LOW-LEVEL
DESIGN ENTRY

The purpose of design entry is to describe a microelectronic system to a set of electronic-design
automation (EDA) tools. Electronic systems used to be, and many still are, constructed from
off-the-shelf components, such as TTL ICs. Design entry for these systems now usually consists of
drawing a picture, a schematic . The schematic shows how all the components are connected together,
the connectivity of an ASIC. Thistype of design-entry processis called schematic entry , or schematic
capture . A circuit schematic describes an ASIC in the same way an architect’s plan describes a building.

The circuit schematic is a picture, an easy format for us to understand and use, but computers need to
work with an ASCII or binary version of the schematic that we call anetlist . The output of a
schematic-entry tool is thus a netlist file that contains a description of all the componentsin a design and
their interconnections.

Not al the design information may be conveyed in a circuit schematic or netlist, because not al of the
functions of an ASIC are described by the connectivity information. For example, suppose we use a
programmable ASIC for some random logic functions. Part of the ASIC might be designed using a text
language. In this case design entry also includes writing the code. What if an ASIC in our system
contains a programmable memory (PROM)? Is the PROM microcode, the’1'sand '0’s, part of design
entry? The operation of our system is certainly dependent on the correct programming of the PROM. So
perhaps the PROM code ought to be considered part of design entry. On the other hand nobody would
consider the operating-system code that is loaded into a RAM on an ASIC to be a part of design entry.
Obvioudly, then, there are several different forms of design entry. In each case it isimportant to make
sure that you have completely specified the system-not only so that it can be correctly constructed, but
so that someone else can understand how the system is put together. Design entry is thus an important
part of documentation .

Until recently most ASIC design entry used schematic entry. As ASICs have become more complex,
other design-entry methods are becoming common. Alternative design-entry methods can use graphical
methods, such as a schematic, or text files, such as a programming language. Using a hardware
description language (HDL) for design entry allows us to generate netlists directly using logic synthesis

. We will concentrate on low-level design-entry methods together with their advantages and
disadvantages in this chapter.

9.1 Schematic Entry

9.2 Low-L evel Design Languages
9.3PLA Tools

9.4 EDIF

9.5 CFI Design Representation
9.6 Summary

9.7 Problems

9.8 Bibliography

9.1 Schematic Entry

Schematic entry isthe most common method of
design entry for ASICsand islikely to be useful
In oneform or another for sometime. HDLsare
replacing conventional gate-level schematic
entry, but new graphical tools based on
schematic entry are now being used to create
lar ge amounts of HDL code.

Circuit schematics are drawn on schematic
sheets . Standard schematic sheet sizes (
Table9.1) are ANSI A-E (more common in the
United States) and 1 SO A4-A0 (more common in
Europe). Usually aframeor border isdrawn
around the schematic containing boxesthat list
the name and number of the schematic page, the

designer, the date of thedrawing, and alist of
any modifications or changes.

TABLE 9.1 ANSI (American National Standards Institute) and I SO (International Standards
Organization) schematic sheet sizes.

ANSI sheet Size (inches) | SO sheet Size (cm)

A 85¥11 A5 21.0¥148

B 11¥17 A4 29.7¥21.0

C 17 ¥ 22 A3 42.0 ¥29.7

D 22 ¥ 34 A2 59.4¥42.0

E 34 ¥ 44 Al 84.0 ¥59.4
A0 118.9¥84.0

Figure 9.1 showsthe" spades’ and " shovels,”
therecognized symbolsfor AND, NAND, OR,
and NOR gates. One of the problemswith these
recommendationsisthat the corner points of the
shapes do not alwayslieon a grid point (using a
reasonable grid size).

FIGURE 9.1 IEEE-recommended dimensions and their construction for logic-gate symbols. (a)
NAND gate (b) exclusive-OR gate (an OR gate is a subset).

Figure 9.2 shows some pictorial definitions of
objectsyou can usein a simple schematic. We
shall discussthe different types of objectsthat
might appear in an ASIC schematic first and
then discuss the different types of connections.

FIGURE 9.2 Terms used in circuit schematics.

Schematic-entry toolsfor ASIC design are
similar to those for printed-circuit board (PCB)
design. The basic object on a PCB schematicisa
component or device-aTTL IC or resistor, for
example. There may be several hundred
componentson atypical PCB. If wethink of a
logic gate on an ASIC asbeing equivalent to a
component on a PCB, then alarge ASIC
contains hundreds of thousands of components.

We can normally draw every component on a
few schematic sheetsfor a PCB, but drawing
every component on an ASIC schematicis
Impractical.

9.1.1 Hierarchical Design

Hierarchy reducesthe size and complexity of a
schematic. Suppose a building has 10 floor s and
contains several hundred offices but only three
different basic office plans. Furthermore,
suppose each of the floors above the ground floor
that containsthelobby isidentical. Then the
plansfor the whole building need only show
detailed plansfor the ground floor and one of the
upper floors. The plansfor the upper floor need
only show the locations of each office and the
officetype. We can then use a separ ate set of
three detailed plansfor each of the different
office types. All these different planstogether
form a nested structurethat isa hierarchical
design . Theplan for the whole building isthe
top-level plan. The plansfor the individual
officesarethelowest level. To clarify the

relationship between different levels of hierarchy
we say that a subschematic (an office) isa child
of the parent schematic (the floor containing
offices). An electrical schematic can contain
subschematics. The subschematic, in turn, may
contain other subschematics. Figure 9.3

Illustrates the principles of schematic
hierarchical design.

i, “c
BD

call: HAODO

insmnee: ol insEnce: andl
{a) muktiple insmnces of (Y
_the same cell
cell: HADD s— parent

cell: TN
insance: MW

cell: R
instance: OR1

cell: AND
chiden instance: andl
cell: HAOD instance: and2
instance: hal

el i)

FIGURE 9.3 Schematic example showing hierarchical design. (a) The schematic of a half-adder, the

subschematic of cell HADD. (b) A schematic symbol for the half adder. (c) A schematic that uses the
half-adder cell. (d) The hierarchy of cell HADD.

Thealternativeto hierarchical design isto draw
all of the ASIC components on one giant
schematic, with no hierarchy, in aflat design .

For a modern ASIC containing thousands or
morelogic gatesusing a flat design or a flat
schematic would be hopelessly impractical.
Sometimes we do use flat netlists though.

9.1.2 TheCdl Library

Componentsin an ASIC schematic are chosen
from alibrary of cells. Library elementsfor all
types of ASICs are sometimes also known as
modules. Unfortunately the term module will
have a very specific meaning when we come to
discuss hardwar e description languages. To
avoid any chance of confusion | usetheterm cell
to mean either a cell, amodule, amacro, or a
book from an ASIC library. Library cellsare
equivalent to the officesin our office building.

Most ASIC companies provide a schematic
library of primitive gatesto be used for
schematic entry. Thefirst problem with ASIC
schematic librariesisthat there are no naming
conventions. For example, a primitive two-input
NAND gatein a Xilinx FPGA library does not

have the same name as the two-input NAND gate
inan LSl Logic gate-array library. This means
that you cannot take a schematic that you used
to create a prototype product using a Xilinx
FPGA and usethat schematictocreatean LSl

L ogic gatearray for production (something you
might very likely want to do). As soon as you
start entering a schematic using a library from
an ASIC vendor, you are, to some extent, making
a commitment to usethat vendor’s ASIC. M ost
ASIC designers are much happier maintaining a
lar ge degr ee of vendor independence.

A second problem with ASIC schematic libraries
Isthat thereare no standardsfor cell behavior.
For example, atwo-input MUX in an Actel
library operates so that theinput labeled A is
selected when the MUX select input S="0". A
two-input MUX ina VLSl Technology library
operatesin thereversefashion, so that the input
labeled B isselected when S="0". These types of
differences can cause hard-to-find problems
when trying to convert a schematic from one

vendor to another by hand. These problems
make changing or retargeting schematics from
one vendor to another difficult. Thisprocessis
sometimes known as porting a design.

Library cellsthat represent basic logic gates,
such asa NAND gate, are known as primitive
cells, usually referred tojust ascells. In a
hierarchical ASIC design a cell may bea NAND
gate, aflip-flop, a multiplier, or even a
microprocessor, for example. To usethe office
building analogy again, each of thethreebasic
officetypesisa primitive cell. However, the plan
for the second floor isalso acell. The
second-floor cell isa subschematic of the
schematic for the whole building. Now we see
why the commonly accepted use of the term cell
In schematic entry can be so confusing. Theterm
cell iIsused to represent both primitive cells and
subschematics. These aretwo different, but
closely related, things.

Therearetwo types of macrosfor MGAs and

programmable ASICs. The most common type
of macroisahard macro that includes
placement information. A hard macro can
changein position and orientation, but the
relative location of the transistors, other layout,
and wiring inside the macro isfixed. A soft
macr o contains only connection information
(between transistorsfor a gatearray or between
logic cellsfor a programmable ASIC). Thusthe
placement and wiring for a soft macro can vary.
Thismeansthat thetiming parametersfor a soft
macr o can only be deter mined after you
complete the place-and-route step. For this
reason the basic library elementsfor MGAs and
programmable ASICs, such as NAND gates,
flip-flops, and so on, are hard macr os.

A standard cell contains layout information on
all mask levels. An MGA hard macro contains
layout information on just the metal, contact,
and via layers. An M GA soft macro or
programmable ASIC macro does not contain any
layout information at all, just the details of

connectionsto be madeinside the macro.

We can stretch the office building analogy to
explain the difference between hard and soft
macr os. A hard macro would be an office with
fixed wallsin which you are not allowed to move
thefurniture. A soft macro would be an office
with partitionsin which you can movethe
furniture around and you can also change the
shape of your office by moving the partitions.

9.1.3 Names

Each of the célls, primitive or not, that you place
on an ASIC schematic hasa cell name. Each use
of acell isadifferent instance of that cell, and we
give each instance a unigue instance name . A

cell instance is somewher e between a copy and a
referencetoacdl inalibrary. An analogy would
bethe pictures of hamburgerson thewall in a
fast-food restaurant. The picturesare
somewhere between a copy and areferencetoa
real hamburger.

Werepresent each cell instance by a picture or
icon , also known as a symbol . We can represent
primitive cells, such asNAND and NOR gates,
with familiar iconsthat look like spades and
shovels. Some schematic editor s offer the option
of switching between these familiar icons and
using therectangular | EEE standard symbols
for logic gates. Unfortunately theterm icon is
also often used to refer to any of the pictureson
a schematic, including those that represent
subschematics. Thereisno accepted way to
differentiate between an icon that representsa
primitive cell and onethat representsa
subschematic that may bein turn a collection of
primitive cells. In fact, thereisusually no easy
way to tell by looking at a schematic which icons
represent primitive cellsand which represent
subschematics.

We will havethree different iconsfor each of the
three different primitive officesin the imaginary
office building example of Section 9.1.1. Wealso
will have iconsto represent the ground floor and

the plan for the other floors. We shall call the
common plan for the second through tenth
floors, Floor . Then we say that the second floor
Isan instance of the cell name Floor . Thethird
through tenth floors ar e also instances of the cell
name Floor . The sameicon will beused to
represent the second through tenth floors, but
each will have a unique instance name. We shall
give them instance names. Floor Two
FloorThree, ..., FloorTen . We say that
Floor Two through Floor Ten are unique instance
names of the cell name Floor .

At therisk of further confusion | should point
out that, strictly speaking, the definition of a
primitive cell dependson thetypeof library
being used. Schematic-entry librariesfor the
ASIC designer stop at the level of NAND gates
and other ssmilar low-level logic gates. Then, as
far asthe ASIC designer isconcerned, the
primitive cells are these logic gates. However,
from theview of thelibrary designer thereis
another level of hierarchy below thelevel of logic

gates. Thelibrary designer needsto work with
librariesthat contain schematics of the gates
themselves, and so at thislevel the primitive cells
aretransistors.

Let uslook at the building analogy again to
under stand the subtleties of primitive cells. A
building contractor need only concern himself
with the plansfor our office building down to the
level of the offices. To the building contractor the
primitive cells are the offices. Supposethat the
first of the three different office typesisa corner
office, the second office type has a window, and a
third office typeiswithout a window. We shall
call these office cells. Corner Office,
WindowOffice, and NoWindowOffice. These
cellsareprimitive cellsasfar asthe contractor is
concerned. However, when discussing the plans
with a client, the ar chitect of our building will
also need to see how each officesis furnished.
The architect needsto see alevel of detail of each
office that ismore complicated than needed by
the building contractor. The architect needsto

seethe cellsthat represent the tables, chairs, and
desksthat make up each type of office. Tothe
architect theprimitivecellsarealibrary
containing cells such aschair , table, and desk .

9.1.4 Schematic I cons and Symbols

Most schematic-entry programs allow the
designer to draw special or custom icons. In
addition, the schematic-entry tool will also
usually create an icon automatically for a
subschematic that isused in a higher-level
schematic. Thisisaderived icon , or derived
symbol . The external connections of the
subschematic are automatically attached to the
icon, usually arectangle.

Figure 9.4 (c) showswhat aderived icon for a
cell, DLAT , might look like (we could also have
drawn this by hand). The subschematic for
DLAT isshown in Figure 9.4 (b). We say that the
inverter with theinstance nameinvlin the
subschematic isa subcell (or submodule) of the
cell DLAT . Alternatively we say that cell

Instance invl isachild of thecell DLAT , and
cell DLAT isaparent of cell instanceinvl.

FIGURE 9.4 A cell and its subschematic. (a) A schematic library containing icons for the primitive
cells. (b) A subschematic for acell, DLAT, showing the instance names for the primitive cells. (c) A

symbol for cell DLAT.

Figure 9.5 (a) shows a mor e complex
subschematic for a 4-bit latch. Each primitive
cell instance in this schematic must have a
unigue name. This can get very tiresome for
lar ge circuits. | nstead of creating complex, but
repetitive, subschematics for complex cellswe

can use hierarchy.

FIGURE 9.5 A 4-hit latch: (a) drawn as aflat schematic from gate-level primitives, (b) drawn as four
instances of the cell symbol DLAT, (c) drawn using a vectored instance of the DLAT cell symbol with
cardinality of 4, (d) drawn using anew cell symbol with cell name FourBit.

Figure 9.5 (b) shows a hierarchical subschematic
for acell FourBit , which in turn uses four
Instances of the cell DLAT . Thefour instances
of DLAT in Figure 9.5 (b) have different instance
names. L1,L2,L3,and L4. Noticethat we
cannot use just one name for the four instances
of DLAT toindicatethat they are all the same
cell. If wedid, we could not differentiate between

L1and L2, for example.

Thevertical row of instancesin Figure 9.5 (b)
looks like a vector of elements. Figure 9.5 (c)

shows a vector ed instance r epresenting four
copiesof the DLAT cell. We say the cardinality
of thisinstanceis 4. Tools normally use bold lines
or some other distinguishing featureto represent
a vectored instance. The cardinality information
Is often shown asa vector. ThusL[1:4]
representsfour instances: L[1],L[2], L[3], L[4]
. Thisis convenient because now we can see that
all subcellsareidentical copiesof L , but we have
a unigue name for each.

Finally, as shown in Figure 9.5 (d) we can create
a new symbol for the 4-bit latch, FourBit . The
symbol for FourBit has a 4-bit-wide input bus
for thefour D inputs, and a 4-bit wide output
busfor thefour Q outputs. The subschematic for
FourBit could be either Figure 9.5 (a), (b), or ()
(though the exact naming of the inputs and
outputs and their attachment to the buses may
be different in each case).

We need a convention to distinguish, for
example, between theinverter subcdlls, invl,

which are children of the cell DLAT , which are
In turn children of the cell FourBit . Most
schematic-entry tools do this by combining the
Instance names of the subcellsin a hierarchical
manner using a special character asa delimiter.
For example, if we drew the subschematic asin
Figure 9.5 (b), thefour invertersin Four Bit
might benamed L1.invl, L2.invl,L3.invl, and
L4.inv1l. Once again thismakesit clear that the
Inverters, invl, areidentical in all four subcells.

In our office building example, the officesare
subcells of the cell Floor . Suppose you and |
both have cor ner offices. Mineison the second
floor and yoursisabove mineon thethird floor.
My officeis 211 and your officeis 311. Another
way to name our offices on a building plan might
be Floor Two.11 for my office and Floor Three.11
for your office. Thisshowsthat FloorTwo.1lisa
subcell of Floor Two and also makesit clear that,
apart from being on different floors, your office
and mine areidentical. Both our offices have
Instance names 11 and are instances of cell name

Corner .

9.1.5 Nets

The schematics shown in Figure 9.4 contain both
local nets and external nets. An example of a
local net in Figure 9.4 (b) isnl, the connection
between the output terminal of the AND cédll
andl tothe OR cell orl. When thefour copies of
thiscircuit are placed in the parent cell Four Bit
in Figure 9.5 (d), four copiesof net nl are
created. Sincethefour netsnamed nl are not
actually electrically connected, even though they
have the same name at the lowest hierarchical
level, we must somehow find a way to uniquely
Identify each net.

Theusual convention for naming netsin a
hierarchical schematic usesthe parent cell
Instance name as a prefix to the local net name.
A special character (':" '/ 'F '# for example)
that isnot allowed to appear in namesis used as
a delimiter to separate the net name from the cell
Instance name. Supposing that we drew the

subschematic for cell FourBit as shown in
Figure 9.5 (b), thefour different netslabeled nl
might then become:

FourBit .L1:n1 FourBit .L2:n1 FourBit .L3:n1l
FourBit .L4:nl

Thisnaming isusually done automatically by the
schematic-entry tool.

The schematic DLAT also containsthree
external nets. D, EN, and Q . Theterminalson
the symbol DLAT connect these netsto other
netsin the hierarchical level above. For example,
thesignal Trigger:flagin Figure 9.4 (c) isalso
Trigger DLAT:Q . Each schematic tool handles
thissituation differently, and life becomes
especially difficult when we need to refer to these
nodes from a simulator outside the schematic
tool, for example. HDL s such asVHDL and
Verilog have a very precise and well-defined
standard for naming netsin hierarchical
structures.

9.1.6 Schematic Entry for ASICsand PCBs

A symbol on a schematic may represent a
component, which may contain component parts.
You aremorelikely to come across the use of
componentsin a PCB schematic. A component is
dightly different from an ASIC library cell. A
simple example of a component would bea TTL
gate, an SN74L SOON, that contains four 2-input
NAND gates. We call an SN74L SOON a
component and each of the individual NAND
gatesinsideisa component part. Another
common example of a component would be a
resistor pack-a single package that contains
several identical resistors.

In PCB design language a component label or
nameisareferencedesignator . A reference
designator isa unique name attribute, such as
R99, attached to each component. A reference
designator, such as R99, has two pieces. an
alpha prefix R and a numerical suffix99.To
under stand the difference between reference

designator s and instance names, we need to ook
at the special requirements of PCB design.

PCBs usually contain packaged ASICsand other
| Csthat have pinsthat are soldered to a board.
For rectangular, dual-in-line (DI P) packagesthe
pins are numbered counter clockwise from the
upper -left corner looking down on the package.

| C symbols have a pin number for each part in
the package. For example, the TTL 74174 hex D
flip-flop with clear, contains six parts: six
Identical D flip-flops. The | C symbol
representing thisdevice has six PinNumber
attribute entriesfor the D input corresponding
tothe six possible input pins. They are pins 3, 4,
6, 11, 13, and 14.

When we need a flip-flop in our design, weusea
symbol for a 74174 from a schematic library,
suppose the symbol nameisdffClr . We shall
assign a unique instance nameto the symbal,
CarryFF . Now suppose we need another,

Identical, flip-flop and we call this BitFF . We do
not mind which of the six flip-flop partsin a
74174 we use for CarryFF and BitFF . In fact
they do not even haveto bein the same package.
We shall delay the choice of assigning CarryFF
and BitFF to specific packages until we get to the
PCB routing step. So at this point on our
schematic we do not even know the pin numbers
for CarryFF and BitFF . For examplethe D
Input to CarryFF could bepin 3, 4, 6, 11, 13, or
14,

The number of wirecrossingson a PCB is
minimized by careful assignment of components
to packages and choice of partswithin a
package. So the placement-and-routing software
may decide which part of which packageto use
for CarryFF and BitFF depending on which is
easier toroute. Then, only after the placement
and routing is complete, are unique reference
designators assigned to the component parts.
Only at thispoint do we know where CarryFF is
actually located on the PCB by referring to the

reference designator, which pointsto a specific

part in a specific package. Thus CarryFF might
belocated in 1C4 on our PCB. At this point we

also know which pins are used for each symbol.
So we now know, for example, that the D-input

to CarryFF ispin 3of IC4.

Thereisno processin ASIC design directly
equivalent to the process of part assignment
described above and thus no need to use
reference designators. Thereference-designator
naming convention quickly becomes unwieldy if
therearealarge number of componentsin a
design. For example, how will we find a NAND
gate named X3146 in an ASIC schematic with
100 pages? Instead, for ASICs, we use a naming
scheme based on hierarchy.

In large hierarchical ASIC designsit isdifficult
to provide a uniquereference designator to each
element. For thisreason ASIC designsuse
Instance names to identify the individual
components. M eaningful names can be assigned

to low-level components and also the symbols
that represent hierarchy. Wederivethe
component names by joining all of the higher
level cell namestogether. A special character is
used asa delimiter and separates each level.

Examples of hierarchical instance names are:
cpu.alu.adder.andO1

Mother Board: Cache: RAM4: ReadBit4: I nverter 2

9.1.7 Connections

Cell instances haveterminalsthat aretheinputs
and outputs of thecell. Terminalsare also
known as pins, connectors, or signals. Theterm
pin iswidey used, but we shall try to use
terminal, and reservethe term pin for the metal
leads on an ASIC package. Theterm pin isused
In schematic entry and routing programs that
are primarily intended for PCB design.

OG7

C 1 C
Day Das L1—
o E— " @ e o
Z 1 = 1 DR5 0Qz |
o] = : o oga Das | .
O e R
bus ripper oz F
paz Do0 [
e | D Es] i =
0 o Aogo D90 |

Dan
(=) b

FIGURE 9.6 An example of the use of abusto simplify a schematic. (a) An address decoder without

using abus. (b) A bus with bus rippers simplifies the schematic and reduces the possibility of making a
mistake in creating and reading the schematic.

Electrical connections between cell instances use
wire segmentsor nets. We can group closdaly
related nets, such asthe 32 bits of a 32-bit digital
word, together into a busor into buses (not
busses). If signalson a busare not closaly
related, we usually usetheterm bundleor array
Instead of bus. An example of a bundle might be
abusfor a SCSl disk system, containing not only
data bits but handshake and control signalstoo.
Figure 9.6 shows an example of abusin a
schematic. If we need to access individual netsin
a busor abundle, we use a breakout (also known
asaripper , an EDIF term, or extractor). For
example, a breakout isused to access bits0-7 of a
32-bit bus. If we need to rearrange bitson a bus,
some schematic editor s offer something called a

swizzle . For example, we might use a swizzleto
reorder the bitson an 8-bit bus so that the MSB
becomesthe L SB and so on down to the L SB,
which now becomesthe M SB. Swizzles can be
useful. For example, we can multiply or dividea
number by 2 by swizzling all the bitsup or down
one place on a bus.

9.1.8 Vectored | nstances and Buses

So far the naming conventions arefairly
standard and easy to follow. However, when we
start to use vectored instances and buses (asis
now common in large ASICs), there are potential
areas of difficulty and confusion. Figure 9.7 (a)
shows a schematic for a 16-bit latch that uses
multiple copies of the cell FourBit . The buses
arelabeled with the appropriate bits. Figure 9.7
(b) shows a new cell symbol for the 16-bit latch
with 16-bit wide busesfor theinputs, D, and
outputs, Q.

''_'_'_,_,_——'—'—‘———______*
ME1
— 16 6
oo @ [ETE—a

FourBi Siwteen Bit

=
B
| {=

r\uaza1 1b)
05:4] Da
—{EN

FourBi

g
E

NE 3

T2 -+{0 af-—{aT2T)
—EH

FourBi

:

ME 4
EM
FautE i
(@l (el

g [=
@
s

FIGURE 9.7 A 16-bit latch: (a) drawn as four instances of cell FourBit; (b) drawn asacell named
SixteenBit; (c) drawn as four multiple instances of cell FourBit.

Figure 9.7 (c) shows an alternative
representation of the 16-bit latch using a
vectored instance of FourBit with cardinality 4.
Suppose we wish to make a connection to
expressly onebit, D1 (we have used D1 asthe
first bit rather than the more conventional DO so
that numbering iseasier to follow). We also wish
to make a connection to bits D9-D12, represented
asD[9:12]. Wedo thisusing a busripper. Now
we havetherather awkward situation of bus
naming shown in Figure 9.7 (c). Problems arise
when we have " buses of buses' becausethe
numbersfor the buswidths do not match on

either side of aripper. For thisreason it isbest to
use the single-bus approach shown in Figure 9.7
(b) rather than the vector ed-bus approach of
Figure 9.7 (c).

9.1.9 Edit-in-Place

Figure 9.7 (b) shows a symbol SixteenBit , which
uses the subschematic shown in Figure 9.7 (a)
containing four copies of FourBit , named NB1,
NB2, NB3, and NB4 (the NB standsfor nibble,
which ishalf of aword; anibbleis4 bitsfor 8-bit
wor ds). Suppose we use the schematic-entry
program to edit thesubcell NB1.L1, which isan
instance of DLAT inside NB1 . Perhapswe wish
to changethe D latch to a D latch with areset,
for example. If the schematic editor supports
edit-in-place, we can edit a cell instance directly.
After we edit the céll, the program will update all
the DLAT subcellsin thecell that iscurrently
loaded to reflect the changesthat have been
made.

To see how edit-in-place works, consider our

office building again. Suppose we wish to change
some of the offices on each floor from offices
without windows to offices with windows. We
select the cell instance Floor Two -that is, an
instance of cell Floor . Now we choose the edit
mode in the schematic-entry program. But wait!
Do we want to edit the cell Floor , or do we want
to edit the cell instance Floor Two ? If we edit the
cell Floor , we will be making changesto all of
thefloorsthat use cell name Floor -that is,
Instances Floor Two through FloorTen . If we
edit the cell instance Floor Two , then the second
floor will become different from all the other
floors. It will no longer be an instance of cell
name Floor and we will haveto create another
cell name for the cell used by instance Floor Two
. Thisislikethe difference between ordering just
one hamburger without pickles and changing the
picture on the wall that will change all future
hamburgers.

Using edit-in-place we can edit the cell Floor .
Suppose we change some of the cell instances of

cell name NoWindowOffice to instances of cell
name WindowOffice . When we finish editing
and savethecell Floor , we have effectively
changed all of thefloorsthat contain instances of
thiscell.

|nstead of editing a cell in place, you may really
want to edit just oneinstance of a cell and leave
any other instances unchanged. I n this case you
must create a new cell with a new symbol and
new, unique cell name. It might also bewiseto
change the instance name of the new cell to avoid
any confusion.

For example, we might change the third-floor
plan of our officeto be different from the other
upper floors. Supposethethird floor isnow an
Instance of cell name FloorVIP instead of Floor .
We could continueto call thethird floor cdll
instance Floor Three, but it would be better to
rename the instance differently, Floor Special for
example, to makeit clear that it isdifferent from
all the other floors.

Sometools have the ability to alias nets. Aliasing
creates a net name from the highest level in the
design. L ocal names are net names at the lowest
level such asD , and Q in aflip-flop cell. These
local names are automatically replaced by the
appropriate top-level names such asClock1 , or
Data2 , using adictionary . Thisgreatly speeds
tracing of signalsthrough a design containing
many levels of hierarchy.

9.1.10 Attributes

Y ou can attach a name, also known as an
Identifier or label , to a component, cell instance,
net, terminal, or connector. You can also attach
an attribute, or property , which describes some
aspect of the component, cell instance, net, or
connector. Each attribute has a name, and some
attributes also have values. The most common
problemsin working with schematics and
netlists, especially when you try to exchange
schematic infor mation between different tools,
are problemsin naming.

Since cellsand their contents haveto be stored in
a database, a cell name frequently corresponds
(or ismapped to) afilename. Thisthen raisesthe
problems of naming conventionsincluding: case
sensitivity, name-collision resolution,
dictionaries, handling of " common" special
characters (such as embedded blanks or

under scores), other special characters (such as
charactersin foreign alphabets), first-character
restrictions, name-length problems (only 28
charactersare permitted on an NFS compatible
filename), and so on.

9.1.11 Netlist Screener

A surprising number of problems can be found
by checking a schematic for obvioudy fatal
errors. A program that analyzes a schematic
netlist for smpleerrorsissometimescalled a
schematic screener or netlist screener . Errors
that can be found by a netlist screener include:

® unconnected cell inputs,
® unconnected cell outputs,

® netsnot driven by any cells,
® too many netsdriven by one cell,
® netsdriven by morethan one cell.

The screener can work continuously asthe
designer iscreating the schematic or can berun
as a separ ate program independently from
schematic entry. Usually the designer provides
attributesthat givethe screener the information
necessary to perform the checks. A few of the
typical attributesthat schematic-entry programs
use ar e described next.

A screener usually generatesalist of errors
together with the locations of the problem on the
schematic where appropriate. Some editors
associate an identifier, or handle, to every piece
of a schematic, including commentsand every
net. Normally thereis some convention to the
assigned names such asa grid on a schematic.
Thisworkslikethelocator codes on a map, so
that a net with Al aspart of thenameisin the
upper -left-hand corner, for example. Thisallows

you to quickly and uniquely find any problems
found by a screener. Theterm handleisa
computer programming term that isused in
referring to alocation in memory. Each piece of
Infor mation on a schematic isstored in listsin
memory. Thistechnique breaks down completely
when we moveto HDLSs.

Most schematic-entry programswork on agrid.
Thedesigner can control the size of thegrid and
whether it isvisible or not. When you place
componentsor wiresyou can instruct the editor
toforceyour drawingtosnap togrid . This
meansthat drawing a schematic islike drawing
on graph paper. You can only locate symboals,
wires, and connectionson grid points. This
simplifiesthe inter nal mechanics of the
schematic-entry program. It also makesthe
transfer of schematics between different EDA
systems mor e manageable. Finally, it allowsthe
designer to produce schematic diagramsthat are
cleaner in appearance and thus easier to read.

M ost schematic-entry programs allow you to
find components by instance name or cell name.
Theeditor may either jump to the component
location and center the graphic window on the
component or highlight the component. More
sophisticated options allow more complex

sear ches, perhaps using wildcard matching. For
example, to find all three-input NAND gates
(primitive cell name ND3) or three-input NOR
gates (primitive cell name NO3), you could

sear ch for cell name N*3, where* isawildcard
symbol standing for any character. The editor
may generate a list of components, perhapswith
page number and coordinate locations. Extensive
find features are useful for large schematics
where it quickly becomesimpossibleto find
Individual components.

Some schematic editors can complete automatic
naming of reference designatorsor instance
namesto the schematic symbols either asthe
editor isrunning or asa postprocessing step. A
component attribute, called a prefix, definesthe

prefix for the name for each type of component.
For example, the prefix for all resistor
component types may be R . Each time a prefix
Isfound or a new instance is placed, the number
In thereference designator or nameis
automatically incremented. Thusif thelast
resistor component type you placed was R99 ,
the next time you placearesistor it would
automatically be named R100 .

For large schematicsit isuseful to be ableto
generateareport on the used and unused
reference designators. An example would be:
Reference designator prefix: R

Unused reference designator numbers: 153, 154
L ast used reference designator number: 180

If you need thisfeature, you probably are not
using enough hierarchy to smplify your design.

During schematic entry of an ASIC design you
will frequently need multiple copies of
components. Thisoften occursduring datapath
design, where operationsare carried out across
multiple signalson a bus. A common example
would be multiple copies of a latch, one for each
signal on a bus. It istedious and inefficient to
have to draw and |label the same cell many times
on a schematic. To smplify thistask, most
editors allow you to place a special vectored cell
Instance of a cell. A vectored cell instance, or
vectored instance for short, usesthe sameicon
for a single instance but with a special attribute,
the cell cardinality , that denotesthe number of
copies of the cell. Connections between signals on
a bus and vectored instances should be handled
automatically. Thewidth or cardinality of the
bus and the cell cardinality must match, and the
design-entry tool should issue a warning if thisis
not the case.

A schematic-entry program can use ater minal
attribute to determine which cell terminalsare

output terminals and which terminals are input
terminals. Thisattributeisusually called
terminal polarity or terminal direction . Possible
valuesfor terminal polarity might be: input ,
output , and bidirectional . Checking the
terminal polarity of theterminalson anet can
help find problems such asa net with all input
terminalsor all output terminals.

Thefanout of a cell measuresthedriving
capability of an output terminal. Thefanin of a
cell measuresthe number of input terminals.
Fanout is normally measured using a standard
load. A standard load istheload presented by
oneinput of a primitive cell, usually a two-input
NAND. For example, alibrary cell Counter may
have an input terminal, Clock , that is connected
to theinput terminals of five primitive cells. The
loading at thisterminal isthen five standard
loads. We say that the fanout of Clock isfive. In
a similar fashion, we say that if a cell Buffer is
capable of driving the inputs of three primitive
cells, the fanout of Buffer isthree. Using the

fanin and fanout attributes a netlist screener can
check to seeif the fanout driving a net isgreater
than the sum of all loads on that net. (See Figure
9.2 on page 329.)

9.1.12 Schematic-Entry tools

Some editor s offer icon edit-in-placein a similar
fashion as schematic edit-in-place for cells. Often
you haveto toggle editing modesin the
schematic-entry program to switch between
editing cellsand editing cell icons. A
schematic-entry program must keep track of
when cells are edited. Normally thisisdone by
using atimestamp or datestamp for each cell.
Thisisatext field within the data file for each
cell that holdsthe date and time that the cell was
last modified. When a new schematic or cell is
loaded, the program needsto compareits
timestamp with the timestamps of any subcells.
|f any of the subcell timestamps are more recent,
then the designer needsto be alerted. Usually a
message appear sto inform you that changes
have been madeto subcellssincethelast timethe

cell currently loaded was saved. This may be
what you expect or it may be a warning that
somehow a subcell has been changed
Inadvertently (perhaps someone else changed it)
since you last loaded that cell.

Normally the primitivecellsin alibrary are
locked and cannot be edited. If you can edit a
primitive cell, you have to make a copy, edit the
copy, and renameit. Normally the ASIC
designer cannot do thisand does not want to. For
example, to edit a primitive NAND gate stored in
an ASI C schematic library would requirethat
the subschematic of the primitive cell be
available (usually not the case) and also that the
next lower level primitives (symbolsfor the
transistors making up the NAND gate) also be
availableto the designer (also usually not the
case).

What do you do if somehow changes were made
to a cell by mistake, perhaps by someone else,
and you don’t want the new cell, you want the

old version? M ost schematic-entry and other
EDA toolskeep old versions of filesas a back-up
In case thiskind of problem occurs. Most EDA
softwar e automatically keepstrack of the
different versions of afile by appending a
version number to each file. Usually thisis
transparent to the designer. Thuswhen you edit
a cell named Floor , thefile on disk might be
called Floor.6 . When you save the changes, the
software will not overwrite Floor.6 , but write
out a new file and automatically nameit Floor.7 .

Some design-entry tools are mor e sophisticated
and allow usersto createtheir own libraries as
they complete an ASIC design. Designers can
then control accessto libraries and the cellsthat
they build during a design. Thisnormally
requiresthat a schematic editor, for example, be
part of alarger EDA system or framework
rather than work asa stand-alonetool.
Sometimes the process of library control
operates as a separatetool, as a design manager
or library manager . Often thereisa program

similar to the UNIX make command that keeps
track of all files, their dependencies, and the
toolsthat are necessary to create and update
each file.

You can nor mally set the number of back-up
versions of filesthat EDA software keeps. The
version history controlsthe number of filesthe
software will keep. If you accidentally update,
overwrite, or delete afile, thereisusually an
option to select and revert to an earlier version.
M or e advanced systems have check-out services
(which work just asin source control systemsin
computer programming databases) that prevent
these kinds of problemswhen many people are
wor king on the same design. Whenever possible,
the management of design files and different
versions should be left under software control
because the process can become very
complicated. Revertingto an earlier version of a
cell can have drastic consequences for other cells
that reference the cell you are working with.
Attemptsto manually edit files by changing

version numbers and timestamps can quickly
lead to chaos.

M ost schematic-entry programs allow you to
undo commands. Thisfeature may berestricted
to ssimply undoing the last command that you
entered, or may be an unlimited undo and redo,
allowing you to back up as many commands as
you want in the current editing session.

You can spend alot of timein a schematic editor
placing components and drawing the connections
between them. Featuresthat smplify initial
entry and allow modificationsto be made easily
can make an enormous differenceto the
efficiency of the schematic-entry process.

Most schematic editors allow you to make
connections by dragging the cursor with thewire
following behind, in a process known asrubber
banding . The connection snapsto aright angle
when the connection is completed. For wire
connectionsthat require morethan two line

segments, an automatic wiring featureis useful.
Thisallowsyou to definethe wire path roughly

using mouse clicks and have the editor complete
the connection.

It is exceedingly painful to move componentsif
you haveto rewire connections each time. M ost
schematic editors allow you to movethe
components and drag any wires along with them.

One of the most annoying problemsthat can
arisein schematic entry isto think that you have
joined two wires on a schematic but find that in
reality they do not quite meet. Thiserror can be
almost impossibleto find. A good editing
program will have a way of avoiding this
problem. Some editors provide a visual (flash) or
audible (beep) feedback when the designer draws
awirethat makesan electrical connection with
another. Some editorswill also automatically
insert adot at a" T" connection to show that an
electrical connection ispresent. Other editors
refuseto allow four-way connectionsto be made,

so there can be no ambiguity when wires cross
each other if an electrical connection is present
or not.

A cell library or a collection of librariesisa key
part of the schematic-entry process. The ability
to handle and control theselibrariesisan
Important feature of any schematic editor. It
should be easy to select components from the
library to be placed on a schematic.

In large schematicsit is necessary to continue
lar ge nets and signals acr oss sever al pages of
schematics. Signals such as power and ground,
VDD and GND, can be connected using global
netsor special connectors. Global netsallow the
designer to label a net with the same name at
different places on a schematic page or on
different pages without havingtodraw a
connection explicitly. The schematic editor treats
these netsasthough they were electrically
connected. Special connector symbols can be
used for connectionsthat cross schematic pages.

An off-page connector or multipage connector is
a special symbol that will show and label a
connection to different schematic pages. More
sophisticated editors can automatically label
these connector s with the page numbers of the
destination connectors.

9.1.13 Back-Annotation

After you enter a schematic you smulatethe
design to make sure it works as expected. This
completesthelogical design. Next you moveto
ASI C physical design and complete the layout.
Only after you complete the layout do you know
the parasitic capacitance and therefore the delay
associated with the inter connect. This postroute
delay information must bereturned to the
schematic in a process known as back-annotation
. Then you can complete a final, postlayout
simulation to make surethat the specifications
for the ASIC aremet. Chapter 13 covers
simulation, and the physical design stepsare
covered in Chapters15to 17.

9.2 Low-Level Design Languages

Schematics can be a very effective way to convey
design information because picturesare such a
power ful medium. There aretwo major
problemswith schematic entry, however. The
first problem isthat making changesto a
schematic can be difficult. When you need to
Include an extra few gatesin the middle of a
schematic sheet, you may havetoredraw the
whole sheet. The second problem isthat for
many year sthere were no standards on how
symbols should be drawn or how the schematic
Infor mation should be stored in a netlist. These
problemsled to the development of design-entry
tools based on text rather than graphics. ASTTL
gave way to PL Ds, these text-based design tools
became increasingly popular asdefacto
standards began to emerge for the format of the
design files.

PLDsareclosely related to FPGAs. Themajor
advantage of PLD toolsistheir low cost, their

ease of use, and the tremendous amount of
knowledge and number of designs, application
notes, textbooks, and examplesthat have been
built up over yearsof their use. It isnatural then
that designerswould want to use PLD
development systems and languagesto design
FPGAsand other ASICs. For example, thereisa
tremendous amount of PL D design expertise and
wor king designsthat can be reused.

In the case of ASIC design it isimportant to use
theright tool for thejob. Thismay mean that
you need to convert from alow-level design
medium you have used for PLD design to one
mor e appropriate for ASIC design. Often thisis
because you are merging several PLDsinto a
single, much larger, ASIC. Thereason for
covering the PLD design languages hereisnot to
try and teach you how to use them, but to allow
you to read and understand a PL D language
and, iIf necessary, convert it to aform that you
can usein another ASIC design system.

9.2.1 ABEL

ABEL isa PLD programming language from
Data |/O. Table 9.2 shows some examples of the
ABEL statements. The following example code
describesa 4:1 MUX (equivalent to the L S153
TTL part):

TABLE 9.2 ABEL.

Statement Example Comment
Module module MyModule Y ou can have multiple modules.
Title title’ Titlein a String’ A string is a character series between quotes.

MYDEV is Device ID for documentation.
Device MYDEV device’'22V10’ ;
22V 10 is checked by the compiler.

"comments go between double
guotes’ The end of aline signifiesthe end of a comment;

Comment there is no need for an end quote.
"end of lineisend of comment
@ALTERNATE @ALTERNATE "use alternate operator alternate default
symbols
AND * &
OR + #
NOT / !
XOR T+ $
XNOR o '$
MYINPUT pin2; 13,14 pin3, Pin22isthelO for input on pin 2 for a 22V 10.
4;
Pin declaration MY OUTPUT is active-low at the chip pin.
/IMYOUTPUT pin 22; 103,104
pin 21,20 ; Signal names must start with aletter.
Equations equations Defines combinational logic.

|04 = HELPER ; HELPER =

N4 Two-passlogic

Assignments MYOUTPUT =/MYINPUT ;
103:=14;
. D =[D0,D1,D2,D3];
Sgnd s 5 -[qQo, QL. Q2. Q3
Q:=D;
Suffix MYOUTPUT.RE=CLR;
MYOUTPUT.PR = PRE;
COUNT =[DO0, D1, D2];
Addition
COUNT := COUNT + 1;
ENABLE 103 =102,
Enable
103 =MYINPUT;
Constants K=I[10,1];
Relational |O# =D ==K5;
End end MyModule
module MUX4
title’4:1 MUX’

Equals’=" is unlocked assignment.
Clocked assignment operator (registered 10)

A signal set, an ABEL bus

4-bit-wide register

Register reset

Register preset

Can't use @ALTERNATE

if you use’+ to add.
Three-state enable (ENABLE is a keyword).

O3 must be a three-state pin.

Kisbh.

Operators. == 1= < > <= >=
Last statement in module

MyDevice device 'P16L 8’ ;

@ALTERNATE

"Inputs

A, B, /P1G1, /P1G2 pin 17,18,1,6 " L S153 pins

14,2,1,15

P1CO, P1C1, P1C2, P1C3 pin 2,3,4,5" L S153
pins6,5,4,3

P2C0, P2C1, P2C2, P2C3 pin 7,8,9,11 " L S153
pins10,11,12,13

" outputs
P1Y, P2Y pin 19, 12" L S153 pins 7,9
equations

P1lY = P1G*(/B*/A*P1CO + /B*A*P1C1 +
B*/A*P1C2 + B*A*P1C3);

P1lY = P1G*(/B*/A*P1CO + /B*A*P1C1 +
B*/A*P1C2 + B*A*P1C3);

end MUX4

9.2.2 CUPL

CUPL isa PLD design language from L ogical
Devices. We shall review the CUPL 4.0 language

here. Thefollowing codeisasimple CUPL
example describing sequential logic:

SEQUENCE BayBridgeT ollPlaza {
PRESENT red

|F car NEXT green OUT go; /* conditional
synchronous output */

DEFAULT NEXT red; /* default next state*/
PRESENT green

NEXT red; } /* unconditional next state */
This code describes a state machine with two

states. Table 9.3 showsthedifferent state
machine assignment statements.

TABLE 9.3 CUPL statements for state-machine entry.

Statement Description
IF NEXT Conditional next state transition
IF NEXT OUT Conditiona next state transition with synchronous output

NEXT Unconditional next state transition

NEXT OUT Unconditional next state transition with asynchronous output
OUT Unconditional asynchronous output

IF OUT Conditional asynchronous output
DEFAULT NEXT Default next state transition
DEFAULT OUT Default asynchronous output

DEFAULT NEXT OUT Default next state transition with synchronous output

Y ou may also encode state machines astruth
tablesin CUPL. Hereisanother simple example:

FIELD input =[inl..0];
FIELD output = [out3..0];

TABLE input => output {00 =>01; 01 => 02; 10
=>04; 11=>08; }

The advantage of the CUPL language, and
text-based PL D languagesin general, is now
apparent. First, wedo not haveto enter the
detailed logic for the state decoding our selves-the
software doesit for us. Second, to make changes
only requires simpletext editing-fast and
convenient.

Table 9.4 shows some examples of CUPL
statements. In CUPL Boolean equations may use
variablesthat contain a suffix, or an extension ,
asin thefollowing example:

output.ext = (Boolean expression);

TABLE 9.4 CUPL.

Statement Example
Boolean expression A =!B;
A=B& C;
A=B#C;
A=B$C;
Comment A =B & C/* comment */
Pin declaration PIN 1 =CLK;
PIN = CLK;
Node declaration NODEA,;
NODE [BO..7];

Pinnode declaration PINNODE 99 = A;
PINNODE [10..17] =[BO0..7];

Bit-field declaration FIELD Address =[B0..7];

Bit-field operations add_one = Address.FF;
add_zero = I(Address.&);

Comment

Logical negation
Logical AND

Logical OR

Logical exclusive-OR

Device dependent

Device independent

Number automatically assigned
Array of buried nodes

Node assigned by designer
Array of pinnodes

8-bit addressfield

Trueif Address = OxFF

Trueif Address = Ox00

add_range = Address.[OF..FF]; Trueif OF.LE.Address.LE.FF

The extensions steer the software, known asa
fitter , in assigning thelogic. For example, a
signal-name suffix of .OE marksthat signal asan

output enable.

Hereisan example of a CUPL filefor a 4-bit
counter placed inan ATMEL PLD part that
Illustrates the use of some common extensions:
Name4BIT; Device V25008,

[* Inputs*/

pin1=CLK; pin3=LD ; pin17=RST _;
pin [18,19,20,21] = [10,11,12,13];

[* outputs™/

pin [4,5,6,7] = [Q0,Q1,Q2,Q3];

field CNT =[Q3,02,Q1,Q0];

[* equations */

Q3.T=(1Q2& 'Q1& 'Q0) & LD & RST_/*
count down */

#Q3& !RST_/* ReSeT */
#(Q3$13) & ILD : /* LoaD*/

Q2T =(Q1& 'Q0)& LD & RST #Q2&
IRST_#(Q2$12)& LD _;

QLT =!Q0& LD & RST #Q1& !'RST_ #(Q1
$11) & ILD :

Q0T =LD & RST #QO0& !RST_#(Q0$10)
& LD ;

CNT.CK =CLK; CNT.OE="h'F; CNT.AR =
'nN’0; CNT.SP="h’0;

In this example the suffix extensions have the
following effects. .CK markstheclock; .T
configures sequential logicas T flip-flops; .OE
(wired high) isthe output enable; .AR (wired
low) isthe asynchronousreset; and .SP (wired
low) isthe synchronous preset. Table 9.5 shows
the different CUPL extensions.

TABLE 9.5 CUPL 4.0 extensions.

Extension1l Explanation
D L D input toaD register
L L L inputtoalatch
J K L JK-input to a JK register
S R L SRinputto an SR register
T L TinputtoaT register

D output of an input D
DQ R register
LQ R Q output of an input latch
AP, AR L Asynchronous preset/reset

SP, SR L Synchronous preset/reset

CK L Product clock term (async.)

OE L Product-term output enable

CA L Complement array

PR L Programmable preload

CE L CE input of a D-CE register

LE L Product-term latch enable
Programmable observability

OBS L of buried nodes

BYP L Programmable register

bypass

Extension

DFB

LFB

TFB

INT
10

IOD/T

IOL

IOAP, IOCAR

IOSP, IOSR

IOCK

APMUX,
ARMUX

CKMUX
LEMUX

OEMUX

IMUX

TEC

T1

Explanation

D register feedback of
R
combinational output

L atched feedback of
R
combinational output

T register feedback of
R
combinational output

R Internal feedback
R Pin feedback of registered output

DI/T register on pin feedback path
selection

Latch on pin feedback path
R
selection

Asynchronous preset/reset of
L
register on feedback path

Synchronous preset/reset of

R

register on feedback path
L Clock for pin feedback register
Asynchronous preset/reset

multiplexor selection

L Clock multiplexor selector

L Latch enable multiplexor selector
Output enable multiplexor

selector
Input multiplexor selector of

two pins

Technology-dependent fuse

L selection

L Tlinput of 2-T register

The 4-bit counter isavery ssmple example of the
use of the Atmel ATV2500B. ThisPLD isquite
complex and has many extra " buried" features.
In order to usethese featuresin CUPL (and
ABEL) you need to refer to special pin numbers
and node numbersthat are given in tablesin the
manufacturer’s data sheets. You may need the
pin-number tablesto reverse engineer or convert
a complicated CUPL (or ABEL) design from one
format to another.

Atmel also gives skeleton headers and pin
declarationsfor their partsin ther data sheets.
Table 9.6 showsthe headers and pin declarations
In ABEL and CUPL format for the ATMEL
ATV 2500B.

TABLE 9.6 ABEL and CUPL pin declarationsfor an ATMEL ATV2500B.
ABEL CUPL
device id device'P2500B’;

"device id used for JEDEC filename
11,12,13,117,118 pin 1,2,3,17,18; device V2500B;
04,05 pin 4,5 istype 'reg_d,buffer’; pin[1,2,3,17,18] =[11,12,13,117,118];

06,07 pin 6,7 istype’ com’; pin[7,6,5,4] =[07,06,05,04];

04Q2,07Q2 node 41,44 istype 'reg_d'; pinnode [41,65,44] = [04Q2,04Q1,07Q2];

O6F2 node 43 istype’ com’;

0O7Q1 node 220 istype 'reg_d’;

9.2.3 PALASM

pinnode [43,68] = [06Q2,07Q1];

PALASM isa PLD design language from
AMD/MMI. Table 9.7 showsthe format of
PALASM statements. The following smple
example (a video shift register) shows the most
basic features of the PALASM 2 language:

TABLE 9.7 PALASM 2.

Statement
Chip

Pinlist
String
Equations

Polarity inversion
Assignment

Comment

Functional
equation

Example
CHIP abc 22V 10
CHIP xyz USER

CLK /LD DO D1 D2 D3 D4 GND NC
Q4Q3Q2Q1QO/RST VCC

STRING string_name ’text’
EQUATIONS
A=/B

A=B*C
A=B+C
A=B:+C
A=B:*:.C
IA=/(B+C)
A=B+C
A=B+C

A =B + C; comment

name.TRST

Comment
Specific PAL type
Free-form equation entry

Part of CHIP statement; PAL pinsin
numerical order starting with pin 1

Before EQUATIONS statement
After CHIP statement
Logical negation

Logical AND

Logical OR

Logical exclusive-OR
Logical exclusive-NOR
SameasA=B+C
Combinational assignment
Registered assignment
Comment

Output enable control

name.CLKF Register clock control
name.RSTF Register reset control
name.SETF Register set control

TITLE video ; shift register
CHIP video PAL 20X8

CK /LD DO D1 D2 D3 D4 D5 D6 D7 CURS GND
NC REV Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 /RST VCC

STRING Load 'LD*/REV*/CURS*RST’ : load
data

STRING Loadlnv’'LD*REV*/CURS*RST’ :
load inverted of data

STRING Shift '/LD*/CURS*/RST’ ; shift data
from MSB to L SB

EQUATIONS

/QO ;=
/DO* L oad+D0* L oadl nv:+:/Q1* Shift+RST

[Q1 ;=
/D1*Load+D1*L oadlnv:+:/Q2* Shift+RST

[Q2 =
[D2*L oad+D2*L oadl nv:+:/Q3* Shift+RST

[Q3 ;=
/D3*Load+D3*L oadl nv:+:/Q4* Shift+RST

[Q4 =
/D4* L oad+D4* L oadl nv:+:/Q5* Shift+RST

[Q5 =
/D5* L oad+D5* L oadl nv:+:/Q6* Shift+RST

[Q6 ;=
/D6* Load+D6* L oadl nv:+:/Q7* Shift+RST

[Q7 :=/D7*Load+D7*Loadl nv:+:Shift+RST;
Theorder of the pin numbersin the previous

exampleisimportant; the order must
correspond to the order of pinsfor the DEVICE .

Thismeansthat you probably need the device
data sheet in order to be abletotrandatea
design from PALASM to another format by
hand. The alternativeisto use utilitiesthat many
PLD and FPGA companies offer that
automatically translate from PALASM to ther
own formats.

1. L meansthat the extension isused only on the
L HS of an equation; R meansthat the extension
Isused only on the RHS of an equation.

0.3 PLA Tools

We shall usethe Berkeley PL A toolstoillustrate
logic minimization using an example to minimize
thelogic required to implement the following
threelogic functions:

F1=A|B|'C; F2=1B&C; F3=A&BIC;

These equationsarein egntott input format. The

egntott (for " equation to truth table") program
convertstheinput equationsinto a tabular
format. Table 9.8 showsthetruth table and
egntott output for functionsF1, F2, and F3 that
usethesix minterms. A,B,!C,!B&C,A&B,
C.

TABLE 9.8 A PLA tools example.
Input (6 minterms): F1=A|B|'C; F2=!B&C; F3= A&BI|C;
A B C F1 F2 F3 egntott output espresso output

o 0 0o 1 0 0 13 13

.03 .03
o o 1 o 1 1

po6 po6
o 1 0 1 0 0

--0 100 1-- 100
c 1 1 1 0 1 1001 11- 001
1 0 0 1 0 0O .01 010 --0 100
1 0 1 1 1 1 -1- 100 -01 011
L 1 0 1 o 1 1-- 100 11101

11- 001 e

1 1 1 1 0 1
.e

Output (5 minterms): F1 = A|!C|(B&C); F2=1B&C; F3=A&B|('B&C)|(B&C);

Thiseqgntott output isnot really atruth table
since each line correspondsto a minterm. The
output formsthe input to the espresso

logic-minimization program. Table 9.9 showsthe
format for espresso input and output files.

Table 9.10 explainsthe format of the input and
output planes of the espresso input and output
files. The espresso output in Table 9.8
correspondsto the egntott logic equationson the
next page.

TABLE 9.9 Theformat of the input and output files used by the PLA design tool espresso.

Expression Explanation

comment # must befirst character on aline.
[d] Decimal number

[] Character string

A [d] Number of input variables

.0[d] Number of output variables

p[d] Number of product terms

Alb [s1] [s2]... [sn]
.0b[s1] [s2]... [sn]
typef

Names of the binary-valued variables must be after .i and .0 .
Names of the output functions must be after .i and .o0.
Following table describes the ON set; DC set is empty.

typefd Following table describes the ON set and DC set.

typefr Following table describes the ON set and OFF set.
typefdr Following table describes the ON set, OFF set, and DC set.
e Optional, marks the end of the PLA description.

TABLE 9.10 The format of the plane part of the input and output files for espresso.

Plane Character Explanation

I 1 The input literal appearsin the product term.

I 0 The input literal appears complemented in the product term.
I - Theinput literal does not appear in the product term.

0] lor4 This product term appearsin the ON set.

0] 0 This product term appears in the OFF set.

O 20r- This product term appears in the don’t care set.

O 3or~ No meaning for the value of this function.

F1=A|'C|(B&C); F2=!B&C: F3 =
A& B|('B& C)|(B& C):

We seethat espresso reduced the original six
mintermstothesefive: A ,A&B,!C,!B&C,
B&C.

9.4 EDIF

An ASIC designer spends an increasing amount
of time forcing different tools to communicate.
One standard for exchanging information
between EDA toolsistheelectronic design

inter change format (EDIF). We will describe
EDIF version 20 0. Themost important features
added in EDIF 300 wereto handle buses, bus
rippers, and buses acr oss schematic pages.

EDIF 4 0 0includes new extensions for PCB and
multichip module (MCM) data. The Library of
Parameterized Modules (LPM) standard isalso
based on EDIF. Thenewer versionsof EDIF
have aricher feature set, but the ASIC industry
seemsto have standardized on EDIF 2 0 0. M ost

EDA companies now support EDIF. The FPGA
companies Altera and Actel use EDIF astheir
netlist format, and Xilinx has announced its
Intention to switch from itsown XNF format to
EDIF. We only haveroom for a brief description
of the EDIF format here. A complete description
of the EDIF standard is contained in the
Electronic Industries Association (EIA)
publication, Electronic Design I nterchange
Format Version 200 (ANSI/EIA Standard
548-1988) [EDIF, 1988].

9.4.1 EDIF Syntax

Thestructureof EDIF issimilar totheLisp
programming language or the Postscript printer
language. Thismakes EDIF avery hard
language to read and almost impossibleto write
by hand. EDIF isintended as an exchange
format between tools, not asa design-entry
language. Since EDIF is so flexible each company
reads and writes different " flavors' of EDIF.

| nevitably EDIF from one company does not
quite work when wetry and use it with atool

from another company, though thissituation is
Improving with the gradual adoption of

EDIF 300. We need to know just enough about
EDIF to be ableto fix these problems.

FIGURE 9.8 The hierarchical nature of an EDIF file.

Figure 9.8 illustratesthe hierarchy of the EDIF
file. Within an EDIF fileare one or more
libraries of cell descriptions. Each library
containstechnology information that isused in
describing the characteristics of the cellsit
contains. Each cell description contains one or
mor e user-named views of the cell. Each view is
defined asa particular viewType and contains an
Inter face description that identifieswherethe
cell may be connected to and, possibly, a contents
description that identifies the components and
related inter connections that make up the cell.

The EDIF syntax consists of a series of
statementsin the following format:

(keywordName {form})

A left parenthesis (round bracket) is always
followed by a keyword name, followed by one or
more EDIF forms (a form is a sequence of
Identifiers, primitive data, symbolic constants, or
EDIF statements), ending with aright
parenthesis. If you have programmed in Lisp or
Postscript, you may understand that EDIF uses a
" define it beforeyou useit" approach and why
there are so many parenthesesin an EDIF file.

The semantics of EDIF are defined by the EDIF
keywords. Keywords arethe only types of name
that can immediately follow a left parenthesis.
Caseisnot significant in keywords.

An EDIF identifier representsthe name of an
object or group of data. Identifiersare used for

name definition, name reference, keywords, and
symbolic constants. Valid EDIF identifiers
consist of alphanumeric or under score
charactersand must be preceded by an
ampersand (&) if thefirst character isnot
alphabetic. The ampersand isnot considered
part of the name. Thelength of an identifier is
from 1to 255 characters and caseis not
significant. Thus & clock , Clock , and clock all
represent the same EDIF name (very confusing).

Numbersin EDIF are 32-bit signed integers.
Real numbersuse a special EDIF format. For
example, thereal number 1.4 isrepresented as
(el14-1). Theeformrequiresa mantissa (14)
and an exponent (-1). Realsarerestricted to the

range + 1 ¥ 10 *3° . Numbersin EDIF are
dimensionless and the units are determined
according to wherethe number occursin thefile.
Coordinates and line widths ar e units of distance
and must berelated to meters. Each coordinate
valueisconverted to meters by applying a scale
factor . Each EDIF library has a technology

section that containsarequired

number Definition . The scale keyword is used
with the number Definition torelate EDIF
numbersto physical units.

Valid EDIF strings consist of sequences of ASCI |
charactersenclosed in double quotes. Any
alphanumeric character isallowed aswell as any
of thefollowing characters: ' #$& ' () * +,- ./
L <=>?2@[\]" _‘{|} ~Special characters,
such as" and % are entered as escape
sequences. %onumber% , where number isthe
Integer value of the ASCII character. For
example, " A quoteis% 34 %" isastring with
an embedded double-quote character. Blank,
tab, linefeed, and carriage-return characters
(white space) are used asdelimitersin EDIF.
Blank and tab charactersare also significant
when they appear in strings.

Therename keyword can be used to create a new
EDIF identifier asfollows:

(cel (rename TEST 1 "test$1") ...

In thisexamplethe EDIF string containsthe
original name, test$1, and a new name, TEST 1,
Iscreated asan EDIF identifier.

9.4.2 An EDIF Netlist Example

Table 9.11 shows an EDIF netlist. ThisEDIF
description correspondsto the halfgate example
In Chapter 8 and describes an inverter. We shall
explain the functions of the EDIF in Table9.11
by showing a piece of the code at a time followed
by an explanation.

TABLE 9.11 EDIFfilefor the halfgate netlist from Chapter 8.

fedif halfgate_p fromberDefinition {designator
fedifWersion 2 0 0)) "EELabel") 3300
{edifLewvel 0} {simulationInfo {library working
(keywordifap {logicWalue H) (edifLewvel 0)
(keywordLewvel 0} {logicWalue L) {technology
(status {cell
(written frename INV "inv") {(numberDefinition 3
(LimeStamp 1996 7 {cellType GEMERIC) {simulationInfo
10 22 (wiew (logicWalue H)
5 10} COMPASS mde_wiew (logicWalue
fprogram "COMPASS Ly
Design Automation -- (viewlype {cell
EDTIF Interface" HNETLIST) {Cename
(wersion "w9rl. 2 {interface HALFGATE P
last wpdated Zo-Mar- fport I "halfgatg_p"}
98"y {direction [cellType
fauthar INEUT) GENERIC)
"mikes"y)} fport 0 (view
flibrarcy xcd40004 {direction COMPASS nls wiew

(edifLewvel 0} OUTEUT) 3 (viewTlype
(technology NETLIST)

(edif halfgate p

(edifVersion 20 0) (edifLevel 0) (keywordMap
(keywordL evel 0))

(status (written (timeStamp 1996 7 10 22 5 10)

(program " COMPASS Design Automation --
EDIF Interface"

(version "v9r1.2 last updated 26-Mar-96"))
(author " mikes")))

Every EDIF file must have an edif form. The
edif form must have a name, an edifVersion, an
edifLevel , and a keywordMap . The edifVersion
consists of three integers describing the major
(first number) and minor version of EDIF. The
keywordMap must have a keywordLevel . The
optional status can contain a written form that
must have a timeStamp and, optionally, author

or program forms.
(library xc4000d (edifL evel O) (technology

(The unbalanced parentheses are deliberate
since we ar e showing segments of the EDIF
code.) Thelibrary form must have a name,
edifL evel and technology . The edifLevel is
normally 0. The xc4000d library containsthe
cellswe areusing in our schematic.

(number Definition) (ssmulationinfo (logicValue
H) (logicValueL)))

The ssimulationlnfo form is used by smulation
tools; we do not need that information for netlist
purposes for thiscell. We shall discuss

number Definition in the next example. It isnot
needed in a netlist.

(cell (renamelINV "inv") (cellType GENERIC)

Thiscel form definesthe name and type of a cell

Inv that we are going to use in the schematic.

(view COMPASS mde view (viewType
NETLIST)

(interface (port | (direction INPUT)) (port O
(direction OUTPUT))

(designator " @@L abel")))))

The NETLIST view of thisinverter cell hasan
Input port | and an output port O . Thereisalso
aplace holder " @@L abel" for theinstance
name of the cell.

(library working...

This beginsthe description of our schematic that
Isin our library working. Thelinesthat follow
thislibrary form are ssmilar to the preamble for
the cell library xc4000d that we just explained.

(cell (rename HALFGATE P

" halfgate p")(celType GENERIC)

(view COMPASS nls view (viewType
NETLIST)

Thiscell form isfor our schematic named
halfgate p.

(interface (port mylnput (direction INPUT))
(port myOutput (direction OUTPUT))

Theinterface form definesthe names of the ports
that were used in our schematic, mylnput and
myOutput. At this point we have not associated
these portswith the ports of thecell INV in the
cell library.

(designator " @@L abel")) (contents (instance
Blil

Thisgivesan instance name Bl i1tothecdll in
our schematic.

(viewRef COMPASS mde view (cellRef INV
(libraryRef xc4000d))))

The cellRef form linksthe cell instance name
B1 ilin our schematictothecel INV in the
library xc4000d.

(net mylnput (joined (portRef mylnput)
(portRef | (instanceRef B1 11))))

Thenet form for mylnput (and the one that
follows it for myOutput) tiesthe net namesin
our schematictotheportsl and O of thelibrary
cell INV .

(net VDD (joined)) (net VSS (joined))))))

Theseformsfor the global VDD and VSS nets
are often handled differently by different tools
(one company might call the negative supply
GND instead of VSS, for example). This section

ISwhere you most often haveto edit the EDIF.

(design HALFGATE_P (celRef HALFGATE P
(libraryRef working))))

Thedesign form names and places our design in
library working, and completesthe EDIF
description.

9.4.3 An EDIF Schematic I con

EDIF iscapable of handling many different
representations. The next EDIF exampleis
another view of an inverter that describes how to
draw theicon (the picturethat appearson the
printed schematic or on the screen) shown in
Figure 9.9. We shall examinethe EDIF created
by the CAD/CAM Group’s Engineering Capture
System (ECS) schematic editor.

FIGURE 9.9 An EDIF view of an inverter icon. The coordinates shown are in EDIF units. The crosses

that show the text location origins and the dotted bounding box do not print as part of the icon.

Thistimewe shall give more detailed
explanations after each piece of EDIF code. We
shall also maintain balanced parenthesesto
make the structure easier to follow. To shorten
the often lengthy EDIF code, we shall use an
ellipsis(...) toindicate any codethat has been
left out.

(edif ECS

(edifVersion 2 00)

(edifLevel 0)

(keywordMap (keywordL evel 0))
(status

(written

(timeStamp 1987 8 20 0 50 23)

(program " CAD/CAM Group, Inc. ECS®
(Version "1"))))

(library USER ...

)

)

Thispreambleisvirtually identical to the
previous netlist example (and demonstratesthat
EDIF isuseful to store design information as
softwar e tools come and go over many years).
Thefirst line of the file defines the name of the
file. Thisisfollowed by linesthat identify the
version of EDIF being used and the highest EDIF
level used in thefile (each library may useits
own level up to thismaximum). EDIF level O
supportsonly literal constants and basic
constructs. Higher EDIF levels support
parameters, expressions, and flow control

constructs. EDIF keywords may be mapped to
aliases, and keyword macros may be defined
within the keywordMap form. Thesefeaturesare
not often used in ASIC design because of a lack
of standardization. The keywordLevel O
Indicates these capabilities are not used here.
The status construct isused for administration:
when the file was created, the software used to
createthefile, and so on. Following this
preambleisthe main section of thefile, which
contains design infor mation.

(library USER (edifLevel 0)
(technology

(number Definition

(scale 4 (e 254 -5) (unit distance)))
(figureGroup NORMAL

(pathWidth 0) (bor derWidth 0)

(textHeight 5))

(figureGroup WIDE
(pathWidth 1) (borderWidth 1)
(textHeight 5)))

(cell 7404 ...

)
)

Thetechnology form has a number Definition
that definesthe scaling information (we did not
usethisform for a netlist, but the form must be
present). Thefirst numberValue after scale
represents EDIF number s and the second
numberValue representsthe units specified by
the unit form. The EDIF unit for distanceisthe
meter. The numberValue can be an integer or an

exponential number. The e form hasa mantissa
and an exponent. I n thisexample, within the
USER library, a distance of 4 EDIF unitsequals

254 ¥ 10> meters (or 4 EDIF unitsequals0.1
Inch).

After the number Definition in the technology
form there are oneor morefigureGroup
definitions. A figureGroup defines drawing
Infor mation such as pathWidth , borderWidth ,
color , fillPattern , border Pattern , and
textHeight . ThefigureGroup form must have a
name, which will be used later in thelibrary to
refer back to these definitions. I n this example
the USER library hasone

figureGroup (NORMAL) for lines and paths of
zer o width (the actual width will be
Implementation dependent) and another
figureGroup (WIDE) that will be used for buses
with awider width (for bold lines). The
borderWidth isused for drawing filled areas
such asrectangles, circles, and polygons. The
pathWidth isused for open figuressuch aslines

(paths) and open arcs.

Following the technology section the cell forms
each represent a symbol. Thecell form hasa
name that will appear in the names of any files
produced. ThecdlTypeform GENERIC typeis
required by this schematic editor. The property
form isused to list properties of the cell.

(cell 7404 (cellType GENERIC)

(property SymbolType (string " GATE"))

(view PCB_Symbol (viewType SCHEMATIC)

(interface...

)
)

The SymbolType property isused to distinguish
between purely graphical symbolsthat do not
occur in the partslist (a ground connection, for
example), gate or component symbols, and block
or cell symbols (for hierarchical schematics). The
SymbolType property isa string that may be
COMPONENT , GATE, CELL ,BLOCK , or
GRAPHIC . Each cell may contain view forms
and each view must have a name. Following the
name of the view must beaviewTypethat is
either GRAPHIC or SCHEMATIC . Following
theviewTypeistheinterface form, which
contains the symbol and ter minal infor mation.
Theinterface form containsthe actual symbol
data.

(interface
(port Pin_1
(designator " 2")

(direction OUTPUT)

(dcM axFanout 50))
(port Pin_2
(designator " 1")
(direction INPUT)
(dcFanoutL oad 8)
(property Cap
(string " 22")))
(property Value
(string " 45"))
(symbol ...

)

|f the symbol hasterminals, they arelisted
before the symbol form. The port form defines
each terminal. Therequired port nameis used
later in the symbol form to refer back to the
port. Sincethisexampleisfrom a PCB design,
the terminals have pin numbersthat correspond
tothe | C package leads. The pin numbersare
defined in the designator form with the pin
number asastring. The polarity of thepinis
indicated by the direction form, which may be
INPUT , OUTPUT , or INOUT . If thepinisan
output pin, its Drive can be represented by
dcMaxFanout and if it isan input pin its Load
can berepresented by dcFanoutLoad . The port
form can also contain formsunused ,
dcMaxFanin , dcFaninLoad , acLoad , and
portDelay . All other attributesfor pinsbesides
PinNumber , Polarity , Load , and Driveare
contained in the property form.

An attribute string follows the name of the
property in the string form. In thisexample port
Pin_2 hasa property Cap whosevalueis22. This

Isthe input capacitance of the inverter, but the
Inter pretation and use of thisvalue depends on
thetools. In ASIC design pinsdo not have pin
numbers, so designator isnot used. Instead, the
pin names usethe property form. So (property
NetName (string " 1")) would replace the
(designator " 1") in thisexampleon Pin_2 . The
Inter face form may also contain attributes of the
symbol.

Symbol attributes are similar to pin attributes.
In this example the property name Value hasan
attribute string " 45" . The namesoccurring in
the property form may bereferenced later in the
Inter face under the symbol form to refer back to
the property .

(symbol
(boundingBox (rectangle (pt 0 0) (pt 76 -32)))

(portlmplementation Pin_1

(connectL ocation (figure NORMAL (dot (pt 60
-16)))))

(keywor dDisplay designator

(display NORMAL

(justify LOWERCENTER) (origin (pt 60 -14)))))
(portlmplementation Pin_2

(connectL ocation (figure NORMAL (dot (pt O
-16)))))

(keywor dDisplay designator

(display NORMAL

(justify LOWERCENTER) (origin (pt 0-14)))))
(keywordDisplay cell

(display NORMAL (justify CENTERLEFT)

(origin (pt 25 -5))))

(keywordDisplay instance

(display NORMAL

(jJustify CENTERLEFT) (origin (pt 36 -28))))
(keywor dDisplay designator

(display (figureGroupOverride NORMAL
(textHeight 7))

(Justify CENTERLEFT) (origin (pt 13-16))))
(propertyDisplay Value

(display (figureGroupOverride NORMAL
(textHeight 9))

(Justify CENTERRIGHT) (origin (pt 76 -24))))

(figure...)

)

Theinterface containsa symbol that containsthe
pin locations and graphical infor mation about
theicon. The optional boundingBox form
encloses all the graphical data. The x- and
y-locations of two opposite cornersof the
bounding rectangle usethe pt form. The scale
section of the number Definition from the
technology section of thelibrary determinesthe
units of these coordinates. The pt construct is
used to specify coordinate locationsin EDIF. The
keyword pt must be followed by the x-location
and they-location. For example: (pt 100 200) is
at x = 100, y = 200.

® Each pininthesymbol isgiven alocation
using a portlmplementation .

® Theportlmplementation refersback tothe
port defined in the
Interface.

® TheconnectL ocation definesthe point to

connect to the pin.
® TheconnectL ocation isspecified asafigure, a
dot with a single pt for itslocation.
(symbol
(..
(figure WIDE
(path (pointList (pt 12 0) (pt 12-32)))
(path (pointList (pt 12 -32) (pt 44 -16)))
(path (pointList (pt 12 0) (pt 44 -16))))
(figure NORMAL
(path (pointList (pt 48 -16) (pt 60 -16)))
(circle (pt 44 -16) (pt 48 -16))

(path (pointList (pt 0-16) (pt 12 -16))))

(annotate
(stringDisplay " INV"
(display NORMAL

(justify CENTERLEFT) (origin (pt 12 -12)))))

)

Thefigureform hasether a name, previously
defined asa figureGroup in the technology
section, or a figureGroupOverrideform. The
figure hasall the attributes (pathWidth,
borderWidth , and so on) that were defined in
the figureGroup unlessthey are specifically
overridden with afigureGroupOverride.

Other objectsthat may appear in afigureare:
circle, openShape, path, polygon , rectangle,
and shape . Most schematic editorsuseagrid,
and the pins are only allowed to occur on grid .

A portlmplementation can contain a
keywordDisplay or a propertyDisplay for the
location to display the pin number or pin name.
For a GATE or COMPONENT ,
keywordDisplay will display the designator (pin
number), and designator isthe only keyword
that can be displayed. For aBLOCK or CELL ,
propertyDisplay will display the NetName. The
display form displaystext in the same way that
thefiguredisplays graphics. The display must
have either a name previously defined asa
figureGroup in the technology section or a
figureGroupOverrideform. Thedisplay will
have all the attributes (textHeight for example)
defined in the figureGroup unlessthey are
overridden with afigureGroupOverride.

A symbolic constant isan EDIF name with a
predefined meaning. For example,
LOWERLEFT isused to specify text
justification. Thedisplay form can contain a
justify to overridethe default LOWERLEFT .
Thedisplay can also contain an orientation that

overridesthe default RO (zerorotation). The
choicesfor orientation arerotations (

RO, R90, R180, R270), mirror about axis (
MX, MY), and mirror with rotation (
MXR90, MYR90). Thedisplay can contain an
origin to overridethe default (pt 0 0) .

The symbol itself can have either
keywordDisplay or propertyDisplay forms such
astheonesin the portlmplementation . The
choicesfor keywordDisplay are: cell for attribute
Type, instancefor attribute InstName, and
designator for attribute RefDes. In the
preceding example an attribute window
currently mapped to attribute Value is displayed
at location (76, -24) using right-justified text, and
afont sizeisset with (textHeight 9) .

The graphical data in the symbol are contained
In figure forms. The path form must contain
pointList with two or more points. Thefigure
may also contain arectangleor circle. Two
pointsin arectangle define the opposite corners.

Two pointsin acirclerepresent opposite ends of
the diameter. In thisexample a figure from
figureGroup WIDE hasthreelinesrepresenting
thetriangle of the inverter symbol.

Arcs usethe openShape form. The openShape
must contain a curvethat containsan arc with
three points. Thethree pointsin an arc
correspond to the starting point, any point on the
arc, and the end point. For example, (openShape
(curve(arc(pt-50) (pt 05) (pt 50)))) isanarc
with aradiusof 5, centered at theorigin. Arcs
and lines use the pathWidth from the
figureGroup or figureGroupOverride; circles
and rectangles use borderWidth .

Thefixed text for a symbol uses annotate forms.
ThestringDisplay in annotate containsthe text
asastring. The stringDisplay contains a display
with thetextHeight , justification , and location .
The symbol form can contain multiple figure and
annotate forms.

9.4.4 An EDIF Example

In this section we shall illustrate the use of EDIF
In trandlating a cell library from one set of tools
to another-from a Compass Design Automation
cell library to the Cadence schematic-entry tools.
Thecodein Table 9.12 showsthe EDIF
description of the symbol for atwo-input AND
gate, an02d1, from the Compass cell library.

TABLE 9.12 EDIF file for a Compass standard-cell schematic icon.

(edif pvsc3Tod (true 317 ion
(edifVersion 2 0 OY (fimqureGroup {n=me AZ
{edifLewvel 0} t FG (display
(keyworddap fcolor 100 100 nector_FG
{keywordLevel 03) 0} _ {origin
(status (textHeight 30 pt =5 13y
(written (wisible {connectLoca-
(LimeStamp 1993 2 9 (true 330 n
22 38 38} (fiqureGroup (figqure
{program "COMPASS" s _FG nector_FG
(wersion "w8")) fcolor 100 100 {daot
{author "mikes"33yy 0} (pt 0 033303
(library pwsc3704d (textHeight 30} (portImplementa-
{ediflLewel 0O} (wisible al
{technology ftrue 3} tname A1
{rumberDefinition) (pathWidth 433) (display
(figureGroup fcell an0Z2d1 nector_FG
connector FG (cellType GENER- {origin
{color 100 100] (pt -5
1003 (wview Icon_wiew I3
(textHeight 30) (viewType SCHE- {connectLoca-
(visible TIC T
ttue)3 (interface ifiqure
(figureGroup fport AZ nector FG
icon PG {direction IN- {dot
{color 100 100 Th (pt O
1003 (port Al T
(textHeight 30 {direction IN- (portInplementa-
{visible T n
ftrue 337 fport 2 {name 2
(figureGroup {direction (display
instance FG TEUT)) nector FG
{color 100 100 {prnpgrty label (origin
1003 (string "")) pt a0
{textHeight 30) isymbol IR
(visihle {portImplemen- {connectLoca-

The Cadence schematic toolsdo contain a
procedure, EDIFIN, that reads the Compass
EDIF files. This procedureworks, but, aswe
shall see, resultsin some problemswhen you use
theiconsin the Cadence schematic-entry tool.

| nstead we shall make some changesto the
original filesbeforewe use EDIFIN to transfer
the information to the Cadence database, cdba .

Theoriginal Compass EDIF file containsa
figureGroup for each of the following four EDIF
cell symbols:

connector FG icon FG instance FG net FG
bus FG

The EDIFIN application trandates each
figureGroup to a Cadence layer-purpose pair
definition that must be defined in the Cadence
technology file associated with thelibrary. If we
usetheoriginal EDIF filewith EDIFIN this
resultsin the automatic modification of the

Cadence technology file to define layer names,
purposes, and therequired propertiesto enable
use of the figureGroup names. Thisresultsin
non-Cadence layer namesin the Cadence
database.

First then, we need to modify the EDIF fileto use
the standard Cadence layer names shown in
Table 9.13. These layer names and their
associated purposes and properties are defined
In the default Cadence technology file, default.tf .
Thereisone morelayer namein the Compass
files(bus FG figureGroup), but sincethisisnot
used in thelibrary we can remove this definition
from the EDIF input file.

TABLE 9.13 Compass and corresponding Cadence figureGroup names.
Compassname Cadencename Compassname Cadence name
connector FG pin net FG wire

icon FG device bus FG not used
instance FG instance

Internal scaling differenceslead to giant
charactersin the Cadencetoolsif we usethe
textHeight of 30 defined in the EDIF file.

Reducing thetextHeight to 5resultsin a
reasonable text height.

The EDIF number Definition construct, together
with the scale construct, defines measur ement
scaling in an EDIF file. In a Cadence schematic
EDIF filethe number Definition and scale
construct isdetermined by an entry in the
associated library technology file that definesthe
edifUnit to user Unit ratio. Thisratio affectsthe
printed size of an icon.

For example, the distance defined by the
following path construct is 10 EDIF units:

(path (pointlist (pt 0 0) (pt 0 10)))

What isthelength of 10 EDIF units? The
number Definition and scale construct associates
EDIF unitswith a physical dimension. The
following construct

(number Definition (scale 100 (e 25400 -6) unit

DISTANCE))

specifies that 100 EDIF units equal 25400 ¥ 10°
m or approximately 1 inch. Cadence defines
schematic measurementsin inches by defining
the userUnit property of the affected viewType
or viewName asinch in the Cadence technology
file. The Compass EDIF filesdo not provide
valuesfor the number Definition and scale
construct, and the Cadence tools default to a
value of 160 EDIF unitsto 1 user unit. Wethus
need to add a number Definition and scale
construct to the Compass EDIF fileto control the
printed size of icons.

The EDIF file defines blank |abel placeholders
for each cell using the EDIF property construct.
Cadence EDIFIN doesrecognize and trandlate
EDIF properties, but to attach a label property
to a cellview object it must be defined (not blank)
and identified asa property using the EDIF
owner construct in the EDIF file. Sincethe intent
of a placeholder isto hold an empty spot for later

use and since Cadence Composer (the
schematic-entry tool) supportslabel additionsto
Instantiated icons, we can remove the EDIF label
property construct in each cell and the
associated propertyDisplay construct from the
Compassfile.

Thereisa problem that we need to resolve with
naming. Thisisa problem that sooner or later
everyone must tacklein ASIC design- case
sensitivity .

In EDIF, input and output pinsare called ports
and they areidentified using
portlmplementation constructs. In order that the
ports of a particular cell icon_view are correctly
associated with the portsin therelated
functional, layout, and abstract views, they must
all havethe same name. The Cadencetoolsare
case sengtivein thisrespect. The Verilog and
CIF files corresponding to each cell in the
Compass library use lower case names for each
port of a given cell, whereasthe EDIF file uses

uppercase. The EDIFIN trandator allowsthe
case of cell, view, and port namesto be
automatically changed on tranglation. Thus pin
namessuch as’ A1’ become’ al’ and the
original view name’ Icon_view’ becomes’
icon_view .

The boundingBox construct defines a bounding
box around a symbol (icon). Schematic-capture
tools use thisto implement various functions.
The Cadence Composer tool, for example, uses
the bounding box to control the wiring between
cellsand as a highlight box when selecting
components of a schematic. Compass usesa large
boundingBox definition for the cellsto allow
gpace for long hierarchical names. Figure 9.10
(a) showstheoriginal an02d1 cell bounding box
that islarger than the cell icon.

FIGURE 9.10 The bounding box problem. (a) The original bounding box for the an02d1 icon.

(b) Problems in Cadence Composer due to overlapping bounding boxes. (c) A "shrink-wrapped"
bounding box created using SKILL.

| cons with lar ge bounding boxes create two
problemsin Composer. Highlighting all or part
of a complex design consisting of many closely
spaced cellsresultsin a confusion of overlapped
highlight boxes. Also, large boxes force strange
wiring patter ns between cellsthat are placed too
closely together when Composer’s automatic
routing algorithm isused. Figure 9.10 (b) shows
an example of this problem.

Therearetwo solutionsto the bounding-box
problem. We could modify each boundingBox
definition in the original EDIF file before
translation to conform to the outline of theicon.
Thisinvolvesidentifying the outline of each icon
In the EDIF file and isdifficult. A ssimpler
approach isto usethe Cadence tool
programming language, SKI1LL. SKILL
provides direct accessto the Cadence database,
cdba, in order to modify and create objects.
Using SKILL you can use a batch fileto call

functions normally accessed interactively. The
solution to the bounding box problem is:

1. Use EDIFIN to createtheviewsin the
Cadence database, cdba .

2. Usethe schCreatel nstBox() command on each
Icon_view object to eliminatethe original
bounding box and create a new,
minimum-sized, bounding box that is
" shrink-wrapped" to each icon.

Figure 9.10 (c) showstheresults of this process.
Thismodification fixesthe problemswith
highlighting and wiring in Cadence Composer .

Thiscompletesthe stepsrequired to trandlate the
schematic icons from one set of toolsto another.
The process can be automated in three ways.

® Write UNIX sed and awk scriptsto makethe
changesto the EDIF file before using EDIFIN
and SKILL.

® Writecustom C programsto makethe

changesto the EDIF file and then proceed as
In thefirst option.
® Perform all thework using SKILL.

Thelast approach isthe most elegant and most
easily maintained but isthe most difficult to
Implement (mostly because of thetimerequired
tolearn SKILL). Thewhole project took several
weeks (including thetimeit took to learn how to
use each of thetools). Thisistypical of the
problems you face when trying to convert data
from one system to another.

9.5 CFI Design Representation

The CAD Framework Initiative (CFl) isan
Independent nonprofit organization working on
the creation of standardsfor the electronic CAD
industry. One of the areasin which CFl is

wor king isthe definition of standardsfor design
representation (DR). The CFl 1.0 standard |
CFI, 1992] hastackled the problems of
ambiguity in the area of definitions and terms

for schematics by defining an information model
(1M) for electrical connectivity information.

What thismeansisthat a group of engineers got
together and proposed a standard way of using
the terms and definitions that we have discussed.
Thereare good things and bad things about
standards, and one aspect of the CFl 1.0 DR
standard illustratesthis point. A good thing
about the CFI 1.0 DR standard isthat it
precisely defineswhat we mean by termsand
definitionsin schematics, for example. A bad
thing about the CFI DR standard isthat in order
to be preciseit introduces yet moretermsthat
are difficult tounderstand. A very brief
discussion of the CFl 1.0 DR standard is
included here, at the end of this chapter, for
several reasons:

® It helpsto solidify the concepts of theterms
and definitions such as cell, net, and instance
that we have already discussed. However,
there are additional new concepts and terms

to definein order to present the standard
model, so thisisnot a good way to introduce
schematic terminology.

® The ASIC design engineer isbecoming more
of a programmer and less of a circuit
designer. Thistrend shows no sign of stopping
asASICsgrow larger and systems more
complex. A precise understanding of how
tools operate and interact is becoming
Increasingly important.

9.5.1 CFI Connectivity M odel

The CFI connectivity model isdefined using the
EXPRESS language and its graphical equivalent
EXPRESS-G . EXPRESSIisan International
Standards Organization (1SO) standard |
EXPRESS, 1991]. EDIF 30 0 and higher also use
EXPRESS astheinternal formal description of
thelanguage. EXPRESS is used to define objects
and their relationships. Figure 9.11 shows some
simple examples of the EXPRESS-G notation.

days in da zhopping [
Jaﬁuary — nu!rrln ber list e IS r%em
L[5] a[0:]
() (b}
persol
wife 1 £ wo
.
husband 1 .
father 1 | <hid mother1
chibmen 5[0:2] chibmen 5[0:7]

e

FIGURE 9.11 Examples of EXPRESS-G. (a) Each day in January has a number from 1 to 31. (b) A
shopping list may contain alist of items. (c) An EXPRESS-G model for afamily.

Thefollowing EXPRESS code (a schema) is
equivalent to the EXPRESS-G family model
shown in Figure 9.11 (c):

SCHEMA family_modd;
ENTITY person

ABSTRACT SUPERTYPE OF (ONEOF (man,
woman, child));

name: STRING:

date of birth: STRING,;
END ENTITY;

ENTITY man

SUBTY PE OF (person);
wife: SET[0:1] OF woman;
children: SET[0:?] OF child;
END ENTITY;

ENTITY woman

SUBTY PE OF (person);
husband: SET[0:1] OF man;
children: SET[0:?] OF child;

END _ENTITY;

ENTITY child
SUBTY PE OF (person);
father: man;

mother: woman;

END ENTITY;

END SCHEMA,;

This EXPRESS description isaformal way of
saying the following:

® "Men, women, and children are people.”

® " A man can have one woman as a wife, but
does not haveto."

® " A wife can have one man as a husband, but
does not haveto."

® " A man or awoman can have several
children.”

® " A child hasonefather and one mother."

Computerscan deal more easily with the formal
language version of these statements. The formal
language and graphical formsare more precise
for very complex models.

Figure 9.12 showsthe basic structure of the CFI
1.0.0 Base Connectivity Model (BCM). The
actual EXPRESS-G diagram for the BCM
defined in the CFI 1.0.0 standard isonly alittle
mor e complicated than Figure 9.12 (containing
21 boxes or typesrather than just six). Theextra
types are used for bundles (a group of nets) and
different views of cells (other than the netlist
view).

Library

FIGURE 9.12 The original "five-box" model of electrical connectivity. There are actually six boxes or
typesin thisfigure; the Library type was added later.

Figure 9.12 saysthefollowing (" presents' as
used in Figure 9.12 isthe Expressjargon for
" have"):

® "A library containscells."

® " Cedllshave ports, contain nets, and can
contain other cells.”

® " Cédll instances are copies of a cell and have
port instances."

® " A port instanceisa copy of the port in the
library cdll."

® "You connect toaport using a net."

® " Netsconnect port instancestogether."

Once you understand Figure 9.12 you will see
that it replacesthefirst half of this chapter.
Unfortunately you haveto read thefirst half of
this chapter to understand Figure9.12 .

9.6 Summary

Theimportant conceptsthat we covered in this
chapter are:

Schematic entry using a cell library

Cellsand cdll instances, nets and ports

Bus naming, vectored instances in datapath
Hierarchy

Editing cells

PL D languages:. ABEL, PALASM, and CUPL
L ogic minimization

Thefunctionsof EDIF

CFI representation of design information

9.7 Problems
9.1 (EDIF description)

O a. (5min.) Writean EDIF description for
an icon for an inverter (Just theinput and
output wires, atriangle, and a bubble).
What problems do you face and what
assumptionsdid you make?

O b. (30 min.+) Try and import your symbol

Into your schematic-entry tool. If you fail
(asyou might) explain what the problem is
and suggest a direction of attack. Hint: If
you can, try Problem 9.2 fir <t.

9.2 (EDIF inverter, 15 min.) If you have
accessto atool that generates EDIF for the
icons, write out the EDIF for an inverter icon.
Explain the code.

9.3 (EDIF netlist, 20 min.) Starting with an
empty directory and using a schematic editor
(such as Viewlogic) draw a schematic with a
singleinverter (from any cell library).

O a. List thefilesthat arecreated in the
directory.

O b. Print each one (check first to make sure
It iIsASCII, not binary).

O c. Try and explain the contents.

9.4 (Minitutorial, 60 min.) Writea
minitutorial (no morethan five pages) that

explains how to set up your system (location
and nature of any start-up filessuch as.ini
filesfor Viewlogic and so on); how to choose
or changealibrary (for cell icons); how to
choose cells, instantiate, label, and connect
them; how to select, copy and delete symbols;
and how to save a schematic. Usea single
Inverter connected to an input and output pad
as an example.

9.5 (Icons, 30 min.) With an example show
how to edit and create a symbol icon. Make a
triangular icon (the same sizeasan inverter in
your library but without a bubble) for a series
connection of two invertersand call it
myBuffer .

9.6 (Buses, 30 min.)

O a. Create an example of a 16-bit bus:
connect 8 invertersto bit zero (the M SB or
leftmost bit) and bits 10-16 (asif wewere
taking the sign bit, bit zero, and the seven

least-significant bitsfrom a 16-bit signed
number). Nametheinverter connected to
the sign bit, SIGN . Namethe other
iInvertersBITOthrough BIT7 .

O b. Writethenetlist asan EDIF file, number
thelines, and explain the contents by
referencing line numbers.

9.7 (VDD and VSS, 30 min.) Using a simple
example of two inverters (one with input
connected to VDD, the other with input
connected to VSS or GND) explain how your
schematic-entry system handles global power
and ground nets and their connection to cell
pins. Can you connect VDD or VSSto an
output pin in your system? |If your schematic
softwar e has a netlist screener, try it on this
example.

9.8 (Hierarchy, 30 min.) Createavery simple
hierarchical cell. Thelowest level, named
bottom , containsa single inverter (named
InvB). The highest level, called top , contains

another inverter, invT , whoseinput is
connected to the output of cell bottom . Write
out the netlist (in internal and EDIF format)
and explain how thetool labelsa hierarchical
cell.

9.9 (Vectored instances, 30 min.) Createa
vectored instance of eight inverters, inv0
through inv7 . Writethe netlist in internal and
EDIF form and explain the contents.

9.10 (Dangling wires, 30 min.) Create a cell,
danglel, containing two inverters, invl and
Inv2 . Connect the input of invlto an external
connector, inl, and the output of inv2to an
external connector out2 . Writethe netlist and
explain what happensto the unlabeled and
unused nets. If you have a netlist screener, run
It on thisexample.

9.11 (PL D languages, 60 min.) Conduct a Web
search on ABEL, CUPL, or PALASM (start
by searching for " Logical Devices' not

"ABEL"). Try and find examples of these files
and write an explanation of their function
using the descriptions of these languagesin
thischapter.

9.12 (EDIF 300, 10 min.) Download the

EDIF 3 0 0 example schematic file from
http://www.edif.or g/edif/wor kshop.edf and see
If your EDIF reader will accept it. What isit?

9.13 (EXPRESS-G, 15 min.) Draw an
EXPRESS-G diagram for the gover nment of
your country. For example, in the United
States you would start with the president and
the White House and work down through the
House and Senate, showing the senators and
congressional representatives. I|n the United
Kingdom you would draw the prime minister,
the House of Commons, and House of L ords
with the various M Ps.

9.14 (ABEL PCI Target) (10 min.) Download
the Xilinx Application Note, Designing

Flexible PCI Interfaces with Xilinx EPLDs,
January 1995 (pci_epld.pdf at
www.xilinx.com). The Appendix of this App.
Note containsthe ABEL source code for a PCI
BusInterface Target. The codeislong but
straightforward; most of it describesthe
next-state transitions for the bus-controller
state machine. Extract the ABEL source code
using Adobe Acrobat. Hint: Thisisnot easy;
Acrobat does a poor job of selecting text; you
will lose many semicolons at the end of lines
that you will haveto add by hand. Use
Replace... to search for end-of-ling, " *p" , and
replaceby " ; *p" in Word. (60 min.+) Try to
convert thiscodeto a system where you can
compileit. You may need conversion utilities
to do this. For example Altera (
www.altera.com) has utilities (EAUOL18.EXE
and EAUO019.EXE located at
ftp.altera.com/pub) to convert from ABEL
4.0to AHDL.

9.15 (CUPL, 60 min.) Download and install

the CUPL demonstration package from
http://www.protel.com/download.ntm . Write
a two-page help sheet on what you did, where
the softwareisinstalled, and how to run it.

9.16 (PALASM) (30 min.) Download and
install PALASM4 v1.5 from the AMD Web
site at
ftp://ftp.amd.com/pub/pld/softwar e/palasm .

9.17 (CUPL)

O a. (15 min.) Check the equationsin the
CUPL codefor the 4-bit counter in
Section 9.2.

O b. (10 min.) Add a count-enable signal to
the code.

O c¢. (30 min.) If you have accessto CUPL,
compile your answer.

9.18 (EDIF)

O a. (30 min.) Using the syntax definitions

below and the example schematic icon
shown in Table 9.12to help you, " stitch”
back together the EDIF definition for the
7404 inverter symbol used asan examplein
Section 9.4.3.

O b. (60 min.+) Try toimport the EDIF into
your schematic entry system. Comment on
any problemsand how you attempted to
resolve them (including failures).

The EDIF Reference Manual [EDIF, 1988]
usesthe following metasyntax rules:

[optional] <at most once> {may be repeated
Zero or moretimes}

{thigthat} indicates any number of thisor that
In any order

syntactic namesareitalic

literal words are bold

SYMBOLIC constants are upper case

| dentifier NameDef means the nameis being
defined

| dentifier NameRef means the nameis being
referenced

The syntax definitions of the most common
EDIF constructs for schematics ar e as follows:

(edif edifFileNameDef
edifVersion

edifL evel

keywordM ap

{<status>|exter nal|library|design|jcomment|usal

)

(library libraryNameDef

edifL evel

technology
{<status>|cell|comment|userdata})
(technology number Definition
{figureGrouplfabricate]

<simulationl nfos>|<physicalDesignRule>|comr

)

(cell cellNameDef
celType

{<status>|view|<viewM ap>|pr operty|comment|

)

(view viewNameDef

viewType
Interface

{<status>|<contents>|comment|property|user d:

)

(interface
{port|portBundlel<symbol>|<protectionFrame
<arrayRelatedl nfo>|parameter [joined|mustJoi

per mutableltiming|simulate|<designator >|prop

)

(contents
{instance|offPageConnector [figur e|section|
net|netBundlelpagelcomment Graphics|portl mg

timing|simulatelwhenl|follow|logicPort|<boundi

comment|userdata})
(viewM ap
{portM ap|portBack Annotate|instanceM ap|inst

9.8 Bibliography

Thedata booksfrom AMD, Atmel, and other
PL D manufacturers ar e excellent sour ces of
tutorials, examples, and information on PLD
design. The EDIF tutorials produced by the
EIA [EDIF, 1988, 1989] are hard to find, but
there arefew other texts or sourcesthat
explain EDIF. EDIF doeshavea World Wide
Web site at http://www.edif.org. The EDIF
Technical Centre at the University of
Manchester (http://www.cs.man.ac.uk/cad , |
shall refer tothisas~EDIH servesasa
resour ce center for EDIF, including the
formal information models of the EDIF

language in EXPRESS format and the BNF
definitions of the language syntax. Thereisa
hypertext version of an EDIF 3 0 0 schematic
filewith hypertext links at
~EDIF/EDIFTechnical Center/softwar e CFl
has a home page and linksto other sites at
http://www.cfi.org .

PALASM4vl5isavailableas" freeware"
from AMD at
ftp://ftp.amd.com/pub/pld/softwar e/palasm .
The Data I/O home page at
http://www.data-io.com is devoted mainly to
Synario. The Viewlogic home pageis
http://www.viewlogic.com . Capilano
Computing hasa Web page at
http://www.capilano.com with DesignWorks
and MacABEL software. Protel (
http://www.protel.com/download.ntm) has
Windows-based schematic-entry tools for
FPGAsand a CUPL demonstration package.
L ogical Deviceshasa site at
http://www.logicaldevices.com . Atmel has

several demonstration and code examplesfor
ABEL and CUPL at
ftp://www.atmel.com/pub/atmel

9.9 References

Page numbersin brackets after areference
Indicate itslocation in the chapter body.

CFl Standardsfor Electronic Design
Automation Release 1.0. 1992. CFI published
afour-volumeset in 1992, | SBN
1-882750-00-4 (set). Thefirst volume, | SBN
1-882750-01-2, is approximately 300 pages
and containsa brief introduction
(approximately 10 pages) and the Electrical
Connectivity model. Unfortunately two of the
volumes wer e labeled as volumethree. The
(first) third volumeisthe Tool Encapsulation
Specification, | SBN 1-882750-03-09
(approximately 100 pages). The (second) third
volume, | SBN 1-882750-02-0, coversthe
Inter-Tool Communication Programming

| nter face (approximately 150 pages). The
fourth volume, ISBN 1-882750-04-7, is
approximately 100 pages long and coversthe
Computing Environment Services
requirement [referencelocation |.

EDIF ismaintained by the EIA, EIA
Standar ds Sales Office, 2001 Pennsylvania
Ave., N.W., Washington, DC 20006, (202)
457-4966 [reference location |:

EDIF Steering Committee. 1988. EDIF
Reference Manual Version 2.0.0. Washington,
DC: Electronic Industries Association. | SBN
0-7908-0000-4.

EDIF Steering Committee. 1988. I ntroduction
to EDIF. Washington, DC: Electronic
|ndustries Association. | SBN 0-7908-0001-2.

EDIF Steering Committee. 1989. EDIF
Connectivity. Washington, DC: Electronic
I ndustries Association. | SBN 0-7908-0002-0.

EDIF Schematic Technical Subcommittee.
1989. Using EDIF 2.0.0 for Schematic
Transfer. Washington, DC: Electronic

| ndustries Association.

EXPRESS L anguage Reference Manual. | SO
TC184/SC4/W G5 Document N14, Mar ch 29,
1991 [reference location

