standard schematic sheet sizes (
Table 9.1) are ANSI A-E (more common in the
United States) and ISO A4-A0 (more common in
Europe). Usually a frame or border is drawn
around the schematic containing boxes that list
the name and number of the schematic page, the

designer, the date of the drawing, and a list of
any modifications or changes.

TABLE 9.1 ANSI (American National Standards Institute) and ISO (International Standards
Organization) schematic sheet sizes.

ANSI sheet Size (inches) ISO sheet Size (cm)

A 8.5 ¥ 11 A5 21.0 ¥ 14.8

B 11 ¥ 17 A4 29.7 ¥ 21.0

C 17 ¥ 22 A3 42.0 ¥ 29.7

D 22 ¥ 34 A2 59.4 ¥ 42.0

E 34 ¥ 44 A1 84.0 ¥ 59.4

 A0 118.9 ¥ 84.0

Figure 9.1 shows the " spades" and " shovels,"
the recognized symbols for AND, NAND, OR,
and NOR gates. One of the problems with these
recommendations is that the corner points of the
shapes do not always lie on a grid point (using a
reasonable grid size).

FIGURE 9.1 IEEE-recommended dimensions and their construction for logic-gate symbols. (a)
NAND gate (b) exclusive-OR gate (an OR gate is a subset).

Figure 9.2 shows some pictorial definitions of
objects you can use in a simple schematic. We
shall discuss the different types of objects that
might appear in an ASIC schematic first and
then discuss the different types of connections.

FIGURE 9.2 Terms used in circuit schematics.

Schematic-entry tools for ASIC design are
similar to those for printed-circuit board (PCB)
design. The basic object on a PCB schematic is a
component or device -a TTL IC or resistor, for
example. There may be several hundred
components on a typical PCB. If we think of a
logic gate on an ASIC as being equivalent to a
component on a PCB, then a large ASIC
contains hundreds of thousands of components.

We can normally draw every component on a
few schematic sheets for a PCB, but drawing
every component on an ASIC schematic is
impractical.

9.1.1 Hierarchical Design

Hierarchy reduces the size and complexity of a
schematic. Suppose a building has 10 floors and
contains several hundred offices but only three
different basic office plans. Furthermore,
suppose each of the floors above the ground floor
that contains the lobby is identical. Then the
plans for the whole building need only show
detailed plans for the ground floor and one of the
upper floors. The plans for the upper floor need
only show the locations of each office and the
office type. We can then use a separate set of
three detailed plans for each of the different
office types. All these different plans together
form a nested structure that is a hierarchical
design . The plan for the whole building is the
top-level plan. The plans for the individual
offices are the lowest level. To clarify the

relationship between different levels of hierarchy
we say that a subschematic (an office) is a child
of the parent schematic (the floor containing
offices). An electrical schematic can contain
subschematics. The subschematic, in turn, may
contain other subschematics. Figure 9.3
illustrates the principles of schematic
hierarchical design.

FIGURE 9.3 Schematic example showing hierarchical design. (a) The schematic of a half-adder, the
subschematic of cell HADD. (b) A schematic symbol for the half adder. (c) A schematic that uses the
half-adder cell. (d) The hierarchy of cell HADD.

The alternative to hierarchical design is to draw
all of the ASIC components on one giant
schematic, with no hierarchy, in a flat design .

For a modern ASIC containing thousands or
more logic gates using a flat design or a flat
schematic would be hopelessly impractical.
Sometimes we do use flat netlists though.

9.1.2 The Cell Library

Components in an ASIC schematic are chosen
from a library of cells. Library elements for all
types of ASICs are sometimes also known as
modules . Unfortunately the term module will
have a very specific meaning when we come to
discuss hardware description languages. To
avoid any chance of confusion I use the term cell
to mean either a cell, a module, a macro, or a
book from an ASIC library. Library cells are
equivalent to the offices in our office building.

Most ASIC companies provide a schematic
library of primitive gates to be used for
schematic entry. The first problem with ASIC
schematic libraries is that there are no naming
conventions. For example, a primitive two-input
NAND gate in a Xilinx FPGA library does not

have the same name as the two-input NAND gate
in an LSI Logic gate-array library. This means
that you cannot take a schematic that you used
to create a prototype product using a Xilinx
FPGA and use that schematic to create an LSI
Logic gate array for production (something you
might very likely want to do). As soon as you
start entering a schematic using a library from
an ASIC vendor, you are, to some extent, making
a commitment to use that vendor’s ASIC. Most
ASIC designers are much happier maintaining a
large degree of vendor independence.

A second problem with ASIC schematic libraries
is that there are no standards for cell behavior.
For example, a two-input MUX in an Actel
library operates so that the input labeled A is
selected when the MUX select input S = ’0’. A
two-input MUX in a VLSI Technology library
operates in the reverse fashion, so that the input
labeled B is selected when S = ’0’. These types of
differences can cause hard-to-find problems
when trying to convert a schematic from one

vendor to another by hand. These problems
make changing or retargeting schematics from
one vendor to another difficult. This process is
sometimes known as porting a design.

Library cells that represent basic logic gates,
such as a NAND gate, are known as primitive
cells , usually referred to just as cells. In a
hierarchical ASIC design a cell may be a NAND
gate, a flip-flop, a multiplier, or even a
microprocessor, for example. To use the office
building analogy again, each of the three basic
office types is a primitive cell. However, the plan
for the second floor is also a cell. The
second-floor cell is a subschematic of the
schematic for the whole building. Now we see
why the commonly accepted use of the term cell
in schematic entry can be so confusing. The term
cell is used to represent both primitive cells and
subschematics. These are two different, but
closely related, things.

There are two types of macros for MGAs and

programmable ASICs. The most common type
of macro is a hard macro that includes
placement information. A hard macro can
change in position and orientation, but the
relative location of the transistors, other layout,
and wiring inside the macro is fixed. A soft
macro contains only connection information
(between transistors for a gate array or between
logic cells for a programmable ASIC). Thus the
placement and wiring for a soft macro can vary.
This means that the timing parameters for a soft
macro can only be determined after you
complete the place-and-route step. For this
reason the basic library elements for MGAs and
programmable ASICs, such as NAND gates,
flip-flops, and so on, are hard macros.

A standard cell contains layout information on
all mask levels. An MGA hard macro contains
layout information on just the metal, contact,
and via layers. An MGA soft macro or
programmable ASIC macro does not contain any
layout information at all, just the details of

connections to be made inside the macro.

We can stretch the office building analogy to
explain the difference between hard and soft
macros. A hard macro would be an office with
fixed walls in which you are not allowed to move
the furniture. A soft macro would be an office
with partitions in which you can move the
furniture around and you can also change the
shape of your office by moving the partitions.

9.1.3 Names

Each of the cells, primitive or not, that you place
on an ASIC schematic has a cell name . Each use
of a cell is a different instance of that cell, and we
give each instance a unique instance name . A
cell instance is somewhere between a copy and a
reference to a cell in a library. An analogy would
be the pictures of hamburgers on the wall in a
fast-food restaurant. The pictures are
somewhere between a copy and a reference to a
real hamburger.

We represent each cell instance by a picture or
icon , also known as a symbol . We can represent
primitive cells, such as NAND and NOR gates,
with familiar icons that look like spades and
shovels. Some schematic editors offer the option
of switching between these familiar icons and
using the rectangular IEEE standard symbols
for logic gates. Unfortunately the term icon is
also often used to refer to any of the pictures on
a schematic, including those that represent
subschematics. There is no accepted way to
differentiate between an icon that represents a
primitive cell and one that represents a
subschematic that may be in turn a collection of
primitive cells. In fact, there is usually no easy
way to tell by looking at a schematic which icons
represent primitive cells and which represent
subschematics.

We will have three different icons for each of the
three different primitive offices in the imaginary
office building example of Section 9.1.1 . We also
will have icons to represent the ground floor and

the plan for the other floors. We shall call the
common plan for the second through tenth
floors, Floor . Then we say that the second floor
is an instance of the cell name Floor . The third
through tenth floors are also instances of the cell
name Floor . The same icon will be used to
represent the second through tenth floors, but
each will have a unique instance name. We shall
give them instance names: FloorTwo ,
FloorThree , ... , FloorTen . We say that
FloorTwo through FloorTen are unique instance
names of the cell name Floor .

At the risk of further confusion I should point
out that, strictly speaking, the definition of a
primitive cell depends on the type of library
being used. Schematic-entry libraries for the
ASIC designer stop at the level of NAND gates
and other similar low-level logic gates. Then, as
far as the ASIC designer is concerned, the
primitive cells are these logic gates. However,
from the view of the library designer there is
another level of hierarchy below the level of logic

gates. The library designer needs to work with
libraries that contain schematics of the gates
themselves, and so at this level the primitive cells
are transistors.

Let us look at the building analogy again to
understand the subtleties of primitive cells. A
building contractor need only concern himself
with the plans for our office building down to the
level of the offices. To the building contractor the
primitive cells are the offices. Suppose that the
first of the three different office types is a corner
office, the second office type has a window, and a
third office type is without a window. We shall
call these office cells: CornerOffice ,
WindowOffice , and NoWindowOffice . These
cells are primitive cells as far as the contractor is
concerned. However, when discussing the plans
with a client, the architect of our building will
also need to see how each offices is furnished.
The architect needs to see a level of detail of each
office that is more complicated than needed by
the building contractor. The architect needs to

see the cells that represent the tables, chairs, and
desks that make up each type of office. To the
architect the primitive cells are a library
containing cells such as chair , table , and desk .

9.1.4 Schematic Icons and Symbols

Most schematic-entry programs allow the
designer to draw special or custom icons. In
addition, the schematic-entry tool will also
usually create an icon automatically for a
subschematic that is used in a higher-level
schematic. This is a derived icon , or derived
symbol . The external connections of the
subschematic are automatically attached to the
icon, usually a rectangle.

Figure 9.4 (c) shows what a derived icon for a
cell, DLAT , might look like (we could also have
drawn this by hand). The subschematic for
DLAT is shown in Figure 9.4 (b). We say that the
inverter with the instance name inv1 in the
subschematic is a subcell (or submodule) of the
cell DLAT . Alternatively we say that cell

instance inv1 is a child of the cell DLAT , and
cell DLAT is a parent of cell instance inv1 .

FIGURE 9.4 A cell and its subschematic. (a) A schematic library containing icons for the primitive
cells. (b) A subschematic for a cell, DLAT, showing the instance names for the primitive cells. (c) A
symbol for cell DLAT.

Figure 9.5 (a) shows a more complex
subschematic for a 4-bit latch. Each primitive
cell instance in this schematic must have a
unique name. This can get very tiresome for
large circuits. Instead of creating complex, but
repetitive, subschematics for complex cells we
can use hierarchy.

FIGURE 9.5 A 4-bit latch: (a) drawn as a flat schematic from gate-level primitives, (b) drawn as four
instances of the cell symbol DLAT, (c) drawn using a vectored instance of the DLAT cell symbol with
cardinality of 4, (d) drawn using a new cell symbol with cell name FourBit.

Figure 9.5 (b) shows a hierarchical subschematic
for a cell FourBit , which in turn uses four
instances of the cell DLAT . The four instances
of DLAT in Figure 9.5 (b) have different instance
names: L1 , L2 , L3 , and L4 . Notice that we
cannot use just one name for the four instances
of DLAT to indicate that they are all the same
cell. If we did, we could not differentiate between
L1 and L2 , for example.

The vertical row of instances in Figure 9.5 (b)
looks like a vector of elements. Figure 9.5 (c)

shows a vectored instance representing four
copies of the DLAT cell. We say the cardinality
of this instance is 4. Tools normally use bold lines
or some other distinguishing feature to represent
a vectored instance. The cardinality information
is often shown as a vector. Thus L[1:4]
represents four instances: L[1] , L[2] , L[3] , L[4]
. This is convenient because now we can see that
all subcells are identical copies of L , but we have
a unique name for each.

Finally, as shown in Figure 9.5 (d) we can create
a new symbol for the 4-bit latch, FourBit . The
symbol for FourBit has a 4-bit-wide input bus
for the four D inputs, and a 4-bit wide output
bus for the four Q outputs. The subschematic for
FourBit could be either Figure 9.5 (a), (b), or (c)
(though the exact naming of the inputs and
outputs and their attachment to the buses may
be different in each case).

We need a convention to distinguish, for
example, between the inverter subcells, inv1 ,

which are children of the cell DLAT , which are
in turn children of the cell FourBit . Most
schematic-entry tools do this by combining the
instance names of the subcells in a hierarchical
manner using a special character as a delimiter.
For example, if we drew the subschematic as in
Figure 9.5 (b), the four inverters in FourBit
might be named L1.inv1 , L2.inv1 , L3.inv1 , and
L4.inv1 . Once again this makes it clear that the
inverters, inv1 , are identical in all four subcells.

In our office building example, the offices are
subcells of the cell Floor . Suppose you and I
both have corner offices. Mine is on the second
floor and yours is above mine on the third floor.
My office is 211 and your office is 311. Another
way to name our offices on a building plan might
be FloorTwo.11 for my office and FloorThree.11
for your office. This shows that FloorTwo.11 is a
subcell of FloorTwo and also makes it clear that,
apart from being on different floors, your office
and mine are identical. Both our offices have
instance names 11 and are instances of cell name

Corner .

9.1.5 Nets

The schematics shown in Figure 9.4 contain both
local nets and external nets . An example of a
local net in Figure 9.4 (b) is n1 , the connection
between the output terminal of the AND cell
and1 to the OR cell or1 . When the four copies of
this circuit are placed in the parent cell FourBit
in Figure 9.5 (d), four copies of net n1 are
created. Since the four nets named n1 are not
actually electrically connected, even though they
have the same name at the lowest hierarchical
level, we must somehow find a way to uniquely
identify each net.

The usual convention for naming nets in a
hierarchical schematic uses the parent cell
instance name as a prefix to the local net name.
A special character (’:’ ’/’ ’$’ ’#’ for example)
that is not allowed to appear in names is used as
a delimiter to separate the net name from the cell
instance name. Supposing that we drew the

subschematic for cell FourBit as shown in
Figure 9.5 (b), the four different nets labeled n1
might then become:

FourBit .L1:n1 FourBit .L2:n1 FourBit .L3:n1
FourBit .L4:n1

This naming is usually done automatically by the
schematic-entry tool.

The schematic DLAT also contains three
external nets: D, EN, and Q . The terminals on
the symbol DLAT connect these nets to other
nets in the hierarchical level above. For example,
the signal Trigger:flag in Figure 9.4 (c) is also
Trigger.DLAT:Q . Each schematic tool handles
this situation differently, and life becomes
especially difficult when we need to refer to these
nodes from a simulator outside the schematic
tool, for example. HDLs such as VHDL and
Verilog have a very precise and well-defined
standard for naming nets in hierarchical
structures.

9.1.6 Schematic Entry for ASICs and PCBs

A symbol on a schematic may represent a
component, which may contain component parts.
You are more likely to come across the use of
components in a PCB schematic. A component is
slightly different from an ASIC library cell. A
simple example of a component would be a TTL
gate, an SN74LS00N, that contains four 2-input
NAND gates. We call an SN74LS00N a
component and each of the individual NAND
gates inside is a component part. Another
common example of a component would be a
resistor pack-a single package that contains
several identical resistors.

In PCB design language a component label or
name is a reference designator . A reference
designator is a unique name attribute, such as
R99 , attached to each component. A reference
designator, such as R99 , has two pieces: an
alpha prefix R and a numerical suffix 99 . To
understand the difference between reference

designators and instance names, we need to look
at the special requirements of PCB design.

PCBs usually contain packaged ASICs and other
ICs that have pins that are soldered to a board.
For rectangular, dual-in-line (DIP) packages the
pins are numbered counterclockwise from the
upper-left corner looking down on the package.

IC symbols have a pin number for each part in
the package. For example, the TTL 74174 hex D
flip-flop with clear, contains six parts: six
identical D flip-flops. The IC symbol
representing this device has six PinNumber
attribute entries for the D input corresponding
to the six possible input pins. They are pins 3, 4,
6, 11, 13, and 14.

When we need a flip-flop in our design, we use a
symbol for a 74174 from a schematic library,
suppose the symbol name is dffClr . We shall
assign a unique instance name to the symbol,
CarryFF . Now suppose we need another,

identical, flip-flop and we call this BitFF . We do
not mind which of the six flip-flop parts in a
74174 we use for CarryFF and BitFF . In fact
they do not even have to be in the same package.
We shall delay the choice of assigning CarryFF
and BitFF to specific packages until we get to the
PCB routing step. So at this point on our
schematic we do not even know the pin numbers
for CarryFF and BitFF . For example the D
input to CarryFF could be pin 3, 4, 6, 11, 13, or
14.

The number of wire crossings on a PCB is
minimized by careful assignment of components
to packages and choice of parts within a
package. So the placement-and-routing software
may decide which part of which package to use
for CarryFF and BitFF depending on which is
easier to route. Then, only after the placement
and routing is complete, are unique reference
designators assigned to the component parts.
Only at this point do we know where CarryFF is
actually located on the PCB by referring to the

reference designator, which points to a specific
part in a specific package. Thus CarryFF might
be located in IC4 on our PCB. At this point we
also know which pins are used for each symbol.
So we now know, for example, that the D-input
to CarryFF is pin 3 of IC4 .

There is no process in ASIC design directly
equivalent to the process of part assignment
described above and thus no need to use
reference designators. The reference-designator
naming convention quickly becomes unwieldy if
there are a large number of components in a
design. For example, how will we find a NAND
gate named X3146 in an ASIC schematic with
100 pages? Instead, for ASICs, we use a naming
scheme based on hierarchy.

In large hierarchical ASIC designs it is difficult
to provide a unique reference designator to each
element. For this reason ASIC designs use
instance names to identify the individual
components. Meaningful names can be assigned

to low-level components and also the symbols
that represent hierarchy. We derive the
component names by joining all of the higher
level cell names together. A special character is
used as a delimiter and separates each level.

Examples of hierarchical instance names are:

cpu.alu.adder.and01

MotherBoard:Cache:RAM4:ReadBit4:Inverter2

9.1.7 Connections

Cell instances have terminals that are the inputs
and outputs of the cell. Terminals are also
known as pins , connectors , or signals . The term
pin is widely used, but we shall try to use
terminal, and reserve the term pin for the metal
leads on an ASIC package. The term pin is used
in schematic entry and routing programs that
are primarily intended for PCB design.

FIGURE 9.6 An example of the use of a bus to simplify a schematic. (a) An address decoder without
using a bus. (b) A bus with bus rippers simplifies the schematic and reduces the possibility of making a
mistake in creating and reading the schematic.

Electrical connections between cell instances use
wire segments or nets . We can group closely
related nets, such as the 32 bits of a 32-bit digital
word, together into a bus or into buses (not
busses). If signals on a bus are not closely
related, we usually use the term bundle or array
instead of bus. An example of a bundle might be
a bus for a SCSI disk system, containing not only
data bits but handshake and control signals too.
Figure 9.6 shows an example of a bus in a
schematic. If we need to access individual nets in
a bus or a bundle, we use a breakout (also known
as a ripper , an EDIF term, or extractor). For
example, a breakout is used to access bits 0-7 of a
32-bit bus. If we need to rearrange bits on a bus,
some schematic editors offer something called a

swizzle . For example, we might use a swizzle to
reorder the bits on an 8-bit bus so that the MSB
becomes the LSB and so on down to the LSB,
which now becomes the MSB. Swizzles can be
useful. For example, we can multiply or divide a
number by 2 by swizzling all the bits up or down
one place on a bus.

9.1.8 Vectored Instances and Buses

So far the naming conventions are fairly
standard and easy to follow. However, when we
start to use vectored instances and buses (as is
now common in large ASICs), there are potential
areas of difficulty and confusion. Figure 9.7 (a)
shows a schematic for a 16-bit latch that uses
multiple copies of the cell FourBit . The buses
are labeled with the appropriate bits. Figure 9.7
(b) shows a new cell symbol for the 16-bit latch
with 16-bit wide buses for the inputs, D, and
outputs, Q.

FIGURE 9.7 A 16-bit latch: (a) drawn as four instances of cell FourBit; (b) drawn as a cell named
SixteenBit; (c) drawn as four multiple instances of cell FourBit.

Figure 9.7 (c) shows an alternative
representation of the 16-bit latch using a
vectored instance of FourBit with cardinality 4.
Suppose we wish to make a connection to
expressly one bit, D1 (we have used D1 as the
first bit rather than the more conventional D0 so
that numbering is easier to follow). We also wish
to make a connection to bits D9-D12, represented
as D[9:12]. We do this using a bus ripper. Now
we have the rather awkward situation of bus
naming shown in Figure 9.7 (c). Problems arise
when we have "buses of buses" because the
numbers for the bus widths do not match on

either side of a ripper. For this reason it is best to
use the single-bus approach shown in Figure 9.7
(b) rather than the vectored-bus approach of
Figure 9.7 (c).

9.1.9 Edit-in-Place

Figure 9.7 (b) shows a symbol SixteenBit , which
uses the subschematic shown in Figure 9.7 (a)
containing four copies of FourBit , named NB1 ,
NB2 , NB3 , and NB4 (the NB stands for nibble,
which is half of a word; a nibble is 4 bits for 8-bit
words). Suppose we use the schematic-entry
program to edit the subcell NB1.L1 , which is an
instance of DLAT inside NB1 . Perhaps we wish
to change the D latch to a D latch with a reset,
for example. If the schematic editor supports
edit-in-place , we can edit a cell instance directly.
After we edit the cell, the program will update all
the DLAT subcells in the cell that is currently
loaded to reflect the changes that have been
made.

To see how edit-in-place works, consider our

office building again. Suppose we wish to change
some of the offices on each floor from offices
without windows to offices with windows. We
select the cell instance FloorTwo -that is, an
instance of cell Floor . Now we choose the edit
mode in the schematic-entry program. But wait!
Do we want to edit the cell Floor , or do we want
to edit the cell instance FloorTwo ? If we edit the
cell Floor , we will be making changes to all of
the floors that use cell name Floor -that is,
instances FloorTwo through FloorTen . If we
edit the cell instance FloorTwo , then the second
floor will become different from all the other
floors. It will no longer be an instance of cell
name Floor and we will have to create another
cell name for the cell used by instance FloorTwo
. This is like the difference between ordering just
one hamburger without pickles and changing the
picture on the wall that will change all future
hamburgers.

Using edit-in-place we can edit the cell Floor .
Suppose we change some of the cell instances of

cell name NoWindowOffice to instances of cell
name WindowOffice . When we finish editing
and save the cell Floor , we have effectively
changed all of the floors that contain instances of
this cell.

Instead of editing a cell in place, you may really
want to edit just one instance of a cell and leave
any other instances unchanged. In this case you
must create a new cell with a new symbol and
new, unique cell name. It might also be wise to
change the instance name of the new cell to avoid
any confusion.

For example, we might change the third-floor
plan of our office to be different from the other
upper floors. Suppose the third floor is now an
instance of cell name FloorVIP instead of Floor .
We could continue to call the third floor cell
instance FloorThree , but it would be better to
rename the instance differently, FloorSpecial for
example, to make it clear that it is different from
all the other floors.

Some tools have the ability to alias nets. Aliasing
creates a net name from the highest level in the
design. Local names are net names at the lowest
level such as D , and Q in a flip-flop cell. These
local names are automatically replaced by the
appropriate top-level names such as Clock1 , or
Data2 , using a dictionary . This greatly speeds
tracing of signals through a design containing
many levels of hierarchy.

9.1.10 Attributes

You can attach a name , also known as an
identifier or label , to a component, cell instance,
net, terminal, or connector. You can also attach
an attribute , or property , which describes some
aspect of the component, cell instance, net, or
connector. Each attribute has a name, and some
attributes also have values. The most common
problems in working with schematics and
netlists, especially when you try to exchange
schematic information between different tools,
are problems in naming.

Since cells and their contents have to be stored in
a database, a cell name frequently corresponds
(or is mapped to) a filename. This then raises the
problems of naming conventions including: case
sensitivity, name-collision resolution,
dictionaries, handling of "common" special
characters (such as embedded blanks or
underscores), other special characters (such as
characters in foreign alphabets), first-character
restrictions, name-length problems (only 28
characters are permitted on an NFS compatible
filename), and so on.

9.1.11 Netlist Screener

A surprising number of problems can be found
by checking a schematic for obviously fatal
errors. A program that analyzes a schematic
netlist for simple errors is sometimes called a
schematic screener or netlist screener . Errors
that can be found by a netlist screener include:

unconnected cell inputs,
unconnected cell outputs,

nets not driven by any cells,
too many nets driven by one cell,
nets driven by more than one cell.

The screener can work continuously as the
designer is creating the schematic or can be run
as a separate program independently from
schematic entry. Usually the designer provides
attributes that give the screener the information
necessary to perform the checks. A few of the
typical attributes that schematic-entry programs
use are described next.

A screener usually generates a list of errors
together with the locations of the problem on the
schematic where appropriate. Some editors
associate an identifier, or handle , to every piece
of a schematic, including comments and every
net. Normally there is some convention to the
assigned names such as a grid on a schematic.
This works like the locator codes on a map, so
that a net with A1 as part of the name is in the
upper-left-hand corner, for example. This allows

you to quickly and uniquely find any problems
found by a screener. The term handle is a
computer programming term that is used in
referring to a location in memory. Each piece of
information on a schematic is stored in lists in
memory. This technique breaks down completely
when we move to HDLs.

Most schematic-entry programs work on a grid.
The designer can control the size of the grid and
whether it is visible or not. When you place
components or wires you can instruct the editor
to force your drawing to snap to grid . This
means that drawing a schematic is like drawing
on graph paper. You can only locate symbols,
wires, and connections on grid points. This
simplifies the internal mechanics of the
schematic-entry program. It also makes the
transfer of schematics between different EDA
systems more manageable. Finally, it allows the
designer to produce schematic diagrams that are
cleaner in appearance and thus easier to read.

Most schematic-entry programs allow you to
find components by instance name or cell name.
The editor may either jump to the component
location and center the graphic window on the
component or highlight the component. More
sophisticated options allow more complex
searches, perhaps using wildcard matching. For
example, to find all three-input NAND gates
(primitive cell name ND3) or three-input NOR
gates (primitive cell name NO3), you could
search for cell name N*3, where * is a wildcard
symbol standing for any character. The editor
may generate a list of components, perhaps with
page number and coordinate locations. Extensive
find features are useful for large schematics
where it quickly becomes impossible to find
individual components.

Some schematic editors can complete automatic
naming of reference designators or instance
names to the schematic symbols either as the
editor is running or as a postprocessing step. A
component attribute, called a prefix, defines the

prefix for the name for each type of component.
For example, the prefix for all resistor
component types may be R . Each time a prefix
is found or a new instance is placed, the number
in the reference designator or name is
automatically incremented. Thus if the last
resistor component type you placed was R99 ,
the next time you place a resistor it would
automatically be named R100 .

For large schematics it is useful to be able to
generate a report on the used and unused
reference designators. An example would be:

Reference designator prefix: R

Unused reference designator numbers: 153, 154

Last used reference designator number: 180

If you need this feature, you probably are not
using enough hierarchy to simplify your design.

During schematic entry of an ASIC design you
will frequently need multiple copies of
components. This often occurs during datapath
design, where operations are carried out across
multiple signals on a bus. A common example
would be multiple copies of a latch, one for each
signal on a bus. It is tedious and inefficient to
have to draw and label the same cell many times
on a schematic. To simplify this task, most
editors allow you to place a special vectored cell
instance of a cell. A vectored cell instance, or
vectored instance for short, uses the same icon
for a single instance but with a special attribute,
the cell cardinality , that denotes the number of
copies of the cell. Connections between signals on
a bus and vectored instances should be handled
automatically. The width or cardinality of the
bus and the cell cardinality must match, and the
design-entry tool should issue a warning if this is
not the case.

A schematic-entry program can use a terminal
attribute to determine which cell terminals are

output terminals and which terminals are input
terminals. This attribute is usually called
terminal polarity or terminal direction . Possible
values for terminal polarity might be: input ,
output , and bidirectional . Checking the
terminal polarity of the terminals on a net can
help find problems such as a net with all input
terminals or all output terminals.

The fanout of a cell measures the driving
capability of an output terminal. The fanin of a
cell measures the number of input terminals.
Fanout is normally measured using a standard
load. A standard load is the load presented by
one input of a primitive cell, usually a two-input
NAND. For example, a library cell Counter may
have an input terminal, Clock , that is connected
to the input terminals of five primitive cells. The
loading at this terminal is then five standard
loads. We say that the fanout of Clock is five. In
a similar fashion, we say that if a cell Buffer is
capable of driving the inputs of three primitive
cells, the fanout of Buffer is three. Using the

fanin and fanout attributes a netlist screener can
check to see if the fanout driving a net is greater
than the sum of all loads on that net. (See Figure
9.2 on page 329.)

9.1.12 Schematic-Entry tools

Some editors offer icon edit-in-place in a similar
fashion as schematic edit-in-place for cells. Often
you have to toggle editing modes in the
schematic-entry program to switch between
editing cells and editing cell icons. A
schematic-entry program must keep track of
when cells are edited. Normally this is done by
using a timestamp or datestamp for each cell.
This is a text field within the data file for each
cell that holds the date and time that the cell was
last modified. When a new schematic or cell is
loaded, the program needs to compare its
timestamp with the timestamps of any subcells.
If any of the subcell timestamps are more recent,
then the designer needs to be alerted. Usually a
message appears to inform you that changes
have been made to subcells since the last time the

cell currently loaded was saved. This may be
what you expect or it may be a warning that
somehow a subcell has been changed
inadvertently (perhaps someone else changed it)
since you last loaded that cell.

Normally the primitive cells in a library are
locked and cannot be edited. If you can edit a
primitive cell, you have to make a copy, edit the
copy, and rename it. Normally the ASIC
designer cannot do this and does not want to. For
example, to edit a primitive NAND gate stored in
an ASIC schematic library would require that
the subschematic of the primitive cell be
available (usually not the case) and also that the
next lower level primitives (symbols for the
transistors making up the NAND gate) also be
available to the designer (also usually not the
case).

What do you do if somehow changes were made
to a cell by mistake, perhaps by someone else,
and you don’t want the new cell, you want the

old version? Most schematic-entry and other
EDA tools keep old versions of files as a back-up
in case this kind of problem occurs. Most EDA
software automatically keeps track of the
different versions of a file by appending a
version number to each file. Usually this is
transparent to the designer. Thus when you edit
a cell named Floor , the file on disk might be
called Floor.6 . When you save the changes, the
software will not overwrite Floor.6 , but write
out a new file and automatically name it Floor.7 .

Some design-entry tools are more sophisticated
and allow users to create their own libraries as
they complete an ASIC design. Designers can
then control access to libraries and the cells that
they build during a design. This normally
requires that a schematic editor, for example, be
part of a larger EDA system or framework
rather than work as a stand-alone tool.
Sometimes the process of library control
operates as a separate tool, as a design manager
or library manager . Often there is a program

similar to the UNIX make command that keeps
track of all files, their dependencies, and the
tools that are necessary to create and update
each file.

You can normally set the number of back-up
versions of files that EDA software keeps. The
version history controls the number of files the
software will keep. If you accidentally update,
overwrite, or delete a file, there is usually an
option to select and revert to an earlier version.
More advanced systems have check-out services
(which work just as in source control systems in
computer programming databases) that prevent
these kinds of problems when many people are
working on the same design. Whenever possible,
the management of design files and different
versions should be left under software control
because the process can become very
complicated. Reverting to an earlier version of a
cell can have drastic consequences for other cells
that reference the cell you are working with.
Attempts to manually edit files by changing

version numbers and timestamps can quickly
lead to chaos.

Most schematic-entry programs allow you to
undo commands. This feature may be restricted
to simply undoing the last command that you
entered, or may be an unlimited undo and redo,
allowing you to back up as many commands as
you want in the current editing session.

You can spend a lot of time in a schematic editor
placing components and drawing the connections
between them. Features that simplify initial
entry and allow modifications to be made easily
can make an enormous difference to the
efficiency of the schematic-entry process.

Most schematic editors allow you to make
connections by dragging the cursor with the wire
following behind, in a process known as rubber
banding . The connection snaps to a right angle
when the connection is completed. For wire
connections that require more than two line

segments, an automatic wiring feature is useful.
This allows you to define the wire path roughly
using mouse clicks and have the editor complete
the connection.

It is exceedingly painful to move components if
you have to rewire connections each time. Most
schematic editors allow you to move the
components and drag any wires along with them.

One of the most annoying problems that can
arise in schematic entry is to think that you have
joined two wires on a schematic but find that in
reality they do not quite meet. This error can be
almost impossible to find. A good editing
program will have a way of avoiding this
problem. Some editors provide a visual (flash) or
audible (beep) feedback when the designer draws
a wire that makes an electrical connection with
another. Some editors will also automatically
insert a dot at a "T" connection to show that an
electrical connection is present. Other editors
refuse to allow four-way connections to be made,

so there can be no ambiguity when wires cross
each other if an electrical connection is present
or not.

A cell library or a collection of libraries is a key
part of the schematic-entry process. The ability
to handle and control these libraries is an
important feature of any schematic editor. It
should be easy to select components from the
library to be placed on a schematic.

In large schematics it is necessary to continue
large nets and signals across several pages of
schematics. Signals such as power and ground,
VDD and GND, can be connected using global
nets or special connectors . Global nets allow the
designer to label a net with the same name at
different places on a schematic page or on
different pages without having to draw a
connection explicitly. The schematic editor treats
these nets as though they were electrically
connected. Special connector symbols can be
used for connections that cross schematic pages.

An off-page connector or multipage connector is
a special symbol that will show and label a
connection to different schematic pages. More
sophisticated editors can automatically label
these connectors with the page numbers of the
destination connectors.

9.1.13 Back-Annotation

After you enter a schematic you simulate the
design to make sure it works as expected. This
completes the logical design. Next you move to
ASIC physical design and complete the layout.
Only after you complete the layout do you know
the parasitic capacitance and therefore the delay
associated with the interconnect. This postroute
delay information must be returned to the
schematic in a process known as back-annotation
. Then you can complete a final, postlayout
simulation to make sure that the specifications
for the ASIC are met. Chapter 13 covers
simulation, and the physical design steps are
covered in Chapters 15 to 17.

9.2 Low-Level Design Languages

Schematics can be a very effective way to convey
design information because pictures are such a
powerful medium. There are two major
problems with schematic entry, however. The
first problem is that making changes to a
schematic can be difficult. When you need to
include an extra few gates in the middle of a
schematic sheet, you may have to redraw the
whole sheet. The second problem is that for
many years there were no standards on how
symbols should be drawn or how the schematic
information should be stored in a netlist. These
problems led to the development of design-entry
tools based on text rather than graphics. As TTL
gave way to PLDs, these text-based design tools
became increasingly popular as de facto
standards began to emerge for the format of the
design files.

PLDs are closely related to FPGAs. The major
advantage of PLD tools is their low cost, their

ease of use, and the tremendous amount of
knowledge and number of designs, application
notes, textbooks, and examples that have been
built up over years of their use. It is natural then
that designers would want to use PLD
development systems and languages to design
FPGAs and other ASICs. For example, there is a
tremendous amount of PLD design expertise and
working designs that can be reused.

In the case of ASIC design it is important to use
the right tool for the job. This may mean that
you need to convert from a low-level design
medium you have used for PLD design to one
more appropriate for ASIC design. Often this is
because you are merging several PLDs into a
single, much larger, ASIC. The reason for
covering the PLD design languages here is not to
try and teach you how to use them, but to allow
you to read and understand a PLD language
and, if necessary, convert it to a form that you
can use in another ASIC design system.

9.2.1 ABEL

ABEL is a PLD programming language from
Data I/O. Table 9.2 shows some examples of the
ABEL statements. The following example code
describes a 4:1 MUX (equivalent to the LS153
TTL part):

TABLE 9.2 ABEL.

Statement Example Comment

Module module MyModule You can have multiple modules.

Title title ’Title in a String’ A string is a character series between quotes.

Device MYDEV device ’22V10’ ;
MYDEV is Device ID for documentation.

22V10 is checked by the compiler.

Comment

"comments go between double
quotes"

"end of line is end of comment

The end of a line signifies the end of a comment;
there is no need for an end quote.

@ALTERNATE @ALTERNATE "use alternate
symbols

operator alternate default

AND

OR

NOT

XOR

XNOR

*

+

/

:+:

:*:

&

!

$

!$

Pin declaration

MYINPUT pin 2; I3, I4 pin 3,
4 ;

/MYOUTPUT pin 22; IO3,IO4
pin 21,20 ;

Pin 22 is the IO for input on pin 2 for a 22V10.

MYOUTPUT is active-low at the chip pin.

Signal names must start with a letter.

Equations equations Defines combinational logic.

 IO4 = HELPER ; HELPER =
/I4 ;

Two-pass logic

Assignments MYOUTPUT = /MYINPUT ; Equals ’=’ is unlocked assignment.

 IO3 := I4 ; Clocked assignment operator (registered IO)

Signal sets D = [D0, D1, D2, D3] ;
Q = [Q0, Q1, Q2, Q3];

A signal set, an ABEL bus

 Q := D ; 4-bit-wide register

Suffix MYOUTPUT.RE = CLR ; Register reset

 MYOUTPUT.PR = PRE ; Register preset

Addition
COUNT = [D0, D1, D2];

COUNT := COUNT + 1;

Can’t use @ALTERNATE

if you use ’+’ to add.

Enable
ENABLE IO3 = IO2;

IO3 = MYINPUT;

Three-state enable (ENABLE is a keyword).

IO3 must be a three-state pin.

Constants K = [1, 0, 1] ; K is 5.

Relational IO# = D == K5 ; Operators: == != < > <= >=

End end MyModule Last statement in module

module MUX4

title ’4:1 MUX’

MyDevice device ’P16L8’ ;

@ALTERNATE

"inputs

A, B, /P1G1, /P1G2 pin 17,18,1,6 "LS153 pins
14,2,1,15

P1C0, P1C1, P1C2, P1C3 pin 2,3,4,5 "LS153
pins 6,5,4,3

P2C0, P2C1, P2C2, P2C3 pin 7,8,9,11 "LS153
pins 10,11,12,13

"outputs

P1Y, P2Y pin 19, 12 "LS153 pins 7,9

equations

P1Y = P1G*(/B*/A*P1C0 + /B*A*P1C1 +
B*/A*P1C2 + B*A*P1C3);

P1Y = P1G*(/B*/A*P1C0 + /B*A*P1C1 +
B*/A*P1C2 + B*A*P1C3);

end MUX4

9.2.2 CUPL

CUPL is a PLD design language from Logical
Devices. We shall review the CUPL 4.0 language

here. The following code is a simple CUPL
example describing sequential logic:

SEQUENCE BayBridgeTollPlaza {

PRESENT red

IF car NEXT green OUT go; /* conditional
synchronous output */

DEFAULT NEXT red; /* default next state */

PRESENT green

NEXT red; } /* unconditional next state */

This code describes a state machine with two
states. Table 9.3 shows the different state
machine assignment statements.

TABLE 9.3 CUPL statements for state-machine entry.

Statement Description

IF NEXT Conditional next state transition

IF NEXT OUT Conditional next state transition with synchronous output

 NEXT Unconditional next state transition

 NEXT OUT Unconditional next state transition with asynchronous output

 OUT Unconditional asynchronous output

IF OUT Conditional asynchronous output

DEFAULT NEXT Default next state transition

DEFAULT OUT Default asynchronous output

DEFAULT NEXT OUT Default next state transition with synchronous output

You may also encode state machines as truth
tables in CUPL. Here is another simple example:

FIELD input = [in1..0];

FIELD output = [out3..0];

TABLE input => output {00 => 01; 01 => 02; 10
=> 04; 11 => 08; }

The advantage of the CUPL language, and
text-based PLD languages in general, is now
apparent. First, we do not have to enter the
detailed logic for the state decoding ourselves-the
software does it for us. Second, to make changes
only requires simple text editing-fast and
convenient.

Table 9.4 shows some examples of CUPL
statements. In CUPL Boolean equations may use
variables that contain a suffix, or an extension ,
as in the following example:

output.ext = (Boolean expression);

TABLE 9.4 CUPL.

Statement Example Comment

Boolean expression A = !B; Logical negation

 A = B & C; Logical AND

 A = B # C; Logical OR

 A = B $ C; Logical exclusive-OR

Comment A = B & C /* comment */

Pin declaration PIN 1 = CLK; Device dependent

 PIN = CLK; Device independent

Node declaration NODE A; Number automatically assigned

 NODE [B0..7]; Array of buried nodes

Pinnode declaration PINNODE 99 = A; Node assigned by designer

 PINNODE [10..17] = [B0..7]; Array of pinnodes

Bit-field declaration FIELD Address = [B0..7]; 8-bit address field

Bit-field operations add_one = Address:FF; True if Address = OxFF

 add_zero = !(Address:&); True if Address = Ox00

 add_range = Address:[0F..FF]; True if 0F.LE.Address.LE.FF

The extensions steer the software, known as a
fitter , in assigning the logic. For example, a
signal-name suffix of .OE marks that signal as an
output enable.

Here is an example of a CUPL file for a 4-bit
counter placed in an ATMEL PLD part that
illustrates the use of some common extensions:

Name 4BIT; Device V2500B;

/* inputs */

pin 1 = CLK; pin 3 = LD_; pin 17 = RST_;

pin [18,19,20,21] = [I0,I1,I2,I3];

/* outputs */

pin [4,5,6,7] = [Q0,Q1,Q2,Q3];

field CNT = [Q3,Q2,Q1,Q0];

/* equations */

Q3.T = (!Q2 & !Q1 & !Q0) & LD_ & RST_ /*
count down */

Q3 & !RST_ /* ReSeT */

(Q3 $ I3) & !LD_; /* LoaD*/

Q2.T = (!Q1 & !Q0) & LD_ & RST_ # Q2 &
!RST_ # (Q2 $ I2) & !LD_;

Q1.T = !Q0 & LD_ & RST_ # Q1 & !RST_ # (Q1
$ I1) & !LD_;

Q0.T = LD_ & RST_ # Q0 & !RST_ # (Q0 $ I0)
& !LD_;

CNT.CK = CLK; CNT.OE = ’h’F; CNT.AR =
’h’0; CNT.SP = ’h’0;

In this example the suffix extensions have the
following effects: .CK marks the clock; .T
configures sequential logic as T flip-flops; .OE
(wired high) is the output enable; .AR (wired
low) is the asynchronous reset; and .SP (wired
low) is the synchronous preset. Table 9.5 shows
the different CUPL extensions.

TABLE 9.5 CUPL 4.0 extensions.

Extension 1 Explanation Extension Explanation

D L D input to a D register DFB R
D register feedback of

combinational output

L L L input to a latch LFB R
Latched feedback of

combinational output

J, K L J-K-input to a J-K register TFB R
T register feedback of

combinational output

S, R L S-R input to an S-R register INT R Internal feedback

T L T input to a T register IO R Pin feedback of registered output

DQ R D output of an input D
register

 IOD/T R D/T register on pin feedback path
selection

LQ R Q output of an input latch IOL R
Latch on pin feedback path

selection

AP, AR L Asynchronous preset/reset IOAP, IOAR L
Asynchronous preset/reset of

register on feedback path

SP, SR L Synchronous preset/reset IOSP, IOSR L
Synchronous preset/reset of

register on feedback path

CK L Product clock term (async.) IOCK L Clock for pin feedback register

OE L Product-term output enable
APMUX,
ARMUX L

Asynchronous preset/reset

multiplexor selection

CA L Complement array CKMUX L Clock multiplexor selector

PR L Programmable preload LEMUX L Latch enable multiplexor selector

CE L CE input of a D-CE register OEMUX L
Output enable multiplexor

selector

LE L Product-term latch enable IMUX L
Input multiplexor selector of

two pins

OBS L Programmable observability
of buried nodes

 TEC L Technology-dependent fuse
selection

BYP L Programmable register
bypass

 T1 L T1 input of 2-T register

The 4-bit counter is a very simple example of the
use of the Atmel ATV2500B. This PLD is quite
complex and has many extra "buried" features.
In order to use these features in CUPL (and
ABEL) you need to refer to special pin numbers
and node numbers that are given in tables in the
manufacturer’s data sheets. You may need the
pin-number tables to reverse engineer or convert
a complicated CUPL (or ABEL) design from one
format to another.

Atmel also gives skeleton headers and pin
declarations for their parts in their data sheets.
Table 9.6 shows the headers and pin declarations
in ABEL and CUPL format for the ATMEL
ATV2500B.

TABLE 9.6 ABEL and CUPL pin declarations for an ATMEL ATV2500B.

ABEL CUPL

device_id device ’P2500B’;

"device_id used for JEDEC filename

I1,I2,I3,I17,I18 pin 1,2,3,17,18;

O4,O5 pin 4,5 istype ’reg_d,buffer’;

O6,O7 pin 6,7 istype ’com’;

device V2500B;

pin [1,2,3,17,18] = [I1,I2,I3,I17,I18];

pin [7,6,5,4] = [O7,O6,O5,O4];

O4Q2,O7Q2 node 41,44 istype ’reg_d’;

O6F2 node 43 istype ’com’;

O7Q1 node 220 istype ’reg_d’;

pinnode [41,65,44] = [O4Q2,O4Q1,O7Q2];

pinnode [43,68] = [O6Q2,O7Q1];

9.2.3 PALASM

PALASM is a PLD design language from
AMD/MMI. Table 9.7 shows the format of
PALASM statements. The following simple
example (a video shift register) shows the most
basic features of the PALASM 2 language:

TABLE 9.7 PALASM 2.

Statement Example Comment

Chip CHIP abc 22V10 Specific PAL type

 CHIP xyz USER Free-form equation entry

Pinlist CLK /LD D0 D1 D2 D3 D4 GND NC
Q4 Q3 Q2 Q1 Q0 /RST VCC

Part of CHIP statement; PAL pins in
numerical order starting with pin 1

String STRING string_name ’text’ Before EQUATIONS statement

Equations EQUATIONS After CHIP statement

 A = /B Logical negation

 A = B * C Logical AND

 A = B + C Logical OR

 A = B :+: C Logical exclusive-OR

 A = B :*: C Logical exclusive-NOR

Polarity inversion /A = /(B + C) Same as A = B + C

Assignment A = B + C Combinational assignment

 A := B + C Registered assignment

Comment A = B + C ; comment Comment

Functional
equation

name.TRST Output enable control

 name.CLKF Register clock control

 name.RSTF Register reset control

 name.SETF Register set control

TITLE video ; shift register

CHIP video PAL20X8

CK /LD D0 D1 D2 D3 D4 D5 D6 D7 CURS GND
NC REV Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 /RST VCC

STRING Load ’LD*/REV*/CURS*RST’ ; load
data

STRING LoadInv ’LD*REV*/CURS*RST’ ;
load inverted of data

STRING Shift ’/LD*/CURS*/RST’ ; shift data
from MSB to LSB

EQUATIONS

/Q0 :=
/D0*Load+D0*LoadInv:+:/Q1*Shift+RST

/Q1 :=
/D1*Load+D1*LoadInv:+:/Q2*Shift+RST

/Q2 :=
/D2*Load+D2*LoadInv:+:/Q3*Shift+RST

/Q3 :=
/D3*Load+D3*LoadInv:+:/Q4*Shift+RST

/Q4 :=
/D4*Load+D4*LoadInv:+:/Q5*Shift+RST

/Q5 :=
/D5*Load+D5*LoadInv:+:/Q6*Shift+RST

/Q6 :=
/D6*Load+D6*LoadInv:+:/Q7*Shift+RST

/Q7 := /D7*Load+D7*LoadInv:+:Shift+RST;

The order of the pin numbers in the previous
example is important; the order must
correspond to the order of pins for the DEVICE .

This means that you probably need the device
data sheet in order to be able to translate a
design from PALASM to another format by
hand. The alternative is to use utilities that many
PLD and FPGA companies offer that
automatically translate from PALASM to their
own formats.

1. L means that the extension is used only on the
LHS of an equation; R means that the extension
is used only on the RHS of an equation.

9.3 PLA Tools

We shall use the Berkeley PLA tools to illustrate
logic minimization using an example to minimize
the logic required to implement the following
three logic functions:

F1 = A|B|!C; F2 = !B&C; F3 = A&B|C;

These equations are in eqntott input format. The

eqntott (for "equation to truth table") program
converts the input equations into a tabular
format. Table 9.8 shows the truth table and
eqntott output for functions F1 , F2 , and F3 that
use the six minterms: A , B , !C , !B&C , A&B ,
C .

TABLE 9.8 A PLA tools example.

Input (6 minterms): F1 = A|B|!C; F2 = !B&C; F3 = A&B|C;

A B C F1 F2 F3 eqntott output espresso output

0 0 0 1 0 0
.i 3

.o 3

.p 6

--0 100

--1 001

-01 010

-1- 100

1-- 100

11- 001

.e

.i 3

.o 3

.p 6

1-- 100

11- 001

--0 100

-01 011

-11 101

.e

0 0 1 0 1 1

0 1 0 1 0 0

0 1 1 1 0 1

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 0 1

1 1 1 1 0 1

Output (5 minterms): F1 = A|!C|(B&C); F2 = !B&C; F3 = A&B|(!B&C)|(B&C);

This eqntott output is not really a truth table
since each line corresponds to a minterm. The
output forms the input to the espresso

logic-minimization program. Table 9.9 shows the
format for espresso input and output files.
Table 9.10 explains the format of the input and
output planes of the espresso input and output
files. The espresso output in Table 9.8
corresponds to the eqntott logic equations on the
next page.

TABLE 9.9 The format of the input and output files used by the PLA design tool espresso.

Expression Explanation

comment # must be first character on a line.

[d] Decimal number

[s] Character string

.i [d] Number of input variables

.o [d] Number of output variables

.p [d] Number of product terms

.ilb [s1] [s2]... [sn] Names of the binary-valued variables must be after .i and .o .

.ob [s1] [s2]... [sn] Names of the output functions must be after .i and .o .

.type f Following table describes the ON set; DC set is empty.

.type fd Following table describes the ON set and DC set.

.type fr Following table describes the ON set and OFF set.

.type fdr Following table describes the ON set, OFF set, and DC set.

.e Optional, marks the end of the PLA description.

TABLE 9.10 The format of the plane part of the input and output files for espresso.

Plane Character Explanation

I 1 The input literal appears in the product term.

I 0 The input literal appears complemented in the product term.

I - The input literal does not appear in the product term.

O 1 or 4 This product term appears in the ON set.

O 0 This product term appears in the OFF set.

O 2 or - This product term appears in the don’t care set.

O 3 or ~ No meaning for the value of this function.

F1 = A|!C|(B&C); F2 = !B&C; F3 =
A&B|(!B&C)|(B&C);

We see that espresso reduced the original six
minterms to these five: A , A&B , !C , !B&C ,
B&C .

9.4 EDIF

An ASIC designer spends an increasing amount
of time forcing different tools to communicate.
One standard for exchanging information
between EDA tools is the electronic design
interchange format (EDIF). We will describe
EDIF version 2 0 0. The most important features
added in EDIF 3 0 0 were to handle buses, bus
rippers, and buses across schematic pages.
EDIF 4 0 0 includes new extensions for PCB and
multichip module (MCM) data. The Library of
Parameterized Modules (LPM) standard is also
based on EDIF. The newer versions of EDIF
have a richer feature set, but the ASIC industry
seems to have standardized on EDIF 2 0 0. Most

EDA companies now support EDIF. The FPGA
companies Altera and Actel use EDIF as their
netlist format, and Xilinx has announced its
intention to switch from its own XNF format to
EDIF. We only have room for a brief description
of the EDIF format here. A complete description
of the EDIF standard is contained in the
Electronic Industries Association (EIA)
publication, Electronic Design Interchange
Format Version 2 0 0 (ANSI/EIA Standard
548-1988) [EDIF, 1988].

9.4.1 EDIF Syntax

The structure of EDIF is similar to the Lisp
programming language or the Postscript printer
language. This makes EDIF a very hard
language to read and almost impossible to write
by hand. EDIF is intended as an exchange
format between tools, not as a design-entry
language. Since EDIF is so flexible each company
reads and writes different "flavors" of EDIF.
Inevitably EDIF from one company does not
quite work when we try and use it with a tool

from another company, though this situation is
improving with the gradual adoption of
EDIF 3 0 0. We need to know just enough about
EDIF to be able to fix these problems.

FIGURE 9.8 The hierarchical nature of an EDIF file.

Figure 9.8 illustrates the hierarchy of the EDIF
file. Within an EDIF file are one or more
libraries of cell descriptions. Each library
contains technology information that is used in
describing the characteristics of the cells it
contains. Each cell description contains one or
more user-named views of the cell. Each view is
defined as a particular viewType and contains an
interface description that identifies where the
cell may be connected to and, possibly, a contents
description that identifies the components and
related interconnections that make up the cell.

The EDIF syntax consists of a series of
statements in the following format:

(keywordName {form})

A left parenthesis (round bracket) is always
followed by a keyword name , followed by one or
more EDIF forms (a form is a sequence of
identifiers, primitive data, symbolic constants, or
EDIF statements), ending with a right
parenthesis. If you have programmed in Lisp or
Postscript, you may understand that EDIF uses a
"define it before you use it" approach and why
there are so many parentheses in an EDIF file.

The semantics of EDIF are defined by the EDIF
keywords . Keywords are the only types of name
that can immediately follow a left parenthesis.
Case is not significant in keywords.

An EDIF identifier represents the name of an
object or group of data. Identifiers are used for

name definition, name reference, keywords, and
symbolic constants. Valid EDIF identifiers
consist of alphanumeric or underscore
characters and must be preceded by an
ampersand (&) if the first character is not
alphabetic. The ampersand is not considered
part of the name. The length of an identifier is
from 1 to 255 characters and case is not
significant. Thus &clock , Clock , and clock all
represent the same EDIF name (very confusing).

Numbers in EDIF are 32-bit signed integers.
Real numbers use a special EDIF format. For
example, the real number 1.4 is represented as
(e 14 -1) . The e form requires a mantissa (14)
and an exponent (-1). Reals are restricted to the

¥ 10 . Numbers in EDIF are
dimensionless and the units are determined
according to where the number occurs in the file.
Coordinates and line widths are units of distance
and must be related to meters. Each coordinate
value is converted to meters by applying a scale
factor . Each EDIF library has a technology

section that contains a required
numberDefinition . The scale keyword is used
with the numberDefinition to relate EDIF
numbers to physical units.

Valid EDIF strings consist of sequences of ASCII
characters enclosed in double quotes. Any
alphanumeric character is allowed as well as any
of the following characters: ! # $ & ’ () * + , - . /
: ; < = > ? @ [\] ^ _ ‘ { | } ~ . Special characters,
such as " and % are entered as escape
sequences: %number% , where number is the
integer value of the ASCII character. For
example, "A quote is % 34 %" is a string with
an embedded double-quote character. Blank,
tab, line feed, and carriage-return characters
(white space) are used as delimiters in EDIF.
Blank and tab characters are also significant
when they appear in strings.

The rename keyword can be used to create a new
EDIF identifier as follows:

(cell (rename TEST_1 "test$1") ...

In this example the EDIF string contains the
original name, test$1, and a new name, TEST_1 ,
is created as an EDIF identifier.

9.4.2 An EDIF Netlist Example

Table 9.11 shows an EDIF netlist. This EDIF
description corresponds to the halfgate example
in Chapter 8 and describes an inverter. We shall
explain the functions of the EDIF in Table 9.11
by showing a piece of the code at a time followed
by an explanation.

TABLE 9.11 EDIF file for the halfgate netlist from Chapter 8.

(edif halfgate_p

(edifVersion 2 0 0) (edifLevel 0) (keywordMap
(keywordLevel 0))

(status (written (timeStamp 1996 7 10 22 5 10)

(program "COMPASS Design Automation --
EDIF Interface"

(version "v9r1.2 last updated 26-Mar-96"))
(author "mikes")))

Every EDIF file must have an edif form. The
edif form must have a name , an edifVersion , an
edifLevel , and a keywordMap . The edifVersion
consists of three integers describing the major
(first number) and minor version of EDIF. The
keywordMap must have a keywordLevel . The
optional status can contain a written form that
must have a timeStamp and, optionally, author

or program forms.

(library xc4000d (edifLevel 0) (technology

(The unbalanced parentheses are deliberate
since we are showing segments of the EDIF
code.) The library form must have a name ,
edifLevel and technology . The edifLevel is
normally 0. The xc4000d library contains the
cells we are using in our schematic.

(numberDefinition) (simulationInfo (logicValue
H) (logicValue L)))

The simulationInfo form is used by simulation
tools; we do not need that information for netlist
purposes for this cell. We shall discuss
numberDefinition in the next example. It is not
needed in a netlist.

(cell (rename INV "inv") (cellType GENERIC)

This cell form defines the name and type of a cell

inv that we are going to use in the schematic.

(view COMPASS_mde_view (viewType
NETLIST)

(interface (port I (direction INPUT)) (port O
(direction OUTPUT))

(designator "@@Label")))))

The NETLIST view of this inverter cell has an
input port I and an output port O . There is also
a place holder "@@Label" for the instance
name of the cell.

(library working...

This begins the description of our schematic that
is in our library working. The lines that follow
this library form are similar to the preamble for
the cell library xc4000d that we just explained.

(cell (rename HALFGATE_P

"halfgate_p")(cellType GENERIC)

(view COMPASS_nls_view (viewType
NETLIST)

This cell form is for our schematic named
halfgate_p.

(interface (port myInput (direction INPUT))

(port myOutput (direction OUTPUT))

The interface form defines the names of the ports
that were used in our schematic, myInput and
myOutput. At this point we have not associated
these ports with the ports of the cell INV in the
cell library.

(designator "@@Label")) (contents (instance
B1_i1

This gives an instance name B1_i1 to the cell in
our schematic.

(viewRef COMPASS_mde_view (cellRef INV
(libraryRef xc4000d))))

The cellRef form links the cell instance name
B1_i1 in our schematic to the cell INV in the
library xc4000d.

(net myInput (joined (portRef myInput)

(portRef I (instanceRef B1_i1))))

The net form for myInput (and the one that
follows it for myOutput) ties the net names in
our schematic to the ports I and O of the library
cell INV .

(net VDD (joined)) (net VSS (joined))))))

These forms for the global VDD and VSS nets
are often handled differently by different tools
(one company might call the negative supply
GND instead of VSS , for example). This section

is where you most often have to edit the EDIF.

(design HALFGATE_P (cellRef HALFGATE_P
(libraryRef working))))

The design form names and places our design in
library working, and completes the EDIF
description.

9.4.3 An EDIF Schematic Icon

EDIF is capable of handling many different
representations. The next EDIF example is
another view of an inverter that describes how to
draw the icon (the picture that appears on the
printed schematic or on the screen) shown in
Figure 9.9 . We shall examine the EDIF created
by the CAD/CAM Group’s Engineering Capture
System (ECS) schematic editor.

FIGURE 9.9 An EDIF view of an inverter icon. The coordinates shown are in EDIF units. The crosses

that show the text location origins and the dotted bounding box do not print as part of the icon.

This time we shall give more detailed
explanations after each piece of EDIF code. We
shall also maintain balanced parentheses to
make the structure easier to follow. To shorten
the often lengthy EDIF code, we shall use an
ellipsis (...) to indicate any code that has been
left out.

(edif ECS

(edifVersion 2 0 0)

(edifLevel 0)

(keywordMap (keywordLevel 0))

(status

(written

(timeStamp 1987 8 20 0 50 23)

(program "CAD/CAM Group, Inc. ECS"
(Version "1"))))

(library USER ...

)

...

)

This preamble is virtually identical to the
previous netlist example (and demonstrates that
EDIF is useful to store design information as
software tools come and go over many years).
The first line of the file defines the name of the
file. This is followed by lines that identify the
version of EDIF being used and the highest EDIF
level used in the file (each library may use its
own level up to this maximum). EDIF level 0
supports only literal constants and basic
constructs. Higher EDIF levels support
parameters, expressions, and flow control

constructs. EDIF keywords may be mapped to
aliases, and keyword macros may be defined
within the keywordMap form. These features are
not often used in ASIC design because of a lack
of standardization. The keywordLevel 0
indicates these capabilities are not used here.
The status construct is used for administration:
when the file was created, the software used to
create the file, and so on. Following this
preamble is the main section of the file, which
contains design information.

(library USER (edifLevel 0)

(technology

(numberDefinition

(scale 4 (e 254 -5) (unit distance)))

(figureGroup NORMAL

(pathWidth 0) (borderWidth 0)

(textHeight 5))

(figureGroup WIDE

(pathWidth 1) (borderWidth 1)

(textHeight 5)))

(cell 7404 ...

)

)

The technology form has a numberDefinition
that defines the scaling information (we did not
use this form for a netlist, but the form must be
present). The first numberValue after scale
represents EDIF numbers and the second
numberValue represents the units specified by
the unit form. The EDIF unit for distance is the
meter. The numberValue can be an integer or an

exponential number. The e form has a mantissa
and an exponent. In this example, within the
USER library, a distance of 4 EDIF units equals
254 ¥ 10 -5 meters (or 4 EDIF units equals 0.1
inch).

After the numberDefinition in the technology
form there are one or more figureGroup
definitions. A figureGroup defines drawing
information such as pathWidth , borderWidth ,
color , fillPattern , borderPattern , and
textHeight . The figureGroup form must have a
name, which will be used later in the library to
refer back to these definitions. In this example
the USER library has one
figureGroup (NORMAL) for lines and paths of
zero width (the actual width will be
implementation dependent) and another
figureGroup (WIDE) that will be used for buses
with a wider width (for bold lines). The
borderWidth is used for drawing filled areas
such as rectangles, circles, and polygons. The
pathWidth is used for open figures such as lines

(paths) and open arcs.

Following the technology section the cell forms
each represent a symbol. The cell form has a
name that will appear in the names of any files
produced. The cellType form GENERIC type is
required by this schematic editor. The property
form is used to list properties of the cell.

(cell 7404 (cellType GENERIC)

(property SymbolType (string "GATE"))

(view PCB_Symbol (viewType SCHEMATIC)

(interface ...

)

)

)

The SymbolType property is used to distinguish
between purely graphical symbols that do not
occur in the parts list (a ground connection, for
example), gate or component symbols, and block
or cell symbols (for hierarchical schematics). The
SymbolType property is a string that may be
COMPONENT , GATE , CELL , BLOCK , or
GRAPHIC . Each cell may contain view forms
and each view must have a name. Following the
name of the view must be a viewType that is
either GRAPHIC or SCHEMATIC . Following
the viewType is the interface form, which
contains the symbol and terminal information.
The interface form contains the actual symbol
data.

(interface

(port Pin_1

(designator "2")

(direction OUTPUT)

(dcMaxFanout 50))

(port Pin_2

(designator "1")

(direction INPUT)

(dcFanoutLoad 8)

(property Cap

(string "22")))

(property Value

(string "45"))

(symbol ...

)

If the symbol has terminals, they are listed
before the symbol form. The port form defines
each terminal. The required port name is used
later in the symbol form to refer back to the
port. Since this example is from a PCB design,
the terminals have pin numbers that correspond
to the IC package leads. The pin numbers are
defined in the designator form with the pin
number as a string. The polarity of the pin is
indicated by the direction form, which may be
INPUT , OUTPUT , or INOUT . If the pin is an
output pin, its Drive can be represented by
dcMaxFanout and if it is an input pin its Load
can be represented by dcFanoutLoad . The port
form can also contain forms unused ,
dcMaxFanin , dcFaninLoad , acLoad , and
portDelay . All other attributes for pins besides
PinNumber , Polarity , Load , and Drive are
contained in the property form.

An attribute string follows the name of the
property in the string form. In this example port
Pin_2 has a property Cap whose value is 22. This

is the input capacitance of the inverter, but the
interpretation and use of this value depends on
the tools. In ASIC design pins do not have pin
numbers, so designator is not used. Instead, the
pin names use the property form. So (property
NetName (string "1")) would replace the
(designator "1") in this example on Pin_2 . The
interface form may also contain attributes of the
symbol.

Symbol attributes are similar to pin attributes.
In this example the property name Value has an
attribute string "45" . The names occurring in
the property form may be referenced later in the
interface under the symbol form to refer back to
the property .

(symbol

(boundingBox (rectangle (pt 0 0) (pt 76 -32)))

(portImplementation Pin_1

(connectLocation (figure NORMAL (dot (pt 60
-16)))))

(keywordDisplay designator

(display NORMAL

(justify LOWERCENTER) (origin (pt 60 -14)))))

(portImplementation Pin_2

(connectLocation (figure NORMAL (dot (pt 0
-16)))))

(keywordDisplay designator

(display NORMAL

(justify LOWERCENTER) (origin (pt 0 -14)))))

(keywordDisplay cell

(display NORMAL (justify CENTERLEFT)

(origin (pt 25 -5))))

(keywordDisplay instance

(display NORMAL

(justify CENTERLEFT) (origin (pt 36 -28))))

(keywordDisplay designator

(display (figureGroupOverride NORMAL
(textHeight 7))

(justify CENTERLEFT) (origin (pt 13 -16))))

(propertyDisplay Value

(display (figureGroupOverride NORMAL
(textHeight 9))

(justify CENTERRIGHT) (origin (pt 76 -24))))

(figure ...)

)

The interface contains a symbol that contains the
pin locations and graphical information about
the icon. The optional boundingBox form
encloses all the graphical data. The x- and
y-locations of two opposite corners of the
bounding rectangle use the pt form. The scale
section of the numberDefinition from the
technology section of the library determines the
units of these coordinates. The pt construct is
used to specify coordinate locations in EDIF. The
keyword pt must be followed by the x-location
and the y-location. For example: (pt 100 200) is
at x = 100, y = 200.

Each pin in the symbol is given a location
using a portImplementation .
The portImplementation refers back to the
port defined in the
interface .
The connectLocation defines the point to

connect to the pin.
The connectLocation is specified as a figure , a
dot with a single pt for its location.

(symbol

(...

(figure WIDE

(path (pointList (pt 12 0) (pt 12 -32)))

(path (pointList (pt 12 -32) (pt 44 -16)))

(path (pointList (pt 12 0) (pt 44 -16))))

(figure NORMAL

(path (pointList (pt 48 -16) (pt 60 -16)))

(circle (pt 44 -16) (pt 48 -16))

(path (pointList (pt 0 -16) (pt 12 -16))))

(annotate

(stringDisplay "INV"

(display NORMAL

(justify CENTERLEFT) (origin (pt 12 -12)))))

)

The figure form has either a name, previously
defined as a figureGroup in the technology
section, or a figureGroupOverride form. The
figure has all the attributes (pathWidth ,
borderWidth , and so on) that were defined in
the figureGroup unless they are specifically
overridden with a figureGroupOverride .

Other objects that may appear in a figure are:
circle , openShape , path , polygon , rectangle ,
and shape . Most schematic editors use a grid,
and the pins are only allowed to occur on grid .

A portImplementation can contain a
keywordDisplay or a propertyDisplay for the
location to display the pin number or pin name.
For a GATE or COMPONENT ,
keywordDisplay will display the designator (pin
number), and designator is the only keyword
that can be displayed. For a BLOCK or CELL ,
propertyDisplay will display the NetName . The
display form displays text in the same way that
the figure displays graphics. The display must
have either a name previously defined as a
figureGroup in the technology section or a
figureGroupOverride form. The display will
have all the attributes (textHeight for example)
defined in the figureGroup unless they are
overridden with a figureGroupOverride .

A symbolic constant is an EDIF name with a
predefined meaning. For example,
LOWERLEFT is used to specify text
justification. The display form can contain a
justify to override the default LOWERLEFT .
The display can also contain an orientation that

overrides the default R0 (zero rotation). The
choices for orientation are rotations (
R0, R90, R180, R270), mirror about axis (
MX, MY), and mirror with rotation (
MXR90, MYR90). The display can contain an
origin to override the default (pt 0 0) .

The symbol itself can have either
keywordDisplay or propertyDisplay forms such
as the ones in the portImplementation . The
choices for keywordDisplay are: cell for attribute
Type , instance for attribute InstName , and
designator for attribute RefDes . In the
preceding example an attribute window
currently mapped to attribute Value is displayed
at location (76, -24) using right-justified text, and
a font size is set with (textHeight 9) .

The graphical data in the symbol are contained
in figure forms. The path form must contain
pointList with two or more points. The figure
may also contain a rectangle or circle . Two
points in a rectangle define the opposite corners.

Two points in a circle represent opposite ends of
the diameter. In this example a figure from
figureGroup WIDE has three lines representing
the triangle of the inverter symbol.

Arcs use the openShape form. The openShape
must contain a curve that contains an arc with
three points. The three points in an arc
correspond to the starting point, any point on the
arc, and the end point. For example, (openShape
(curve (arc (pt - 5 0) (pt 0 5) (pt 5 0)))) is an arc
with a radius of 5, centered at the origin. Arcs
and lines use the pathWidth from the
figureGroup or figureGroupOverride ; circles
and rectangles use borderWidth .

The fixed text for a symbol uses annotate forms.
The stringDisplay in annotate contains the text
as a string. The stringDisplay contains a display
with the textHeight , justification , and location .
The symbol form can contain multiple figure and
annotate forms.

9.4.4 An EDIF Example

In this section we shall illustrate the use of EDIF
in translating a cell library from one set of tools
to another-from a Compass Design Automation
cell library to the Cadence schematic-entry tools.
The code in Table 9.12 shows the EDIF
description of the symbol for a two-input AND
gate, an02d1, from the Compass cell library.

TABLE 9.12 EDIF file for a Compass standard-cell schematic icon.

The Cadence schematic tools do contain a
procedure, EDIFIN, that reads the Compass
EDIF files. This procedure works, but, as we
shall see, results in some problems when you use
the icons in the Cadence schematic-entry tool.
Instead we shall make some changes to the
original files before we use EDIFIN to transfer
the information to the Cadence database, cdba .

The original Compass EDIF file contains a
figureGroup for each of the following four EDIF
cell symbols:

connector_FG icon_FG instance_FG net_FG
bus_FG

The EDIFIN application translates each
figureGroup to a Cadence layer-purpose pair
definition that must be defined in the Cadence
technology file associated with the library. If we
use the original EDIF file with EDIFIN this
results in the automatic modification of the

Cadence technology file to define layer names,
purposes, and the required properties to enable
use of the figureGroup names. This results in
non-Cadence layer names in the Cadence
database.

First then, we need to modify the EDIF file to use
the standard Cadence layer names shown in
Table 9.13 . These layer names and their
associated purposes and properties are defined
in the default Cadence technology file, default.tf .
There is one more layer name in the Compass
files (bus_FG figureGroup), but since this is not
used in the library we can remove this definition
from the EDIF input file.

TABLE 9.13 Compass and corresponding Cadence figureGroup names.

Compass name Cadence name Compass name Cadence name

connector_FG pin net_FG wire

icon_FG device bus_FG not used

instance_FG instance

Internal scaling differences lead to giant
characters in the Cadence tools if we use the
textHeight of 30 defined in the EDIF file.

Reducing the textHeight to 5 results in a
reasonable text height.

The EDIF numberDefinition construct, together
with the scale construct, defines measurement
scaling in an EDIF file. In a Cadence schematic
EDIF file the numberDefinition and scale
construct is determined by an entry in the
associated library technology file that defines the
edifUnit to userUnit ratio. This ratio affects the
printed size of an icon.

For example, the distance defined by the
following path construct is 10 EDIF units:

(path (pointlist (pt 0 0) (pt 0 10)))

What is the length of 10 EDIF units? The
numberDefinition and scale construct associates
EDIF units with a physical dimension. The
following construct

(numberDefinition (scale 100 (e 25400 -6) unit

DISTANCE))

specifies that 100 EDIF units equal 25400 ¥ 10 -6

m or approximately 1 inch. Cadence defines
schematic measurements in inches by defining
the userUnit property of the affected viewType
or viewName as inch in the Cadence technology
file. The Compass EDIF files do not provide
values for the numberDefinition and scale
construct, and the Cadence tools default to a
value of 160 EDIF units to 1 user unit. We thus
need to add a numberDefinition and scale
construct to the Compass EDIF file to control the
printed size of icons.

The EDIF file defines blank label placeholders
for each cell using the EDIF property construct.
Cadence EDIFIN does recognize and translate
EDIF properties, but to attach a label property
to a cellview object it must be defined (not blank)
and identified as a property using the EDIF
owner construct in the EDIF file. Since the intent
of a placeholder is to hold an empty spot for later

use and since Cadence Composer (the
schematic-entry tool) supports label additions to
instantiated icons, we can remove the EDIF label
property construct in each cell and the
associated propertyDisplay construct from the
Compass file.

There is a problem that we need to resolve with
naming. This is a problem that sooner or later
everyone must tackle in ASIC design- case
sensitivity .

In EDIF, input and output pins are called ports
and they are identified using
portImplementation constructs. In order that the
ports of a particular cell icon_view are correctly
associated with the ports in the related
functional, layout, and abstract views, they must
all have the same name. The Cadence tools are
case sensitive in this respect. The Verilog and
CIF files corresponding to each cell in the
Compass library use lowercase names for each
port of a given cell, whereas the EDIF file uses

uppercase. The EDIFIN translator allows the
case of cell, view, and port names to be
automatically changed on translation. Thus pin
names such as ’ A1 ’ become ’ a1 ’ and the
original view name ’ Icon_view ’ becomes ’
icon_view ’.

The boundingBox construct defines a bounding
box around a symbol (icon). Schematic-capture
tools use this to implement various functions.
The Cadence Composer tool, for example, uses
the bounding box to control the wiring between
cells and as a highlight box when selecting
components of a schematic. Compass uses a large
boundingBox definition for the cells to allow
space for long hierarchical names. Figure 9.10
(a) shows the original an02d1 cell bounding box
that is larger than the cell icon.

FIGURE 9.10 The bounding box problem. (a) The original bounding box for the an02d1 icon.

(b) Problems in Cadence Composer due to overlapping bounding boxes. (c) A "shrink-wrapped"
bounding box created using SKILL.

Icons with large bounding boxes create two
problems in Composer. Highlighting all or part
of a complex design consisting of many closely
spaced cells results in a confusion of overlapped
highlight boxes. Also, large boxes force strange
wiring patterns between cells that are placed too
closely together when Composer’s automatic
routing algorithm is used. Figure 9.10 (b) shows
an example of this problem.

There are two solutions to the bounding-box
problem. We could modify each boundingBox
definition in the original EDIF file before
translation to conform to the outline of the icon.
This involves identifying the outline of each icon
in the EDIF file and is difficult. A simpler
approach is to use the Cadence tool
programming language, SKILL. SKILL
provides direct access to the Cadence database,
cdba , in order to modify and create objects.
Using SKILL you can use a batch file to call

functions normally accessed interactively. The
solution to the bounding box problem is:

1. Use EDIFIN to create the views in the
Cadence database, cdba .

2. Use the schCreateInstBox() command on each
icon_view object to eliminate the original
bounding box and create a new,
minimum-sized, bounding box that is
"shrink-wrapped" to each icon.

Figure 9.10 (c) shows the results of this process.
This modification fixes the problems with
highlighting and wiring in Cadence Composer.

This completes the steps required to translate the
schematic icons from one set of tools to another.
The process can be automated in three ways:

Write UNIX sed and awk scripts to make the
changes to the EDIF file before using EDIFIN
and SKILL.
Write custom C programs to make the

changes to the EDIF file and then proceed as
in the first option.
Perform all the work using SKILL.

The last approach is the most elegant and most
easily maintained but is the most difficult to
implement (mostly because of the time required
to learn SKILL). The whole project took several
weeks (including the time it took to learn how to
use each of the tools). This is typical of the
problems you face when trying to convert data
from one system to another.

9.5 CFI Design Representation

The CAD Framework Initiative (CFI) is an
independent nonprofit organization working on
the creation of standards for the electronic CAD
industry. One of the areas in which CFI is
working is the definition of standards for design
representation (DR). The CFI 1.0 standard [
CFI, 1992] has tackled the problems of
ambiguity in the area of definitions and terms

for schematics by defining an information model
(IM) for electrical connectivity information.

What this means is that a group of engineers got
together and proposed a standard way of using
the terms and definitions that we have discussed.
There are good things and bad things about
standards, and one aspect of the CFI 1.0 DR
standard illustrates this point. A good thing
about the CFI 1.0 DR standard is that it
precisely defines what we mean by terms and
definitions in schematics, for example. A bad
thing about the CFI DR standard is that in order
to be precise it introduces yet more terms that
are difficult to understand. A very brief
discussion of the CFI 1.0 DR standard is
included here, at the end of this chapter, for
several reasons:

It helps to solidify the concepts of the terms
and definitions such as cell, net, and instance
that we have already discussed. However,
there are additional new concepts and terms

to define in order to present the standard
model, so this is not a good way to introduce
schematic terminology.
The ASIC design engineer is becoming more
of a programmer and less of a circuit
designer. This trend shows no sign of stopping
as ASICs grow larger and systems more
complex. A precise understanding of how
tools operate and interact is becoming
increasingly important.

9.5.1 CFI Connectivity Model

The CFI connectivity model is defined using the
EXPRESS language and its graphical equivalent
EXPRESS-G . EXPRESS is an International
Standards Organization (ISO) standard [
EXPRESS, 1991]. EDIF 3 0 0 and higher also use
EXPRESS as the internal formal description of
the language. EXPRESS is used to define objects
and their relationships. Figure 9.11 shows some
simple examples of the EXPRESS-G notation.

FIGURE 9.11 Examples of EXPRESS-G. (a) Each day in January has a number from 1 to 31. (b) A
shopping list may contain a list of items. (c) An EXPRESS-G model for a family.

The following EXPRESS code (a schema) is
equivalent to the EXPRESS-G family model
shown in Figure 9.11 (c):

SCHEMA family_model;

ENTITY person

ABSTRACT SUPERTYPE OF (ONEOF (man,
woman, child));

name: STRING;

date of birth: STRING;

END_ENTITY;

ENTITY man

SUBTYPE OF (person);

wife: SET[0:1] OF woman;

children: SET[0:?] OF child;

END_ENTITY;

ENTITY woman

SUBTYPE OF (person);

husband: SET[0:1] OF man;

children: SET[0:?] OF child;

END_ENTITY;

ENTITY child

SUBTYPE OF (person);

father: man;

mother: woman;

END_ENTITY;

END_SCHEMA;

This EXPRESS description is a formal way of
saying the following:

"Men, women, and children are people."
"A man can have one woman as a wife, but
does not have to."
"A wife can have one man as a husband, but
does not have to."
"A man or a woman can have several
children."

"A child has one father and one mother."

Computers can deal more easily with the formal
language version of these statements. The formal
language and graphical forms are more precise
for very complex models.

Figure 9.12 shows the basic structure of the CFI
1.0.0 Base Connectivity Model (BCM). The
actual EXPRESS-G diagram for the BCM
defined in the CFI 1.0.0 standard is only a little
more complicated than Figure 9.12 (containing
21 boxes or types rather than just six). The extra
types are used for bundles (a group of nets) and
different views of cells (other than the netlist
view).

FIGURE 9.12 The original "five-box" model of electrical connectivity. There are actually six boxes or
types in this figure; the Library type was added later.

Figure 9.12 says the following ("presents" as
used in Figure 9.12 is the Express jargon for
"have"):

"A library contains cells."
"Cells have ports, contain nets, and can
contain other cells."
"Cell instances are copies of a cell and have
port instances."
"A port instance is a copy of the port in the
library cell."
"You connect to a port using a net."
"Nets connect port instances together."

Once you understand Figure 9.12 you will see
that it replaces the first half of this chapter.
Unfortunately you have to read the first half of
this chapter to understand Figure 9.12 .

9.6 Summary

The important concepts that we covered in this
chapter are:

Schematic entry using a cell library
Cells and cell instances, nets and ports
Bus naming, vectored instances in datapath
Hierarchy
Editing cells
PLD languages: ABEL, PALASM, and CUPL
Logic minimization
The functions of EDIF
CFI representation of design information

9.7 Problems

9.1 (EDIF description)

a. (5 min.) Write an EDIF description for
an icon for an inverter (just the input and
output wires, a triangle, and a bubble).
What problems do you face and what
assumptions did you make?
b. (30 min.+) Try and import your symbol

into your schematic-entry tool. If you fail
(as you might) explain what the problem is
and suggest a direction of attack. Hint: If
you can, try Problem 9.2 first.

9.2 (EDIF inverter, 15 min.) If you have
access to a tool that generates EDIF for the
icons, write out the EDIF for an inverter icon.
Explain the code.

9.3 (EDIF netlist, 20 min.) Starting with an
empty directory and using a schematic editor
(such as Viewlogic) draw a schematic with a
single inverter (from any cell library).

a. List the files that are created in the
directory.
b. Print each one (check first to make sure
it is ASCII, not binary).
c. Try and explain the contents.

9.4 (Minitutorial, 60 min.) Write a
minitutorial (no more than five pages) that

explains how to set up your system (location
and nature of any start-up files such as .ini
files for Viewlogic and so on); how to choose
or change a library (for cell icons); how to
choose cells, instantiate, label, and connect
them; how to select, copy and delete symbols;
and how to save a schematic. Use a single
inverter connected to an input and output pad
as an example.

9.5 (Icons, 30 min.) With an example show
how to edit and create a symbol icon. Make a
triangular icon (the same size as an inverter in
your library but without a bubble) for a series
connection of two inverters and call it
myBuffer .

9.6 (Buses, 30 min.)

a. Create an example of a 16-bit bus:
connect 8 inverters to bit zero (the MSB or
leftmost bit) and bits 10-16 (as if we were
taking the sign bit, bit zero, and the seven

least-significant bits from a 16-bit signed
number). Name the inverter connected to
the sign bit, SIGN . Name the other
inverters BIT0 through BIT7 .
b. Write the netlist as an EDIF file, number
the lines, and explain the contents by
referencing line numbers.

9.7 (VDD and VSS, 30 min.) Using a simple
example of two inverters (one with input
connected to VDD, the other with input
connected to VSS or GND) explain how your
schematic-entry system handles global power
and ground nets and their connection to cell
pins. Can you connect VDD or VSS to an
output pin in your system? If your schematic
software has a netlist screener, try it on this
example.

9.8 (Hierarchy, 30 min.) Create a very simple
hierarchical cell. The lowest level, named
bottom , contains a single inverter (named
invB). The highest level, called top , contains

another inverter, invT , whose input is
connected to the output of cell bottom . Write
out the netlist (in internal and EDIF format)
and explain how the tool labels a hierarchical
cell.

9.9 (Vectored instances, 30 min.) Create a
vectored instance of eight inverters, inv0
through inv7 . Write the netlist in internal and
EDIF form and explain the contents.

9.10 (Dangling wires, 30 min.) Create a cell,
dangle1 , containing two inverters, inv1 and
inv2 . Connect the input of inv1 to an external
connector, in1 , and the output of inv2 to an
external connector out2 . Write the netlist and
explain what happens to the unlabeled and
unused nets. If you have a netlist screener, run
it on this example.

9.11 (PLD languages, 60 min.) Conduct a Web
search on ABEL, CUPL, or PALASM (start
by searching for "Logical Devices" not

"ABEL"). Try and find examples of these files
and write an explanation of their function
using the descriptions of these languages in
this chapter.

9.12 (EDIF 3 0 0, 10 min.) Download the
EDIF 3 0 0 example schematic file from
http://www.edif.org/edif/workshop.edf and see
if your EDIF reader will accept it. What is it?

9.13 (EXPRESS-G, 15 min.) Draw an
EXPRESS-G diagram for the government of
your country. For example, in the United
States you would start with the president and
the White House and work down through the
House and Senate, showing the senators and
congressional representatives. In the United
Kingdom you would draw the prime minister,
the House of Commons, and House of Lords
with the various MPs.

9.14 (ABEL PCI Target) (10 min.) Download
the Xilinx Application Note, Designing

Flexible PCI Interfaces with Xilinx EPLDs,
January 1995 (pci_epld.pdf at
www.xilinx.com). The Appendix of this App.
Note contains the ABEL source code for a PCI
Bus Interface Target. The code is long but
straightforward; most of it describes the
next-state transitions for the bus-controller
state machine. Extract the ABEL source code
using Adobe Acrobat. Hint: This is not easy;
Acrobat does a poor job of selecting text; you
will lose many semicolons at the end of lines
that you will have to add by hand. Use
Replace... to search for end-of-line, "^p" , and
replace by " ; ^p" in Word. (60 min.+) Try to
convert this code to a system where you can
compile it. You may need conversion utilities
to do this. For example Altera (
www.altera.com) has utilities (EAU018.EXE
and EAU019.EXE located at
ftp.altera.com/pub) to convert from ABEL
4.0 to AHDL.

9.15 (CUPL, 60 min.) Download and install

the CUPL demonstration package from
http://www.protel.com/download.htm . Write
a two-page help sheet on what you did, where
the software is installed, and how to run it.

9.16 (PALASM) (30 min.) Download and
install PALASM4 v1.5 from the AMD Web
site at
ftp://ftp.amd.com/pub/pld/software/palasm .

9.17 (CUPL)

a. (15 min.) Check the equations in the
CUPL code for the 4-bit counter in
Section 9.2 .
b. (10 min.) Add a count-enable signal to
the code.
c. (30 min.) If you have access to CUPL,
compile your answer.

9.18 (EDIF)

a. (30 min.) Using the syntax definitions

below and the example schematic icon
shown in Table 9.12 to help you, "stitch"
back together the EDIF definition for the
7404 inverter symbol used as an example in
Section 9.4.3 .
b. (60 min.+) Try to import the EDIF into
your schematic entry system. Comment on
any problems and how you attempted to
resolve them (including failures).

The EDIF Reference Manual [EDIF, 1988]
uses the following metasyntax rules:

[optional] <at most once> {may be repeated
zero or more times}

{this|that} indicates any number of this or that
in any order

syntactic names are italic

literal words are bold

SYMBOLIC constants are uppercase

IdentifierNameDef means the name is being
defined

IdentifierNameRef means the name is being
referenced

The syntax definitions of the most common
EDIF constructs for schematics are as follows:

(edif edifFileNameDef

edifVersion

edifLevel

keywordMap

{<status>|external|library|design|comment|userdata}
)

(library libraryNameDef

edifLevel

technology

{<status>|cell|comment|userdata})

(technology numberDefinition

{figureGroup|fabricate|

<simulationInfos>|<physicalDesignRule>|comment|userdata}
)

(cell cellNameDef

cellType

{<status>|view|<viewMap>|property|comment|userdata}
)

(view viewNameDef

viewType

interface

{<status>|<contents>|comment|property|userdata}
)

(interface

{port|portBundle|<symbol>|<protectionFrame>|

<arrayRelatedInfo>|parameter|joined|mustJoin|weakJoined|

permutable|timing|simulate|<designator>|property|comment|userdata}
)

(contents

{instance|offPageConnector|figure|section|

net|netBundle|page|commentGraphics|portImplementation|

timing|simulate|when|follow|logicPort|<boundingBox>|

comment|userdata})

(viewMap

{portMap|portBackAnnotate|instanceMap|instanceBackAnnotate|

9.8 Bibliography

The data books from AMD, Atmel, and other
PLD manufacturers are excellent sources of
tutorials, examples, and information on PLD
design. The EDIF tutorials produced by the
EIA [EDIF, 1988, 1989] are hard to find, but
there are few other texts or sources that
explain EDIF. EDIF does have a World Wide
Web site at http://www.edif.org . The EDIF
Technical Centre at the University of
Manchester (http://www.cs.man.ac.uk/cad , I
shall refer to this as ~EDIF) serves as a
resource center for EDIF, including the
formal information models of the EDIF

language in EXPRESS format and the BNF
definitions of the language syntax. There is a
hypertext version of an EDIF 3 0 0 schematic
file with hypertext links at
~EDIF/EDIFTechnicalCenter/software . CFI
has a home page and links to other sites at
http://www.cfi.org .

PALASM4 v1.5 is available as "freeware"
from AMD at
ftp://ftp.amd.com/pub/pld/software/palasm .
The Data I/O home page at
http://www.data-io.com is devoted mainly to
Synario. The Viewlogic home page is
http://www.viewlogic.com . Capilano
Computing has a Web page at
http://www.capilano.com with DesignWorks
and MacABEL software. Protel (
http://www.protel.com/download.htm) has
Windows-based schematic-entry tools for
FPGAs and a CUPL demonstration package.
Logical Devices has a site at
http://www.logicaldevices.com . Atmel has

several demonstration and code examples for
ABEL and CUPL at
ftp://www.atmel.com/pub/atmel

9.9 References

Page numbers in brackets after a reference
indicate its location in the chapter body.

CFI Standards for Electronic Design
Automation Release 1.0. 1992. CFI published
a four-volume set in 1992, ISBN
1-882750-00-4 (set). The first volume, ISBN
1-882750-01-2, is approximately 300 pages
and contains a brief introduction
(approximately 10 pages) and the Electrical
Connectivity model. Unfortunately two of the
volumes were labeled as volume three. The
(first) third volume is the Tool Encapsulation
Specification, ISBN 1-882750-03-09
(approximately 100 pages). The (second) third
volume, ISBN 1-882750-02-0, covers the
Inter-Tool Communication Programming

Interface (approximately 150 pages). The
fourth volume, ISBN 1-882750-04-7, is
approximately 100 pages long and covers the
Computing Environment Services
requirement [reference location].

EDIF is maintained by the EIA, EIA
Standards Sales Office, 2001 Pennsylvania
Ave., N.W., Washington, DC 20006, (202)
457-4966 [reference location]:

EDIF Steering Committee. 1988. EDIF
Reference Manual Version 2.0.0. Washington,
DC: Electronic Industries Association. ISBN
0-7908-0000-4.

EDIF Steering Committee. 1988. Introduction
to EDIF. Washington, DC: Electronic
Industries Association. ISBN 0-7908-0001-2.

EDIF Steering Committee. 1989. EDIF
Connectivity. Washington, DC: Electronic
Industries Association. ISBN 0-7908-0002-0.

EDIF Schematic Technical Subcommittee.
1989. Using EDIF 2.0.0 for Schematic
Transfer. Washington, DC: Electronic
Industries Association.

EXPRESS Language Reference Manual. ISO
TC184/SC4/WG5 Document N14, March 29,
1991 [reference location

