to index of chapters

CHAPTER 10
VHDL

The U.S. Department of Defense (DoD) supported the development of VHDL (VHSIC hardware
description language) as part of the VHSIC (very high-speed IC) program in the early 1980s. The
companiesin the VHSIC program found they needed something more than schematic entry to describe
large ASICs, and proposed the creation of a hardware description language. VHDL was then handed
over to the Institute of Electrical and Electronics Engineers (IEEE) in order to develop and approve the
|EEE Standard 1076-1987. 1 As part of its standardization process the DoD has specified the use of
VHDL as the documentation, simulation, and verification medium for ASICs (MIL-STD-454). Partly
for this reason VHDL has gained rapid acceptance, initially for description and documentation, and then
for design entry, simulation, and synthesis as well.

The first revision of the 1076 standard was approved in 1993. References to the VHDL Language
Reference Manua (LRM) in this chapter--[VHDL 87LRM2.1, 93LRM2.2] for example--point to the
1987 and 1993 versions of the LRM [IEEE, 1076-1987 and 1076-1993]. The prefixes 87 and 93 are
omitted if the references are the same in both editions. Technically 1076-1987 (known as VHDL-87) is
now obsolete and replaced by 1076-1993 (known as VHDL-93). Except for code that is marked

' VHDL- 93 onl y’ the examplesin this chapter can be analyzed (the VHDL word for "compiled") and
simulated using both VHDL-87 and VHDL-93 systems.

10.1 A Counter

10.2 A 4-bit Multiplier

10.3 Syntax and Semantics of VHDL

10.4 Identifiersand Literals

10.5 Entities and Architectures

10.6 Packagesand Libraries

10.7 Interface Declarations

10.8 Type Declarations

10.9 Other Declarations

10.10 Sequential Statements

10.11 Operators

10.12 Arithmetic

10.13 Concurrent Statements

10.14 Execution

10.15 Configurations and Specifications
10.16 An Engine Controller

10.17 Summary

10.18 Problems

10.19 Bibliography

10.20 References

1. Some of the material in this chapter is reprinted HREF="CH10.htm">Previous page Next page

10.1 A Counter

The following VHDL model describes an electrical "black box" that contains a 50 MHz clock generator
and a counter. The counter increments on the negative edge of the clock, counting from zero to seven,
and then begins at zero again. The model contains separate processes that execute at the sametime as
each other. Modeling concurrent execution is the major difference between HDLs and computer
programming languages such as C.

entity Counter_1 is end; -- declare a "black box" called Counter_1
library STD; use STD. TEXTIO all; -- we need this library to print
architecture Behave_ 1 of Counter 1 is -- describe the "black box"
-- declare a signal for the clock, type BIT, initial value 'O’
signal Cock : BIT :="0
-- declare a signal for the count, type INTEGER, initial value O
signal Count : |INTEGER := 0;
begi n
process begin -- process to generate the cl ock
wait for 10 ns; -- a delay of 10 ns is half the clock cycle
G ock <= not d ock;
if (now > 340 ns) then wait; end if; -- stop after 340 ns

end process;
-- process to do the counting, runs concurrently with other processes
process begin
-- wait here until the clock goes from1l to O
wait until (Clock ='0");
-- now handl e the counting
if (Count = 7) then Count <= O0;
el se Count <= Count + 1;
end if;
end process;
process (Count) variable L: LINE begin -- process to print
wite(L, now); wite(L, STRING (" Count="));
wite(L, Count); witeline(output, L);
end process;
end;

Throughout this book VHDL keywords (reserved words that are part of the language) are shown in bold
type in code examples (but not in the text). The code examples use the bold keywords to improve
readability. VHDL code is often lengthy and the code in this book is always complete wherever
possible. In order to save space many of the code examples do not use the conventional spacing and
formatting that is normally considered good practice. So "Do as | say and not as | do."

The steps to simulate the model and the printed results for Count er _1 using the Model Technology
V-System/Plus common-kernel simulator are as follows:

> vlib work
> vcom Counter_1.vhd
Model Technol ogy VCOM V- System VHDL/ Veril og 4.5b
- Loadi ng package standard
- Conpiling entity counter_1
- Loadi ng package textio
- Conpiling architecture behave_ 1 of counter_1
> vsim-c counter_1
Loading /../std.standard
Loading /../std.textio(body)
Loadi ng wor k. counter_1(behave 1)
VSIM 1> run 500
0 ns Count =0
20 ns Count =1
(...15 lines omtted...)
340 ns Count=1
VSI M 2> quit
>

page Next page
10.2 A 4-bit Multiplier

This section presents a more complex VHDL example to motivate the study of the syntax and semantics
of VHDL in the rest of this chapter.

10.2.1 An 8-bit Adder

Table 10.1 shows a VHDL model for the full adder that we described in Section 2.6, "Datapath Logic
Cells." Table 10.2 shows a VHDL model for an 8-bit ripple-carry adder that uses eight instances of the
full adder.

TABLE 10.1 A full adder.

entity Full _Adder is

port (X, Y, Gn: in BIT, Cout, Sum out BIT);
end Ful | _Adder;
architecture Behave of Full_Adder is
begin
Sum <= X xor Y xor Cin after TS;
Cout <= (X and Y) or (X and Cin) or (Y and G n) after TC
end;

generic (TS : TIME :=0.11 ns; TC: TIME := 0.1 ns);

Caou
=
Ysm
in

Timing:

TS(Inputto Sum)=0.11
ns

TC (Input to Cout) = 0.1
ns

TABLE 10.2 An 8-bit ripple-carry adder.

entity Adder8 is
port (A, B: in BIT_VECTOR(7 downto 0);
Cn: in BIT, Cout: out BIT,
Sum out BIT_VECTOR(7 downto 0));
end Adder 8;
architecture Structure of Adder8 is
component Ful | _Adder
port (X, Y, Gn: in BIT, Cout, Sum out BIT);
end conponent;
signal C BIT_VECTOR(7 downto 0);
begin
Stages: for i in 7 dowmto O generate
LowBit: if i = 0 generate

end generat e;
QherBits: if i /=0 generate
FA: Ful | _Adder port map
C(A(), B(i), C(I-l) (i), Sun(i));
end generat e;
end generate;
Cout <= C(7);
end;

FA: Ful | _Adder port map (A(0),B(0),Ci n,C(0), Sum0));

0 I» [I [0 I+ [0 1= [0 I [0 I= [0 Ix [0 I

10.2.2 A Register Accumulator

Table 10.3 shows a VHDL model for a positive-edge-triggered D flip-flop with an active-high
asynchronous clear. Table 10.4 shows an 8-bit register that uses this D flip-flop model (this model only
provides the Q output from the register and leaves the QN flip-flop outputs unconnected).

TABLE 10.3 Positive-edge-triggered D flip-flop with asynchronous clear.

entity DFFClr is

generic(TRQ: TIME := 2 ns; TCQ: TIME := 2
port (CLR, CLK, D: inBIT, Q @B : out BIT)
end;
architecture Behave of DFFCIr is
signal Q : BIT,
begin QB <= not Q; Q<= Q;
process (CLR, CLK) begin
if CLR="1 then Q <='0" after TRQ
el sif CLK EVENT and CLK = '1’

then Q <= D after TCQ
end if;
end process;
end;

ns);

Timing:

TRQ(CLRto Q/QN) =2ns

TCQ(CLK to Q/QN) =2 ns

TABLE 10.4 An 8-bit register.

entity Register8 is

port (D: in BIT_VECTOR(7 downto 0);

Ck, Cr: in BIT; Q: out BIT VECTOR(7 down
end;

architecture Structure of Register8 is
conmponent DFFC r

port (Cr, dk, D: inBIT, Q QB:
end conponent;
begin

STAGES: for i in 7 dowmto O generate

FF: DFFCr port map (dr,
end generat e;

dk, D),

end;

to 0));

ik
out BIT);

8-hit register. Uses
Qi),

open);
DFFClIr positive
edge-triggered

flip-flop model.

Table 10.5 shows amodel for a datapath multiplexer that consists of eight 2:1 multiplexerswith a
common select input (this select signal would normally be a control signal in adatapath). The multiplier
will use the register and multiplexer components to implement a register accumulator.

TABLE 10.5 An 8-bit multiplexer.

entity Mux8 is

generic (TPD : TIME := 1 ns);

port (A, B: in BIT_VECTOR (7 downto 0);

Sel inBT:="0; Y: out BIT_VECTOR (7 d
end;
archi tecture Behave of Mux8 is
begin

Y <= A after TPD when Sel = '1" else B afte
end;

AE?
T
B

ownto 0)); [— -
Eight 2:1 MUXswith

r TPD: single select inpuit.

Timing:

TPD (inputto Y) =1ns

10.2.3 Zero Detector

Table 10.6 shows amodel for a variable-width zero detector that accepts a bus of any width and will

produce asingle-bit output of * 1’ if all input bits are zero.

TABLE 10.6 A zerodetector.

entity All Zero is
generic (TPD : TIME := 1 ns);
port (X : BIT VECTOR, F : out BIT);
end;
architecture Behave of All Zero is
begin process (X) begin F <="'1" after TPD,
for j in X RANGE | oop
if X(j) ='1 then F <='0" after TPD;, end if;
end | oop;
end process;
end;

L }:.F

Variable-width zero
detector.

Timing:

TPD(XtoF)=1ns

10.2.4 A Shift Register

Table 10.7 shows a variable-width shift register that shifts (left or right under input control, DI R) on the
positive edge of the clock, CLK , gated by a shift enable, SH. The parallel load, LD, is synchronous and
alignsthe input LSB to the LSB of the output, filling unused M SBs with zero. Bits vacated during shifts

are zero filled. The clear, CLR, is asynchronous.

TABLE 10.7 A variable-width shift register.

entity ShiftNis
generic (TCQ: TIME := 0.3 ns; TLQ: TIME := 0.5 ns;
TSQ: TIME := 0.7 ns);
port (CLK, CLR, LD, SH, DR in BIT;
D: in BIT_ VECTOR, @ out BIT_VECTOR);

CLF
acti\

LD
hig

SH !
higt

DIR
1=

begin assert (D LENGTH <= @ LENGTH)
report "D wider than output Q' severity Failure;
end ShiftN,
architecture Behave of ShiftNis
begin Shift: process (CLR, CLK)
subtype InB is NATURAL range D LENGTH 1 downto O;
subtype QutB is NATURAL range Q@ LENGTH 1 downto O;
variable St: BI T_VECTOR(Qut B);
begin
if CLR="1 then
St := (others =>"'0")
el sif CLK EVENT and CLK="1" t
if LD="1 then
St := (others =>'0");
St(InB) := D
Q<= St after TLQ
elsif SH="1" then
case DIR is
when "0 => St
when '1' => St
end case;
Q<= St after TSQ

; Q<= St after TCQ
hen

0" & St(St’LEFT downto 1);

end if;
end if;
end process;
end;

St(St’ LEFT-1 downto 0) & '0';

DD

QD

Vari
shift
InptL
mus
than
widl
| eft-
righ
undk
DIR
MSt
Zero
duri
Cles
asyr
Loa

sync

Tim

I
o

TLQ
051

TSQ
0.7

10.2.5 A State Machine

To multiply two binary numbers A and B, we can use the following algorithm:
If the LSB of Ais’ 1’ , then add B into an accumulator.

Shift A one bit to the right and B one bit to the | eft.

Stop when all bits of A are zero.

Table 10.8 shows the VHDL model for a Moore (outputs depend only on the state) finite-state machine

for the multiplier, together with its state diagram.

TABLE 10.8 A Moore state machinefor the multiplier.

entity SM1 is

generic (TPD : TIME := 1 ns);

port(Start, Ok, LSB, Stop, Reset: in BIT;
Init, Shift, Add, Done : out BIT);

end;

architecture More of SM1 is

type STATETYPE is (I, C, A S, E);

signal State: STATETYPE;

begin

Init <= '1" after TPD when State = |
else 'O after TPD;

Add <= '1" after TPD when State = A

else 'O after TPD;
Shift <= '1" after TPD when State = S
else 'O after TPD
Done <= '1' after TPD when State = E
else 'O after TPD;
process (CLK, Reset) begin
if Reset = '1" then State <= E;
elsif CLK EVENT and CLK = '1" then
case State is
when | => State <= C,
when C =>
if LSB ="'1 then State <= A
elsif Stop =’'0 then State <= S;
el se State <= E;
end if;
when A => State <= S
when S => State <= C
when E =>
if Start ='1’
end case;
end if;
end process;
end;

then State <= 1; end if;

inputs ol

Start Shift

& Add

L3 IFit

&1 Lare
Flag=t

State Function

E End of multiply cycl:
I Initialize: clear outpu
register and load input
registers.

C Check if LSB of regi
A

IS zero.

A Add shift register B
accumulator.

S Shift input register A

and input register B lef

10.2.6 A Multiplier

Table 10.9 shows a schematic and the VHDL code that describes the interconnection of all the
components for the multiplier. Notice that the schematic comprises two halves. an 8-bit-wide datapath
section (consisting of the registers, adder, multiplexer, and zero detector) and a control section (the
finite-state machine). The arrows in the schematic denote the inputs and outputs of each component. As
we shall seein Section 10.7, VHDL has strict rules about the direction of connections.

TABLE 10.9 A 4-bit by 4-bit multiplier.

Hilits
Star =
=t | Stan]|Shift | Shift
A, D4 1= ERA KE‘F F Shop FTaa] FiTa's|
LI - : EE| [Tt
e Tt 5 i L1 b
=) DTH
LR TLE
shifl JOLR
EET |Fe
" A A
1
B D 4@ ishBia SPEE B
Iun-:rt I£-E| 5 ' 'E A
v 1 =
1 TTH & o ML ot E‘ - Fesut
cLk M LKL Gk]
LIE;
ggﬁm "[GLR e ol
E
Fesst |HESEt REGdr= Resstar ni
—

entity Mult8 is

port (A B: in BIT_VECTOR(3 downto 0); Start, CLK, Reset: in BIT;
Result: out BIT_VECTOR(7 downto 0); Done: out BIT); end Milt8;
architecture Structure of Mult8 is use work. Mult_Conponents. al | ;
signal SRA, SRB, ADDout, MJXout, REGout: BIT_VECTOR(7 downto 0);

signal Zero, Init, Shift, Add, Low. BIT :='0"; signal Hgh: BIT :="1";
signal F, OFL, REGclr: BIT;
begin

REGclr <= Init or Reset; Result <= REGout;

SR1 : ShiftN port map(CLK=>CLK, CLR=>Reset, LD=>I ni t, SH=>Shi ft, Dl R=>Low , D=>A, Q=>SRA) ;
SR2 : ShiftN port map(CLK=>CLK, CLR=>Reset, LD=>I ni t, SH=>Shi ft, Dl R=>Hi gh, D=>B, Q=>SRB) ;
Z1 : Al Zero port map(X=>SRA, F=>Zer o) ;

Al : Adder8 port map(A=>SRB, B=>RECGout , G n=>Low, Cout =>OFL, Sun=>ADDout) ;

ML : Mux8 port map(A=>ADDout , B=>REGout , Sel =>Add, Y=>MJXout) ;

R1 : Register8 port map(D=>MJXout, Q=>REGout , Cl k=>CLK, d r =>RECcl r);

F1 : SM1 port map(Start, CLK, SRA(0), Zero, Reset, I nit, Shift, Add, Done) ;

end;

10.2.7 Packagesand Testbench

To complete and test the multiplier design we need afew more items. First we need the following
"components list" for the itemsin Table 10.9:

package Mult_Conponents is
conponent Mux8 port (A B:BlI T_VECTOR(7 downto 0);

Sel:BIT; Y:out BIT VECTOR(7 downto 0));end conponent;
conponent All Zero port (X : BIT_VECTOR;

F:out BIT);end conponent;
conponent Adder8 port (A B:BIT_VECTOR(7 downto 0);Cn:BIT,

Cout:out BIT; Sumout BIT VECTOR(7 downto 0));end conponent;
conponent Regi ster8 port (D:BlI T_VECTOR(7 downto O);

Ak,dr:BIT; Qout BIT VECTOR(7 downto 0));end conponent;
conponent ShiftN port (CLK, CLR, LD, SH, DIR BIT,; D: Bl T_VECTOR;

Q out BIT_VECTOR); end conponent;
conponent SM 1 port (Start, CLK, LSB, St op, Reset: BI T,

Init,Shift, Add, Done: out BIT); end conponent;
end;

Next we need some utility code to help test the multiplier. The following VHDL generates a clock with
programmable "high" time (HT) and "low" time (LT):

package Clock Uils is

procedure C ock (signal C out Bit; HT, LT:TIM);

end Cock Uils;

package body Clock Uils is

procedure Cock (signal C out Bit; HI, LT:TIME) is

begi n
loop C<="1" after LT, 'O after LT + HT; wait for LT + HT;
end | oop;

end;

end Clock Uils;

Finally, the following code defines two functions that we shall also use for testing--the functions convert
an array of bits to a number and vice versa

package Uils is
function Convert (N,L: NATURAL) return BI T_VECTOR
function Convert (B: BIT_VECTOR) return NATURAL;
end Utils;
package body Utils is
function Convert (N, L: NATURAL) return BIT VECTOR is
variable T:BI T_VECTOR(L-1 downto 0);
vari abl e V: NATURAL: = N;
begin for i in TRIGHT to T LEFT | oop
T(i) := BT VAL(V nod 2); V.= V/2;
end | oop; return T,
end;
function Convert (B: BIT_VECTOR) return NATURAL is
variable T:BlI T_VECTOR(B LENGTH 1 downto 0) := B;
vari abl e V: NATURAL: = O;
begin for i in TRIGHT to T LEFT | oop
if T(i) =1 then Vi=V + (2**i); end if;
end | oop; return V,
end;
end Utils;

The following code tests the multiplier model. Thisis atestbench (this simple exampleis not a
comprehensive test). First we reset the logic (line 17) and then apply a series of values to the inputs, A
and B . The clock generator (line 14) supplies a clock with a 20 ns period. The inputs are changed 1 ns
after apositive clock edge, and remain stable for 20 ns through the next positive clock edge.

entity Test_ Mult8 1 is end; -- runs forever, use break!!
architecture Structure of Test_Milt8_1 is
use Work. Utils.all; use Wrk.dock _Wils.all;

conponent Mult8 port

(A, B: BIT VECTOR(3 downto 0); Start, CLK, Reset : BIT,
Result : out BIT_VECTOR(7 downto 0); Done : out BIT);
end conponent;

signal A, B : BIT_VECTOR(3 downto 0);

signal Start, Done : BIT :="'0’

signal CLK, Reset : BIT;

signal Result : BIT_VECTOR(7 downto 0);

signal DA, DB, DR : INTEGER range 0 to 255;

begi n

C. dock(CLK, 10 ns, 10 ns);

UUT: Mult8 port map (A, B, Start, CLK, Reset, Result, Done);

DR <= Convert(Result);

Reset <= '1', 'O after 1 ns;
process begin
for i inl1lto 3 loop for j in4to 7 |loop
DA <=1i; DB <=j;

A<=Convert (i, A Lengt h); B<=Convert (j, B Length);
wait until CLK EVENT and CLK="1"; wait for 1 ns;
Start <='1", '0" after 20 ns; wait until Done ="'1";
wait until CLK EVENT and CLK="1’
end | oop; end | oop;
for i inOto 1l loop for j in O to 15 |oop
DA <=1i; DB <=j;
A<=Convert (i, A" Lengt h) ; B<=Convert (j, B Length);
wait until CLK EVENT and CLK="1"; wait for 1 ns;
Start <='1'", '0 after 20 ns; wait until Done ="'1";
wait until CLK EVENT and CLK="1'
end | oop; end | oop;
wait ;
end process;
end;

Hereisthe signal trace output from the Compass Scout simulator:

Time(fs) + Cycle da db dr
""""""""" o+00 o 0o o0
o+ 1: * 1= 4 * 0

92000000+ 3: 1 4 * 4

150000000+ 1: * 1= 5 4
193000000+ 3: 1 5 * 0
252000000+ 3: 1 5* 5
310000000+ 1: * 1= 6 5
353000000+ 3: 1 6 * 0
412000000+ 3: 1 6 * 6

Positive clock edges occur at 10, 30, 50, 70, 90, ... ns. Y ou can see that the output (dr) changes from’ 0’
to’ 4 at 92 ns, after five clock edges (with a2 ns delay due to the output register, R1).

page Next page

10.3 Syntax and Semantics of VHDL

We might define the syntax of avery small subset of the English language in Backus-Naur form (BNF)
using constructs as follows:

sentence ::= subject verb object.

subj ect = The| A noun

obj ect = [article] noun {, and article noun}
article = the|a

noun = man| shar k| house| f ood

verb = eats|paints

::= means "can be repl aced by"

| neans "or"

[T nmeans "contents optional"

{} neans "contents can be left out, used once, or repeated"

The following two English sentences are correct according to these syntax rules.

A shark eats food.
The house paints the shark, and the house, and a man

We need semantic rules to tell us that the second sentence does not make much sense. Most of the
VHDL LRM isdedicated to the definition of the language semantics. Appendix A of the LRM (whichis
not officially part of the standard) explains the complete VHDL syntax using BNF.

The rules that determine the characters you can use (the "a phabet” of VHDL), where you can put
spaces, and so on are lexical rules[VHDL LRM13]. Any VHDL description may be written using a
subset of the VHDL character set:

basi c_character ::= upper_case_letter|digit|special_character
| space_character|format_effector

The two space characters are: space (SP) and the nonbreaking space (NBSP). The five format
effectors are: horizontal tabulation (HT), vertical tabulation (VT), carriagereturn (CR), linefeed (LF
), and form feed (FF). The charactersthat are legal in VHDL constructs are defined as the following
subsets of the complete character set:

graphi c_character ::=
upper _case_l etter|digit|special _character|space_character
| | ower _case_letter| other_special _character
speci al _character ::=" #&" () *+, - . [/ :; <=>[1 _

The 11 other specia charactersare:! $ % @? \ ~ * { } ~ and(in VHDL-93 only) 34 other
characters from the ISO Latin-1 set [I SO, 1987]. If you edit code using a word processor, you either
need to turn smart quotes off or override this feature (use Tools... Preferences... General in MS Word,
and use CTRL-’ and CTRL-" in Frame).

When you learn alanguage it is difficult to understand how to use a noun without using it in a sentence.
Strictly this means that we ought to define a sentence before we define a noun and so on. In this chapter
| shall often break the "Define it before you useit" rule and use code examples and BNF definitions that
contain VHDL constructs that we have not yet defined. Thisis often frustrating. Y ou can use the book

index and the table of important VHDL constructs at the end of this chapter (Table 10.28) to help find
definitionsif you need them.

We shall occasionally refer to the VHDL BNF syntax definitions in this chapter using references--BNF
[10.1], for example. Only the most important BNF constructs for VHDL are included here in this
chapter, but a complete description of the VHDL language syntax is contained in Appendix A.

page Next page

10.4 ldentifiersand Literals

Names (the "nouns' of VHDL) are known as identifiers [VHDL LRM13.3]. The correct "spelling” of an
identifier is defined in BNF as follows:

identifier ::=
letter {[underline] letter_or _digit}
| \'graphi c_character{graphi c_character}\

In this book an underlinein VHDL BNF marks items that are new or that have changed in VHDL-93
from VHDL-87. The following are examples of identifiers:

s -- A sinple nane.
S -- Asinple nane, the same as s. VHDL is not case sensitive
a_name -- |nbedded underscores are K
- Successive underscores are illegal in nanes: Ill__ega
- Nanes can’'t start with underscore: _Illega
- Names can’t end with underscore: 1llegal _
Too_Good -- Nanes nust start with a letter.

-- Nanmes can’t start with a nunber: 2_Bad

\ 74LS00\ -- Extended identifier to break rules (VHDL-93 only).
VHDL \vhdl\ \VHDL\ -- Three different names (VHDL-93 only).
s_array(0) -- A static indexed nanme (known at analysis tine).
s array(i) -- A non-static indexed nane, if i is a variable.

Y ou may not use areserved word as adeclared identifier, and it is wise not to use units, special
characters, and function names. ns , ms , FF ,read ,wite, and soon. You may attach qualifiersto
names as follows [VHDL LRM6]:

CMOS. all -- A selected or expanded nanme, all units in library CMOS.
Data’ LEFT(1) -- An attribute nane, LEFT is the attribute designator
Data(24 downto 1) -- A slice nane, part of an array: Data(31 downto 0)
Data(l) -- An indexed name, one el ement of an array.

Comments follow two hyphens’ - -’ and instruct the analyzer to ignore the rest of the line. There are no
multiline commentsin VHDL. Tabsimprove readability, but it is best not to rely on atab asa spacein
case the tabs are lost or deleted in conversion. Y ou should thus write code that is still legal if al tabs are
deleted.

There are various forms of literals (fixed-value items) in VHDL [VHDL LRM13.4-13.7]. The following
code shows some examples:

entity Literals_1 is end;
architecture Behave of Literals 1 is
begi n process
variable 11 : integer; variable R : real
variable Cl1 : CHARACTER, variable S16 : STRING 1 to 16);
variable BV4: BIT_VECTOR(O to 3);
variable BV12 : BIT_VECTOR(O to 11);
variable BV16 : BIT_VECTOR(O to 15);

begi n
-- Abstract literals are decimal or based literals.
-- Decinal literals are integer or real literals.
-- Integer literal exanples (each of these is the sane):

1 := 120000; Int := 12e4; Int := 120 _000;
-- Based literal exanples (each of these is the sane):

1 := 2#1111_1111#; 11 := 16#FFFF#;
-- Base nmust be an integer from2 to 16:

1 := 16: FFFF:; -- you may use a : if you don't have #
-- Real literal exanples (each of these is the sane):
R := 120000.0; R := 1.2e5; R := 12.0E4;

-- Character literal nust be one of the 191 graphic characters.
-- 65 of the 256 I SO Latin-1 set are non-printing control characters

Cl:="A; ClL:="a,; -- different fromeach other
-- String literal exanples:
S16 : = string" & " literal"; -- concatenate long strings
S16 := """Hello,"" | said!'"; -- doubl ed quotes
S16 := % string literal % -- can use % instead of
S16 : = %Bal e: 5096 of f111% -- doubl ed %
-- Bit-string literal exanples:
Bv4 := B"1100"; -- binary bit-string litera
BvV12 := O'7777"; -- octal bit-string litera
BV16 : = X'FFFF"; -- hex bit-string litera
wai t; end process; -- the wait prevents an endl ess | oop

end;

10.5 Entitiesand Architectures

The highest-level VHDL construct isthe design file[VHDL LRM11.1]. A design file contains design
units that contain one or more library units. Library unitsin turn contain: entity, configuration, and
package declarations (primary units); and architecture and package bodies (secondary units).

design file ::=
{l'ibrary clause|use_cl ause} library unit
{{library_cl ause|use_cl ause} library_unit}
l[ibrary unit ::= primary_unit]|secondary_unit
primary _unit ::=
entity declaration|configuration_decl aration| package_decl arati on
secondary_unit ::= architecture_body| package_body

Using the written language analogy: a VHDL library unit isa"book," aVHDL design fileisa
"bookshelf,” and aVHDL library is a collection of bookshelves. A VHDL primary unit is alittle like the
chapter title and contents that appear on the first page of each chapter in this book and a VHDL
secondary unit is like the chapter contents (though thisis stretching our analogy alittle far).

| shall describe the very important concepts of entities and architectures in this section and then cover

libraries, packages, and package bodies. Y ou define an entity, a black box, using an entity declaration
[VHDL LRM1.1]. Thisisthe BNF definition:

entity declaration ::=

entity identifier is
[generic (formal generic_interface list);]
[port (formal _port_interface_list);]
{entity_declarative_itemn

[begin

{[1abel:] [postponed] assertion
| [l abel :] [postponed] passive_procedure_cal
| passi ve_process_statenent}]

end [entity] [entity identifier]

The following is an example of an entity declaration for a black box with two inputs and an output:

entity Half_Adder is
port (X, Y: inBIT :="0"; Sum Cout : out BIT); -- formals
end;

Matching the parts of this code with the constructsin BNF [10.7] you can see that thei dentifier is
Hal f _Adder andthat (X, Y: in BIT :='0"; Sum Cout: out BIT) correspondsto
(port_interface_list) inthe BNF. Theports X, Y, Sum and Cout areformal portsor formals. This
particular entity Hal f _Adder does not use any of the other optional constructsthat are legal in an entity
declaration.

The architecture body [VHDL LRM1.2] describes what an entity does, or the contents of the black box
(it isarchitecture body and not architecture declaration).

architecture_body ::=
architecture identifier of entity nane is
{bl ock_decl arative_iten}
begi n
{concurrent _statenent}
end [architecture] [architecture_ identifier]

For example, the following architecture body (I shall just call it an architecture from now on) describes
the contents of the entity Hal f _Adder :

architecture Behave of Hal f _Adder is
begin Sum <= X xor Y; Cout <= X and Y,
end Behave;

We use the same signal nhames (the formals: sum, X, Y, and Cout) in the architecture aswe use in the
entity (we say the signals of the "parent” entity are visible inside the architecture "child"). An
architecture can refer to other entity-architecture pairs--so we can nest black boxes. We shall often refer
to an entity-architecture pair asenti t y(ar chi t ect ur e) . For example, the architecture Behave of the
entity Hal f _Adder iSHal f _Adder (Behave) .

Why would we want to describe the outside of a black box (an entity) separately from the description of
its contents (its architecture)? Separating the two makes it easier to move between different architectures
for an entity (there must be at least one). For example, one architecture may model an entity at a
behavioral level, while another architecture may be a structural model.

A structural model that uses an entity in an architecture must declare that entity and itsinterface using a
component declaration as follows [VHDL LRM4.5]:

conponent _decl aration ::=
conponent identifier [is]
[generic (local _generic_interface list);]
[port (local _port_interface_list);]
end conmponent [conponent identifier];

For example, the following architecture, Net | i st , isastructural version of the behaviora architecture,
Behave :

architecture Netlist of Half_Adder is
conponent MyXor port (A Xor,B Xor : in BIT, Z Xor : out BIT);

end conponent; -- conponent with |ocals

conmponent MyAnd port (A And,B And : in BIT;, Z And : out BIT);
end conponent; -- conponent with locals

begi n

Xorl: MyXor port map (X, Y, Sum;
Andl : MyAnd port map (X Y, Cout);
end;

Notice that:

® We declare the components: \yAnd, MyXor and their local ports (or locals): A Xor, B_Xor,
Z Xor,A And, B _And, Z_ And.

® \We instantiate the components with instance names. And1 and Xor 1.

® \We connect instances using actual ports (or actuals): X, Y, Sum, Cout .

Next we define the entities and architectures that we shall use for the components MyAnd and My Xor .

Y ou can think of an entity-architecture pair (and its formal ports) as a data-book specification for alogic
cell; the component (and itslocal ports) corresponds to a software model for the logic cell; and an
instance (and its actual ports) isthelogic cell.

We do not need to write VHDL code for yyAnd and My Xor ; the code is provided as a technology library
(also called an ASIC vendor library because it is often sold or distributed by the ASIC company that will
manufacture the chip--the ASIC vendor--and not the software company):

-- These definitions are part of a technology library:
entity AndGate is
port (And_in_1, And in 2 : in BIT; And out : out BIT); -- formals
end;
architecture Sinple of AndGate is
begin And out <= And_in_1 and And_in_2;

end;
entity XorGate is

port (Xor_in_1, Xor_in_2 : in BIT; Xor_out : out BIT); -- formals
end;

architecture Sinple of XorGate is
begi n Xor_out <= Xor_in_1 xor Xor_in_2;
end;

If we keep the description of acircuit’ sinterface (theentity) separate from its contents (the
archi tecture), weneed away to link or bind them together. A configuration declaration [VHDL
LRM1.3] binds entities and architectures.

configuration_declaration ::=
configuration identifier of entity_name is
{use_cl ause|attri bute _specification|group_declaration}
bl ock_confi guration
end [configuration] [configuration_identifier]

An entity-architecture pair is adesign entity. The following configuration declaration defines which
design entities we wish to use and associates the formal ports (from the entity declaration) with the local
ports (from the component declaration):

configuration Sinplest of Hal f_Adder is
use work. all;

for Netlist
for Andl : MyAnd use entity AndGate(Si nple)
port map -- association: formals => |ocals
(And_in_1 => A And, And_in_2 => B And, And_out => Z_
end for;
for Xorl : MyXor use entity XorGate(Si nple)
port map
(Xor _in_1 => A Xor, Xor_in_2 => B Xor, Xor_out => Z Xor);
end for;
end for;

end;

Figure 10.1 diagrams the use of entities, architectures, components, and configurations. This figure
seems very complicated, but there are two reasons that VHDL works this way:

® Separating the entity, architecture, component, and configuration makes it easier to reuse code and
change libraries. All we have to do is change names in the port maps and configuration
declaration.

® We only haveto alter and reanalyze the configuration declaration to change which architectures
we use in amodel--giving us afast debug cycle.

enfity Halt_Adder anchiecthee hetiztof Half_Adder

= Cot
Y I S * Al GOt
' AL
pons J
[A] achel
[F] fornal
[0 leeal [‘_/
o T oD
Mblor r_j
port (A_XorB_Xor : inBIT; z.,xm out BIT)

Florin_1 == A_Xor, XMor_jn_2 =- B_Xor, Xm,ﬂut = ELF;

uulﬁ#_l.l'amn Sirnplest \ /—/I
Harin_d e Xb'r'.tr".j'l:'-z: Mor_ir_d mordorin M
Xaor_jn_2
archiecthse Sinple

of ZorGae

FIGURE 10.1 Entities, architectures, components, ports, port maps, and configurations.

Y ou can think of design units, the analyzed entity-architecture pairs, as compiled object-code modules.
The configuration then determines which object-code modules are linked together to form executable
binary code.

Y ou may also think of an entity as ablock diagram, an architecture for an entity a more detailed circuit
schematic for the block diagram, and a configuration as a partslist of the circuit components with their
part numbers and manufacturers (also known asaBOM for bill of materials, rather like a shopping list).
Most manufacturers (including the U.S. DoD) use schematics and BOMss as control documents for
electronic systems. Thisis part of the rationale behind the structure of VHDL.

page Next page

10.6 Packagesand Libraries

After the VHDL tool has analyzed entities, architectures, and configurations, it stores the resulting
design unitsin alibrary. Much of the power of VHDL comes from the use of predefined libraries and
packages. A VHDL design library [VHDL LRM11.2] is either the current working library (things we are
currently analyzing) or a predefined resource library (something we did yesterday, or we bought, or that
came with the tool). The working library is named wor k and is the place where the code currently being
analyzed is stored. Architectures must be in the same library (but they do not have to be in the same
physical file on disk) as their parent entities.

You can use aVHDL package [VHDL LRM2.5-2.6] to define subprograms (procedures and functions),
declare specia types, modify the behavior of operators, or to hide complex code. Here isthe BNF for a
package declaration:

package declaration ::=
package identifier is
{subprogram decl arati on | type_declaration | subtype_decl aration
constant _declaration | signal _declaration | file_declaration
| alias_declaration | conponent decl aration
| attribute_declaration | attribute_specification
| disconnection_specification | use_clause
| shared_variabl e_declaration | group_declaration
| group_tenplate _declaration}
end [package] [package_identifier] ;

Y ou need a package body if you declare any subprograms in the package declaration (a package
declaration and its body do not have to be in the samefile):

package_body ::=
package body package identifier is

{subprogram decl arati on | subprogram body
type_decl arati on | subtype_decl aration
constant _declaration | file_declaration | alias_declaration

|
| use_cl ause

| shared_variable declaration | group_declaration
| group_tenplate_declaration}

end [package body] [package_identifier]

To make a package visible [VHDL LRM10.3] (or accessible, so you can see and use the package and its
contents), you must include alibrary clause before a design unit and a use clause either before adesign
unit or inside a unit, like this:

library MyLib; -- library clause
use MyLi b. MyPackage. all; -- use cl ause
-- design unit (entity + architecture, etc.) follows:

The STD and WORK libraries and the STANDARD package are always visible. Things that are visible to an
entity are visible to its architecture bodies.

10.6.1 Standard Package

The VHDL STANDARD package [VHDL LRM14.2] is defined in the LRM and implicitly declares the
following implementation dependent types: TI ME, | NTEGER, REAL . We shall use uppercase for types
defined in an |EEE standard package. Here is part of the STANDARD package showing the explicit type
and subtype declarations:

package Part STANDARD i s
t ype BOOLEAN

is (FALSE, TRUE); type BIT

is ("0, "1);
type SEVERI TY_LEVEL

is (NOTE, WARNI NG ERROR, FAI LURE)
subt ype NATURAL

is INTEGER range 0 to | NTEGER H GH
subt ype PGCSI TI VE

is INTEGER range 1 to | NTEGER H GH
type BI T_VECTOR

is array (NATURAL range <>) of BIT,
type STRI NG

is array (PCSITIVE range <>) of CHARACTER
-- the follow ng declarations are VHDL-93 only:
attribute FOREIGN: STRING -- for links to other |anguages
subtype DELAY LENGTH is TIME range O fs to TINME H GH
type FILE_OPEN KIND i s (READ_MODE, WRI TE_MODE, APPEND_MODE)
type FI LE_OPEN STATUS is

(OPEN_OK, STATUS_ERROR, NAVE_ERROR, MODE_ERROR) ;
end Part_STANDARD

Notice that a STRI NG array must have a positive index. The type TI ME is declared in the STANDARD
package as follows:

type TIME is range inplenentation _defined -- and varies with software
units fs; ps = 1000 fs; ns = 1000 ps; us = 1000 ns; ns = 1000 us;
sec = 1000 ns; min = 60 sec; hr = 60 mn; end units;

The STANDARD package also declares the function now that returns the current simulation time (with type
TI ME in VHDL-87 and subtype DELAY_LENGTHin VHDL-93).

In VHDL-93 the CHARACTER type declaration extends the VHDL-87 declaration (the 128 ASCI|
characters):

type Part CHARACTER is (-- 128 ASCI| characters in VHDL-87

NUL, SOH, STX, ETX, EOT, ENQ ACK, BEL, -- 33 control characters
BS, HI, LF, VI, FF, CR SO SI, -- including:
DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB, -- format effectors:
CAN, EM SUB, ESC, FSP, GSP, RSP, USP, -- horizontal tab = HT
Tyt g n gt 0 P&, ", -- line feed = LF
T,), R, e) T, == vertical tab = VT
o, "1, 2, '3, 4, '5, 6", "7, -- formfeed = FF
8, 9,)y,) = > P2 -- carriage return = CR
'@, 'A, 'B, 'C, 'D, 'E, '"F, "G, -- and others:
"H, ', 'y, 'K, 'L, "M, 'N, 'O, -- FSP, GSP, RSP, USP use P
P, 'Q, 'R, 'S, 'T, 'U, 'V, "W, -- suffix to avoid conflict
X, Y, 2z, 1, Ny, T, N, Y, == with TIME units
- L o R o ¢ N - N o

B e T "G I o« I | K o §

o L - T A | A LV

Uy 2, ¢, 1, 'y, '~, DEL -- delete = DEL

VHDL- 93 includes 96 nore Latin-1 characters, |ike ¥ (Yen) and
32 nore control characters, better not to use any of them

R | X_U_j_

~ 1 1

The VHDL-87 character set is the 7-bit coded | SO 646-1983 standard known as the ASCI| character set.
Each of the printable ASCII graphic character codes (there are 33 nonprintable control codes, like DEL
for delete) is represented by a graphic symbol (the shapes of Ietters on the keyboard, on the display, and
that actually print). VHDL-93 uses the 8-bit coded character set 1SO 8859-1:1987(E), known as 1SO
Latin-1. The first 128 characters of the 256 charactersin 1SO Latin-1 correspond to the 128-character
ASCII code. The graphic symbols for the printable ASCII characters are well defined, but not part of the
standard (for example, the shape of the graphic symbol that represents’lowercase @ is recognizable on
every keyboard, display, and font). However, the graphic symbols that represent the printable characters
from other 128-character codes of the |SO 8-bit character set are different in various fonts, languages,

and computer systems. For example, a pound sterling sign in aU.K. character set looks like this— £, but
in some fonts the same character code printsas’ # (known as number sign, hash, or pound). If you use
such characters and want to share your models with people in different countries, this can cause
problems (you can see all 256 charactersin a character set by using Insert... Symbol in MS Word).

10.6.2 Std_logic_1164 Package

VHDL does not have a built-in logic-value system. The STANDARD package predefines the type BI T with
two logic values,’ 0’ and’ 1’ , but we normally need at least two more values: * X' (unknown) and’ z’
(high-impedance). Unknown is a metalogical value because it does not exist in real hardware but is
needed for simulation purposes. We could define our own logic-value system with four logic values:

type WL4 is ("X, 0", 1", *Z); -- a four-value logic system

The proliferation of VHDL logic-value systems prompted the creation of the Std_logic 1164 package
(defined in IEEE Std 1164-1993) that includes functions to perform logical, shift, resolution, and
conversion functions for types defined in the St d_I ogi ¢c_1164 system. To use this package in adesign
unit, you must include the following library clause (before each design unit) and a use clause (either
before or inside the unit):

library I EEE; use |IEEE. std _logic_1164.all;

Thisstd_Logi c_1164 package contains definitions for a nine-value logic system. The following code
and comments show the definitions and use of the most important parts of the package 1:

package Part STD LOG C 1164 is
type STD ULOG C is
(U, -- Uninitialized
"X, -- Forcing Unknown
, -- Forcing O
, -- Forcing 1
, -- High Inpedance
, -- Weak Unknown
, -- Weak O
, -- Weak 1
-- Don’t Care);
type STD ULOG C VECTOR is array (NATURAL range <>) of STD ULCG G,
function resolved (s : STD ULOG C VECTOR) return STD ULCA C,
subtype STD LOGA C is resolved STD ULOQ C;
type STD LOG C VECTOR is array (NATURAL range <>) of STD LOG G
subt ype X01 is resolved STD ULOGA C range 'X to '1';
subtype X01Z is resolved STD UGG C range 'X to 'Z;
subtype UX01 is resolved STD ULOG C range 'U to '1';
subtype UX01Z is resolved STD ULOGA C range 'U to 'Z;
-- Vectorized overl oaded | ogi cal operators:
function "and" (L : STD UOGAC, R : STD ULOGA C) return UX01;
-- Logical operators not, and, nand, or, nor, xor, xnor (VHDL-93),
-- overloaded for STD ULOG C STD ULOG C VECTOR STD_LOG C_VECTOR
-- Strength strippers and type conversion functions:
-- function To. T (X : F) return T,
-- defined for types, T and F, where
-- F=BIT BI T_VECTOR STD ULOG C STD ULOG C VECTOR STD LOG C VECTOR
-- T=types F plus types X01 X01Z UXO1l (but not type UX01Z2)
-- Exclude 's in T in nane: TO STDULOG C not TO STD ULCGE C
-- To_XOl : L->0, H>1 others->X

LImSNROX

-- To_XO1Z: Z->Z, others as To_XO01

-- To_UX01: U >U, others as To_XO01

-- Edge detection functions:

function rising _edge (signal s: STD ULOA C) return BOOLEAN,
function falling edge (signal s: STD ULOd C) return BOOLEAN,

-- Unknown detection (returns true if s = U, X Z, W:

-- function Is_X (s : T) return BOOLEAN,

-- defined for T = STD ULOCA C STD ULOd C_VECTOR STD _LOd C_VECTOR.
end Part _STD LOG C_1164;

Notice:

® Thetype STD_ULOG C has ninelogic values. For thisreason |EEE Std 1164 is sometimes referred
to as MVL9--multivalued logic nine. There are simpler, but nonstandard, MVL4 and MVL7
packages, as well as packages with more than nine logic values, available. Values’ u ,’ X , and
' W are all metalogical values.

® There are weak and forcing logic-value strengths. If more than one logic gate drives a node (there
is more than one driver) asin wired-OR logic or athree-state bus, for example, the simulator
checks the driver strengths to resolve the actual logic value of the node using the resolution
function, r esol ved , defined in the package.

® The subtype STD LOd Cistheresolved version of the unresolved type STD ULOG C. Since
subtypes are compatible with types (you can assign one to the other) you can use either STD_LOG C
or STD_ULCOdG cfor asignal with asingle driver, but it is generally safer to use STD LOG C.

® ThetypeSTD LOG C VECTORIisthe resolved version of unresolved type STD_ULOG C_VECTOR.
Since these are two different types and are not compatible, you should use STD_LOG C VECTOR.
That way you will not run into a problem when you try to connect aSTD_LOG C VECTORtO a
STD_ULOG C_VECTOR.

® Thedon't carelogic value’ -’ (hyphen), is principally for use by synthesistools. Thevalue’ -’ is
amost always treated the same as’ X' .

® The 1164 standard defines (or overloads) the logical operators for the STD_LOG C types but not the
arithmetic operators (see Section 10.12).

10.6.3 Textio Package

Y ou can use the textio package, which is part of the library STD, for text input and output [VHDL
LRM14.3]. The following code is a part of the TEXTI O package header and, together with the comments,
shows the declarations of types, subtypes, and the use of the procedures in the package:

package Part TEXTIOis -- VHDL-93 version.

type LINE is access STRING -- LINE is a pointer to a STRI NG val ue.
type TEXT is file of STRING -- File of ASCI| records.

type SIDE is (RIGHT, LEFT); -- for justifying output data.

subtype WDTH i s NATURAL; -- for specifying widths of output fields.
file INPUT : TEXT open READ MODE is "STD INPUT"; -- Default input file.
file OQUTPUT : TEXT open WRI TE_MODE is "STD QUTPUT"; -- Default output.

-- The foll owi ng procedures are defined for types, T, where

-- T = BIT BIT_VECTOR BOOLEAN CHARACTER | NTEGER REAL TI ME STRI NG

-- procedure READLINE(file F : TEXT; L : out LINE);

-- procedure READ(L : inout LINE, VALUE : out T);

-- procedure READ(L : inout LINE, VALUE : out T; GOOD: out BOOLEAN);
-- procedure WRI TELI NE(F : out TEXT; L : inout LINE);

-- procedure WRI TE(

-- L : inout LINE

VALUE : in T;

JUSTIFIED : in SIDE = Rl GHT;

FIELD:in WDTH := 0

DIA@TS:in NATURAL := 0; -- for T = REAL only
-- UNIT:in TIME:= ns); -- for T = TIME only
-- function ENDFILE(F : in TEXT) return BOOLEAN
end Part_ TEXTI G

Hereis an example that illustrates how to write to the screen (STD_OUTPUT):

library std; use std.textio.all; entity Text is end;
architecture Behave of Text is signal count : |INTEGER := O;
begin count <= 1 after 10 ns, 2 after 20 ns, 3 after 30 ns;
process (count) variable L: LINE begin
if (count > 0) then
wite(L, now; -- Wite tine.
wite(L, STRING (" count=")); -- STRING is a type qualification
wite(L, count); witeline(output, L);
end if; end process; end;
10 ns count=1
20 ns count =2
30 ns count=3

10.6.4 Other Packages

VHDL does not predefine arithmetic operators on types that hold bits. Many VHDL simulators provide
one or more arithmetic packages that allow you to perform arithmetic operationson st d_| ogi c_1164
types. Some companies also provide one or more math packages that contain functions for floating-point
algebra, trigonometry, complex algebra, queueing, and statistics (see also [|EEE 1076.2, 1996]).

Synthesis tool companies often provide a special version of an arithmetic package, a synthesis package,
that allows you to synthesize VHDL that includes arithmetic operators. This type of package may
contain specia instructions (normally comments that are recognized by the synthesis software) that map
common functions (adders, subtracters, multipliers, shift registers, counters, and so on) to ASIC library
cells. | shall introduce the |EEE synthesis package in Section 10.12.

Synthesis companies may also provide component packages for such cells as power and ground pads,
I/O buffers, clock drivers, three-state pads, and bus keepers. These components may be

technol ogy-independent (generic) and are mapped to primitives from technol ogy-dependent libraries
after synthesis.

10.6.5 Creating Packages

It is often useful to define constants in one central place rather than using literals wherever you need a
specific value in your code. One way to do thisis by using VHDL packaged constants [VHDL
LRM4.3.1.1] that you define in a package. Packages that you define areinitially part of the working
library, wor k . Here are two example packages [VHDL LRM2.5-2.7]:

package Adder Pkg is -- a package declaration
constant BUSW DTH : | NTEGER : = 16;
end Adder Pkg;
use wor k. Adder Pkg.all; -- a use clause
entity Adder is end Adder;
architecture Flexible of Adder is -- work.Adder Pkg is visible here

begi n process begin
MyLoop : for j in O to BUSWDTH | oop -- adder code goes here
end | oop; wait; -- the wait prevents an endl ess cycle
end process;
end Fl exi bl e;
package GLOBALS i s
constant H : BIT :="1"; constant LO BIT :="'0’
end GLOBALS;

Hereis a package that declares a function and thus requires a package body:

package Add _Pkg Fn is

function add(a, b, ¢ : BIT_VECTOR(3 downto 0)) return Bl T_VECTOR

end Add_Pkg_Fn;

package body Add Pkg Fn is

function add(a, b, ¢ : BIT_VECTOR(3 downto 0)) return BIT VECTOR i s
begin return a xor b xor c; end;

end Add_Pkg_Fn;

The following exampleis similar to the VITAL (VHDL Initiative Toward ASIC Libraries) package that
provides two alternative methods (procedures or functions) to model primitive gates (I shall describe
functions and procedures in more detail in Section 10.9.2):

package And_Pkg is
procedure V_And(a, b : BIT; signal ¢ : out BIT);
function V_And(a, b : BIT) return BIT;
end;
package body And_Pkg is
procedure V_And(a, b : BIT; signal ¢ : out BIT) is
begin ¢ <= a and b; end;
function V_And(a, b : BIT) return BIT is
begin return a and b; end;
end And_Pkg;

The software determines where it stores the design units that we analyze. Suppose the package
Add_Pkg_Fn isinlibrary M/Li b . Then we need alibrary clause (before each design unit) and use clause
with a selected name to use the package:

library MyLib; -- use MyLib. Add_Pkg.all; -- use all the package
use MyLi b. Add_Pkg Fn.add; -- just function 'add" fromthe package
entity Lib 1 is port (s : out BIT VECTOR(3 downto 0) := "0000"); end

architecture Behave of Lib_1 is begin process
begin s <= add ("0001", "0010", "1000"); wait; end process; end,

The VHDL software dictates how you create the library MyLi b from the library wor k and the actual
name and directory location for the physical file or directory on the disk that holds the library. The
mechanism to create the links between the file and directory names in the computer world and the
library namesin the VHDL world depends on the software. There are three common methods:

® UseaUNIX environment variable (SETENV MyLi b ~/ MyDi r ect or y/
MyLi bFi | e , for example).

® Create a separate file that establishes the links between the filename known to the operating
system and the library name known to the VHDL software.

® Includethelinksin aninitialization file (often withan’ . i ni > suffix).

1. The code in this section is adapted with permission from IEEE Std 1164-1993, © Copyright IEEE. All
rights reserved.

10.7 Interface Declarations

An interface declaration declares interface objects that may be interface constants, signals, variables, or
files[VHDL 87LRM4.3.3, 93LRM4.3.2]. Interface constants are generics of adesign entity, a
component, or ablock, or parameters of subprograms. Interface signals are ports of a design entity,
component, or block, and parameters of subprograms. Interface variables and interface files are
parameters of subprograms.

Each interface object has a mode that indicates the direction of information flow. The most common
modes arei n (the default), out , i nout , and buf f er (afifth mode, | i nkage , is used to communicate
with other languages and is infrequently used in ASIC design). The restrictions on the use of objects
with these modes are listed in Table 10.10. An interface object is read when you use it on the RHS of an
assignment statement, for example, or when the object is associated with another interface object of
modesi n , i nout (orlinkage). Aninterface object isupdated when you useit on the LHS side of an
assignment statement or when the object is associated with another interface object of mode out
buffer ,inout (Orlinkage). Therestrictionson reading and updating objects generate the diagram at
the bottom of Table 10.10 that shows the 10 allowed types of interconnections (these rules for modes
buf f er andi nout arethe same). The interface objects (| nsi de and Qut si de) in the examplein this
table are ports (and thus interface signals), but remember that interface objects may also be interface
constants, variables, and files.

TABLE 10.10 Modes of interface objects and their properties.
entity E1 is port (Inside : in BIT); end; architecture Behave of El is begin end,

entity E2 is port (Qutside : inout BIT :="'1"); end; architecture Behave of E2 is
component E1 port (Inside: in BIT); end conponent; signal UpdateMe : BIT; begin
I1: E1 port map (I nside => Qutside); -- formal/local (node in) => actual (node inol
UpdateMe <= Qutside; -- OKto read Qutside (node inout)

Qutside <='0" after 10 ns; -- and OK to update Qutside (nopde inout)

end;

Possible modes of interface
object, Qut si de

Can you read cut si de (RHS of

i n (default) [out [inout |buffer

assignment)? Yes No [Yes Yes
Can you update cut si de (LHS

of assignment)? No Yes|Yes Yes
Modes of | nsi de that Qut si de N out |any any

may connect to (see below) 1

Ez
(e — e E

mode X, mode

4 &
Outzide Inside

i
irterface cbiect [Elfomal @

sigral, vanable,
corstant, or ile [Eactsl

rmea s egal o associae inerface
chject (Dutside) of rode Xwih
fornal | Inside) of mode 4

There are other special-case rules for reading and updating interface signals, constants, variables, and
filesthat | shall cover in the following sections. The situation is like the spelling rule, "i before e except
after c." Table 10.10 correspondsto the rule "i before e.”

10.7.1 Port Declaration

Interface objects that are signals are called ports [VHDL 93LRM1.1.1.2]. Y ou may think of ports as
"connectors' and you must declare them as follows:

port (port_interface list)
interface list ::=
port _interface _declaration {; port_interface_declaration}

A port interface declaration is alist of ports that are the inputs and outputs of an entity, ablock, or a
component declaration:

interface_declaration ::=
[signal]
identifier {, identifier}:[in]out|inout]|buffer|linkage]
subtype_indication [bus] [:= static_expression]

Each port forms an implicit signal declaration and has a port mode. | shall discuss bus , which isasignal
kind, in Section 10.13.1. Here is an example of an entity declaration that has five ports:

entity Association_1 is
port (signal X, Y: inBIT:="'0; Z1, Z2, Z3 : out BIT);
end;

In the preceding declaration the keyword si gnal isredundant (because all ports are signals) and may be
omitted. Y ou may also omit the port modei n because it is the default mode. In this example, the input
ports X and Y are driven by a default value (in general a default expression) of * 0’ if (and only if) the
ports are left unconnected or open. If you do leave an input port open, the port must have a default
expression.

Y ou use a port map and either positional association or named association to connect the formals of an
entity with the locals of a component. Port maps also associate (connect) the locals of a component with
the actuals of an instance. For an example of formal, local, and actual ports, and explanation of their
function, see Section 10.5, where we declared an entity AndGat e. The following example shows how to
bind a component to the entity AndGat e (in this case we use the default binding) and associate the ports.
Notice that if we mix positional and named association then all positional associations must come first.

use work.all; -- makes anal yzed design entity AndGate(Sinple) visible.
architecture Netlist of Association_1 is
-- The formal port clause for entity AndGate | ooks |ike this:

-- port (And_in_1, And_in_2: in BIT; And_out : out BIT); -- Formals.
conponent AndGate port

(And_in_1, And_in_2 : in BIT; And_out : out BIT); -- Locals.
end conponent;
begi n

-- The conponent and entity have the sanme nanmes: AndGate.

-- The port nanes are also the sane: And_in_1, And_in_2, And_out,

-- so we can use default binding without a configuration

-- The last (and only) architecture for AndGate will be used: Sinple.
Al: AndGate port map (X, Y, Z1); -- positional association

A2: AndGate port map (And_in_2=>Y, And out=>Z2, And_in_1=>X);

A3: AndGate port map (X, And_out => Z3, And_in_2 =>Y);

end;

The interface object rules of Table 10.10 apply to ports. The rule that forbids updating an interface
object of modei n prevents modifying an input port (by placing the input signal on the left-hand side of
an assignment statement, for example). Less obviously, you cannot read a port of mode out (that isyou
cannot place an output signal on the right-hand side of an assignment statement). This stops you from
accidentally reading an output signal that may be connected to a net with multiple drivers. In this case
the value you would read (the unresolved output signal) might not be the same as the resolved signal
value. For example, in the following code, since d ock isaport of mode out , you cannot read C ock
directly. Instead you can transfer ock to an intermediate variable and read the intermediate variable
instead:

entity ClockGen_1 is port (Cock : out BIT); end;
architecture Behave of C ockGen_1 is

begin process variable Temp : BIT := "1’
begi n

-- Cock <= not Cock; -- Illegal, you cannot read O ock (node out),
Tenmp := not Tenp; -- use a tenporary variabl e instead.

Cock <= Tenmp after 10 ns; wait for 10 ns;

if (now > 100 ns) then wait; end if; end process;
end;
TABLE 10.11 Properties of ports.
Example entity declaration:
entity Eis port (F_1:BIT; F 2:out BIT; F_3:inout BIT; F 4:buffer BIT); end; -- fo
Example component declaration:
conponent C port (L_1:BIT; L_2:out BIT; L_3:inout BIT; L_4:buffer BIT); -- locals
end conponent;
Example component instantiation:
11 : Cport map
(L1 =>A1 L2=>A2 L3=>A3 L4=>A14),; --locals => actuals
Example configuration:
for 11 : Cuse entity E(Behave) port nmap
(F1=>1L11 F2=>12 F3=>13 F4=>14),; -- formals =>locals
Interface object, | F_1 F 2 F 3 F 4
port F
Mode of F i n (default) out i nout buf f
Y es, but not the
attributes:
Y es, but not the "STABLE 'QUIET Y es, but not the
attributes: attributes:
"DELAYED
conyouread ' |STABLE 'STABLE
' "TRANSACTION Yes
[VHDL "QUIET "QUIET
LRM4.3.2] "EVENT "ACTIVE
e "DELAYED "DELAYED
"LAST_EVENT
"TRANSACTION "TRANSACTION
"LAST_ACTIVE
"LAST_VALUE

Table 10.10 lists the restrictions on reading and updating interface objects including interface signals

that form ports. Table 10.11 lists additional special rulesfor reading and updating the attributes of

interface signals.

There is one more set of rules that apply to port connections[VHDL LRM 1.1.1.2]. If design entity E2
contains an instance, 1 1 , of design entity E1 , then the formals (of design entity E1) are associated with

actuals (of instance| 1). The actuals (of instance | 1) are themselves formal ports (of design entity E2).
Therestrictionsillustrated in Table 10.12 apply to the modes of the port connections from E1 to E2
(looking from the inside to the outside).

Notice that the allowed connections diagrammed in Table 10.12 (looking from inside to the outside) are
asuperset of those of Table 10.10 (Ilooking from the outside to the inside). Only the seven types of
connections shown in Table 10.12 are allowed between the ports of nested design entities. The
additional rule that ports of mode buf f er may only have one source, together with the restrictions on
port mode interconnections, limits the use of ports of mode buf fer .

TABLE 10.12 Connection rules for port modes.

entity El1 is port (Inside : in BIT); end; architecture Behave of El is begin end;
entity E2 is port (Qutside : inout BIT :="1"); end; architecture Behave of E2 is
conmponent E1 port (Inside : in BIT); end conponent; begin

I1: E1 port map (Inside => Qutside);

end;

Possible modes of interface object, | nsi de |i n (default) out

Modes of cut si de that | nsi de may

connect to (see below) in inout buffer out i nout

E=
@+ ® = + el :
rmode mode

B—r sT N s
Outzide Inside

3 @)

9 rea ne el to3ssociae omnal port
(=T Egnsid.e j Gfmods ¥ yith schal port

utside) of mode

[Flfornal
[Alachsl

10.7.2 Generics

Ports are signals that carry changing information between entities. A generic is similar to a port, except
generics carry constant, static information [VHDL LRM1.1.1.1]. A generic is an interface constant that,
unlike normal VHDL constants, may be given a value in a component instantiation statement or in a
configuration specification. Y ou declare genericsin an entity declaration and you use genericsin a
similar fashion to ports. The following example uses a generic parameter to alter the size of a gate:

entity AndGateNW de is

generic (N : NATURAL := 2);

port (lnputs : BIT VECTOR(1 to N); Result : out BIT);
end;

Notice that the generic interface list precedes the port interface list. Generics are useful to carry timing
(delay) information, as in the next example:

entity AndT is
generic (TPD : TIME := 1 ns);

port (a, b: BIT:='0"; qg: out BIT);
end;
architecture Behave of AndT is
begin g <= a and b after TPD;
end;
entity AndT Test 1 is end;
architecture Netlist_1 of AndT_Test_1 is
conponent MyAnd
port (a, b : BIT, q: out BIT);
end conponent;
signal al, bl, g1 : BIT:="1";
begi n
Andl : MyAnd port nmap (al, bl, ql);
end Netlist 1;
configuration Sinplest_ 1 of AndT Test_ 1 is use work.all;
for Netlist_1 for Andl : MyAnd
use entity AndT(Behave) generic map (2 ns);
end for; end for;
end Sinpl est_1;

The configuration declaration, Si npl est _1, changes the default delay (equal to 1 ns, declared asa
default expression in the entity) to 2 ns. Techniques based on this method are useful in ASIC design.
Prelayout simulation uses the default timing values. Back-annotation aters the delay in the configuration
for postlayout simulation. When we change the delay we only need to reanalyze the configuration, not
the rest of the ASIC model.

There was initialy no standard in VHDL for how timing generics should be used, and the lack of a
standard was a major problem for ASIC designers. The IEEE 1076.4 VITAL standard addresses this
problem (see Section 13.5.5).

1. There are additional rules for interface objects that are signals (ports)--see Tables 10.11 and 10.12.

2. A signal of mode inout can be updated by any number of sources[VHDL 87LRM4.3.3,
93LRM4.3.2].

3. A signal of mode buffer can be updated by at most one source [VHDL LRM1.1.1.2].

page Next page

10.8 Type Declarations

In some programming languages you must declare objects to be integer, real, Boolean, and so on. VHDL
(and ADA, the DoD programming language to which VHDL isrelated) goes further: Y ou must declare
the type of an object, and there are strict rules on mixing objects of different types. We say VHDL is
strongly typed. For example, you can use one type for temperatures in Centigrade and a different type
for Fahrenheit, even though both types are real numbers. If you try to add atemperature in Centigrade to
atemperature in Fahrenheit, VHDL catches your error and tells you that you have a type mismatch.

Thisisthe formal (expanded) BNF definition of atype declaration:

type_declaration ::=
type identifier ;
| type identifier is
(identifier|’ graphic_character’ {, identifier|’graphic_character’})
| range_constraint ; | physical _type definition
| record_type definition ; | access subtype_ indication ;
|
|
|

file of type_name ; | file of subtype_nane ;
array index_constraint of elenment_subtype_indication ;
array

(type_nane| subtype _nane range <>
{, type_nane|subtype_name range <>}) of
el ement _subtype_indi cation ;

There are four type classesin VHDL [VHDL LRM3]: scalar types, composite types, access types, and
file types. The scalar types are: integer type, floating-point type, physical type, and enumeration type.
Integer and enumeration types are discrete types. Integer, floating-point, and physical types are numeric
types. The range of an integer isimplementation dependent but is guaranteed to include -2147483647 to
+2147483647. Notice the integer range is symmetric and equal to -(231- 1) to (231- 1). Floating-point
size isimplementation dependent, but the range includes the bounds -1.0E38 and +1.0E38, and must
include aminimum of six decimal digits of precision. Physical types correspond to time, voltage,
current, and so on and have dimensions--a unit of measure (seconds, for example). Access types are
pointers, useful in abstract data structures, but less so in ASIC design. File types are used for file I/O.

Y ou may also declare a subset of an existing type, known as a subtype, in a subtype declaration. We
shall discuss the different treatment of types and subtypes in expressionsin Section 10.12.

Here are some examples of scalar type [VHDL LRMA4.1] and subtype declarations [VHDL LRM4.2]:

entity Declaration_1 is end; architecture Behave of Declaration_ 1 is

type F is range 32 to 212; -- Integer type, ascending range.
type Cis range 0 to 100; -- Range O to 100 is the range constraint.
subtype Gis INTEGER range 9 to 0; -- Base type |INTEGER, descending

-- This is illegal: type Badl00O is |INTEGER range 0 to 100;

-- don’t use INTEGER in declaration of type (but OK in subtype).
type Rainbowis (R O Y, G B, I, V); -- An enuneration type

-- Enuneration types al ways have an ascendi ng range.

type WL4 is ("X, "0, "1, "Z);

-- Note that "X and 'x' are different character literals.

-- The default initial value is ML4 LEFT ="' X .

-- W say '0" and '1' (already enuneration literals

-- for predefined type BIT) are overl oaded.

-- Illegal enuneration type: type Bad4 is ("X', "O0", "1", "Z");
-- Enuneration literals nust be character literals or identifiers.
begi n end;

The most common composite type is the array type [VHDL LRM3.2.1]. The following examples
illustrate the semantics of array declarations.

entity Arrays 1 is end; architecture Behave of Arrays 1 is

type Wrd is array (0 to 31) of BIT;, -- a 32-bit array, ascending
type Byte is array (NATURAL range 7 downto 0) of BIT; -- descending
type BigBit is array (NATURAL range <>) of BIT,

-- W call <> a box, it means the range is undefined for now

-- W call BigBit an unconstrained array.

-- This is OK we constrain the range of an object that uses
-- type BigBit when we declare the object, like this:
subtype Nibble is BigBit(3 downto 0);

type Tl is array (POSITIVE range 1 to 32) of BIT,

-- T1, a constrained array declaration, is equivalent to a type T2
-- with the followi ng three declarations:

subtype i ndex_subtype is POSITIVE range 1 to 32;

type array_type is array (index_subtype range <>) of BIT,
subtype T2 is array_type (index_subtype);

-- W refer to index_subtype and array_type as being

-- anonynous subtypes of T1 (since they don't really exist).
begi n end;

Y ou can assign values to an array using aggregate notation [VHDL LRM7.3.2]:

entity Aggregate 1 is end; architecture Behave of Aggregate 1 is
type Dis array (0 to 3) of BIT, type Mask is array (1 to 2) of BIT,

signal MyData : D := ('0’, others =>"1"); -- positional aggregate
signal MyMask : Mask := (2 =>'0", 1 =>"'1"); -- named aggregate
begi n end;

The other composite type is the record type that groups elements together:

entity Record 2 is end; architecture Behave of Record 2 is

type Complex is record real : INTEGER;, imag : | NTEGER; end record;
signal s1 : Conplex := (0, others => 1); signal s2: Conplex;

begin s2 <= (imag => 2, real => 1); end,

page Next page

10.9 Other Declarations

A declaration is one of the following [VHDL LRMA4]:

declaration ::=

type_decl aration | subtype declaration | object _declaration
i nterface_declaration | alias_declaration | attribute_declaration
conponent _decl arati on | entity declaration

package decl arati on

|
| configuration_declaration | subprogram declaration
|
| group_tenplate_declaration | group_declaration

| discussed entity, configuration, component, package, interface, type, and subtype declarationsin
Sections 10.5-10.8. Next | shall discuss the other types of declarations (except for groups or group
templates [VHDL 93LRM4.6-4.7], new to VHDL-93, that are not often used in ASIC design).

10.9.1 Object Declarations

There are four object classesin VHDL.: constant, variable, signal, and file[VHDL LRM 4.3.1.1-4.3.1.3].
Y ou use a constant declaration, signal declaration, variable declaration, or file declaration together with
atype. Signals can only be declared in the declarative region (before the first begi n) of an architecture
or block, or in a package (not in a package body). Variables can only be declared in the declarative

region of aprocess or subprogram (before the first begi n). Y ou can think of signals as representing real
wiresin hardware. Y ou can think of variables as memory locations in the computer. Variables are more
efficient than signals because they require less overhead.

Y ou may assign an (explicit) initial value when you declare atype. If you do not provideinitial values,
the (implicit) default initial value of atype or subtype T iST' LEFT (the leftmost item in the range of the
type). For example:

entity Initial_1 is end; architecture Behave of Initial_1is
type Fahrenheit is range 32 to 212;

type Rainbowis (R O Y, G B, I, V);
type WL4 is ("X, "0, "1, 'Z);
begi n end;

The details of initialization and assignment of initial values are important--it is difficult to implement the
assignment of initial values in hardware--instead it is better to mimic the hardware and use explicit reset
signals.

Here are the formal definitions of constant and signal declarations:

constant declaration ::= constant
identifier {, identifier}:subtype_indication [:= expression]
signal declaration ::= signa

identifier {, identifier}:subtype_indication [register]|bus] [:=expression];

| shall explain the use of signals of kind r egi st er or bus in Section 10.13.1. Signal declarations are
explicit signal declarations (ports declared in an interface declaration are implicit signal declarations).
Hereis an example that uses a constant and several signal declarations.

entity Constant_2 is end;

library | EEE; use |EEE. STD LOG C 1164. al | ;

architecture Behave of Constant 2 is

constant Pi : REAL := 3.14159;

signal B : BOOLEAN, signal sl1, s2: BIT,

signal sum: INTEGER range O to 15;

signal SmallBus : BIT_VECTOR (15 downto 0);

signal GBus : STD LOG C VECTOR (31 downto 0); bus; -- A guarded signal
begi n end;

Hereisthe formal definition of a variable declaration:

vari abl e_declaration ::= [shared] variable
identifier {, identifier}:subtype indication [:= expression] ;

A shared variable can be used to model a varying quantity that is common across several parts of a
model, temperature, for example, but shared variables are rarely used in ASIC design. The following
examples show that variable declarations belong inside apr ocess statement, after the keyword pr ocess
and before the first appearance of the keyword begi n inside a process:

library | EEE; use |EEE. STD LOG C 1164.all; entity Variables_1 is end;
architecture Behave of Variables_1 is begin process

variable i : INTEGER range 1 to 10 := 10; -- Initial value = 10
variable v : STD LOGd C VECTOR (0 to 31) := (others => "'0");
begin wait; end process; -- The wait stops an endl ess cycle.

end;

10.9.2 Subprogram Declarations

VHDL code that you use several times can be declared and specified as subprograms (functions or
procedures) [VHDL LRM2.1]. A function is aform of expression, may only use parameters of modei n

, and may not contain delays or sequence events during simulation (no wai t statements, for example).
Functions are useful to model combinational logic. A procedureis aform of statement and allows you to
control the scheduling of simulation events without incurring the overhead of defining several separate
design entities. There are thus two forms of subprogram declaration: a function declaration or a
procedure declaration.

subprogram decl aration ::= subprogram specification ; ::=
procedure
identifier|string literal [(paraneter_interface list)]
| [pure|inpure] function
identifier|string_ literal [(parameter_interface_list)]
return type_nane| subtype_nane;

Here are afunction and a procedure declaration that illustrate the difference:

function add(a, b, ¢ : BIT_VECTOR(3 downto 0)) return BIT_VECTOCR is
-- A function declaration, a function can't nodify a, b, or c.
procedure Is_A Eq B (signal A, B: BIT;, signal Y : out BIT);

-- A procedure declaration, a procedure can change Y.

Parameter names in subprogram declarations are called formal parameters (or formals). During acall to
a subprogram, known as subprogram invocation, the passed values are actual parameters (or actuals). An
impure function, such as the function now or a function that writesto or reads from afile, may return
different values each timeit is called (even with the same actuals). A pure function (the default) returns
the same value if it is given the same actuals. Y ou may call subprograms recursively. Table 10.13 shows
the properties of subprogram parameters.

TABLE 10.13 Properties of subprogram parameters.

Example subprogram declarations:

function nmy_function(Ff) return BIT is -- Formal function paraneter, Ff.
procedure ny_procedure(Fp); -- Formal procedure paraneter, Fp

Example subprogram calls:

my_result := my_function(Af); -- Calling a function with an actual paraneter, Af.
MY_LABEL: ny_procedur e(Ap); -- Using a procedure with an actual paraneter, Ap.

Mode of Ff or Fp (formals) i n out i nout No mode

Permissible classes for Af const ant (default)

Not allowed Not allowed file
(function actual parameter) |si gnal
Permissible classesfor Ap |const ant (default) [const ant const ant
(procedure actual parameter) |y ari abl e vari abl e (default) |vari abl e (default) [file
si gnal si gnal si gnal
Y es, except:
"STABLE 'QUIET
Y es, except: Y es, except:
"DELAYED
'STABLE 'STABLE
"TRANSACTION
Can you read attributes of "QUIET "QUIET
"EVENT "ACTIVE
Ff or Fp (formals)? "DELAYED "DELAYED
"LAST_EVENT
"TRANSACTION "TRANSACTION
"LAST_ACTIVE
of asigna of asigna
"LAST_VALUE
of asignal

A subprogram declaration is optional, but a subprogram specification must be included in the
subprogram body (and must be identical in syntax to the subprogram declaration--see BNF [10.19]):

subprogram body :: =
subprogram specification is
{ subprogram decl arati on| subpr ogram body
| type_decl arati on| subt ype_decl arati on
| constant _decl aration|vari abl e_declaration|file_declaration
| alias_declaration|attribute_declaration|attribute_specification
| use_cl ause| group_t enpl at e_decl arati on| group_decl ar ati on}
begi n

{sequential statenent}
end [procedure|function] [identifier|string_literal] ;

Y ou can include a subprogram declaration or subprogram body in a package or package body (see
Section 10.6) or in the declarative region of an entity or pr ocess statement. The following isan
example of afunction declaration and its body:

function subsetO(soutO : in BIT) return BIT _VECTOR -- declaration
-- Declaration can be separate fromthe body.
function subsetO(soutO : in BIT) return BIT_VECTOR is -- body
variable y : BIT_VECTOR(2 downto 0);
begi n
if (sout0 ='0") theny :="000"; elsey :="100"; end if;
return result;
end;
procedure clockGen (clk : out BIT)
procedure clockGen (clk : out BIT) is
begin -- Careful this process runs forever:
process begin wait for 10 ns; clk <= not clk; end process;
end;

One reason for having the optional (and seemingly redundant) subprogram declaration isto allow
companies to show the subprogram declarations (to document the interface) in a package declaration,
but to hide the subprogram bodies (the actual code) in the package body. If a separate subprogram
declaration is present, it must conform to the specification in the subprogram body [VHDL 93LRM2.7].
This means the specification and declaration must be ailmost identical; the safest method is to copy and
paste. If you define common procedures and functions in packages (instead of in each entity or
architecture, for example), it will be easier to reuse subprograms. In order to make a subprogram
included in a package body visible outside the package, you must declare the subprogram in the package
declaration (otherwise the subprogram is private).

Y ou may call afunction from any expression, as follows:

entity F 1 is port (s : out BIT_VECTOR(3 downto 0) := "0000"); end
architecture Behave of F_1 is begin process
function add(a, b, ¢ : BIT_VECTOR(3 downto 0)) return BIT VECTOR i s
begin return a xor b xor c¢; end,
begin s <= add("0001", "0010", "1000"); wait; end process; end;
package And_Pkg is
procedure V_And(a, b : BIT;, signal ¢ : out BIT);
function V_And(a, b : BIT) return BIT;
end;
package body And_Pkg is
procedure V_And(a,b : BIT; signal c¢c : out BIT) is
begin ¢ <= a and b; end;
function V_And(a,b : BIT) return BIT is
begin return a and b; end;

end And_Pkg;

entity F 2 is port (s: out BIT :="'0"); end;

use work. And_Pkg. all; -- use package al ready anal yzed
architecture Behave of F_2 is begin process begin

s <= V.And('1, "1'); wait; end process; end;

| shall discuss the two different waysto call a procedure in Sections 10.10.4 and 10.13.3.

10.9.3 Aliasand Attribute Declarations

An dias declaration [VHDL 87LRM4.3.4, 93LRM4.3.3] names parts of atype:

alias_declaration ::=

al i as
identifier|character literal|operator_synbol [:subtype_ indication]
is nane [signature] ;

(the subtype indication is required in VHDL-87, but not in VHDL-93).

Hereis an example of alias declarations for parts of afloating-point number:

entity Alias_1 is end; architecture Behave of Alias_1 is

begi n process variable Nnbr: BIT_VECTOR (31 downto 0);

-- alias declarations to split Nrbr into 3 pieces :

alias Sign : BIT is Nnbr(31);

alias Mantissa : BIT_VECTOR (23 downto 0) is Nnbr (30 downto 7);
alias Exponent : BIT_VECTOR (6 downto 0) is Nnbr (6 downto 0);
begin wait; end process; end; -- the wait prevents an endl ess cycle

An attribute declaration [VHDL LRM4.4] defines attribute properties:

attribute_declaration ::=
attribute identifier:type_nane ; | attribute identifier:subtype_nane ;

Hereisan example:

entity Attribute_1 is end; architecture Behave of Attribute_1 is
begin process type COORD is record X, Y : INTEGER; end record;
attribute LOCATION : COORD; -- the attribute declaration

begin wait ; -- the wait prevents an endl ess cycle

end process; end;

Y ou define the attribute properties in an attribute specification (the following example specifies an
attribute of a component label). Y ou probably will not need to use your own attributes very much in
ASIC design.

attribute LOCATI ON of adderl : |abel is (10, 15);
Y ou can then refer to your attribute as follows:

posi ti onOf Conponent : = adder 1’ LOCATI ON
10.9.4 Predefined Attributes

The predefined attributes for scalar and array typesin VHDL-93 are shown in Table 10.14 [VHDL
93LRM14.1]. There are two attributes, ' STRUCTURE and ’ BEHAVI OR, that are present in VHDL-87, but
removed in VHDL-93. Both of these attributes apply to architecture bodies. The attribute name

A’ BEHAVI OR IS TRUE if the architecture A does not contain component instantiations. The attribute name
A’ STRUCTURE iS TRUE if the architecture A contains only passive processes (those with no assignments to
signals) and component instantiations. These two attributes were not widely used. The attributes shown
in Table 10.14, however, are used extensively to create packages and functions for type conversion and
overloading operators, but should not be needed by an ASIC designer. Many of the attributes do not
correspond to "real" hardware and cannot be implemented by a synthesis tool.

TABLE 10.14 Predefined attributesfor scalar and array types.
. Prefix
Attribute Kind Perameter X | Result type el
T,AJE2
: base(T), use only with
T ! a base(T) o?r?:r(aitribute g
TLET v scalar T Left bound of T
T R GHT \% scalar T Right bound of T
THG Vv scalar T Upper bound of T
rLow \ scalar T Lower bound of T
T' ASCENDI NG vV |scaar BOOLEAN Z;Jeenicf":%”ge of Tis
T | MAGE(X) F scaar | base(T) STRI NG ﬁtr_'l_”g representation of X
T POS(X) F discrete | base(T) ul (Ps(t):rttlsogt rg)l)lmber of XinT
T VAL(X) F discrete |UI base(T) Valueof position X in T
T sucg(X) F |discrete |base(T) base(T) ;ﬂ;gg posion X in'T
T PRED(X) F discrete | base(T) base(T) \nlflntlﬁ c(;fn gosmon XinT
T LEFTOR(X) F discrete | base(T) base(T) Vauetotheleftof X inT
T' Rl GHTOF(X) F discrete | base(T) base(T) \T/al uetotheright of X in
A LEFT[(N)] F array Ul T(Result) Iér?f;ybzund of index N of
A R GHT[(N)] F array Ul T(Result) g?:at;/oxnd of index N
AHGH(N] F laray |ul T(Result) (‘;p;?ay%”d of index N
A LON(N)] E array Ul T(Result) I(;]?gtra;fzund of index N
: Range A’LEFT(N) to

A RANGE[(N)] R array Ul T(Result) A'RIGHT(N) 5
A REVERSE_RANGE[(N)] [R array Ul T(Result) Opposite range to

A’RANGE[(N)]

A LENGTH (N)] Vo laray Ul ul I'\r']‘ég(bﬁlr o ;’r?';ﬁ‘”

A ASCENDI NG (N)] v aray Ul BOOLEAN ;;’:ngi%dzx Nof Ais

E S| MPLE_NAME V name STRI NG Simple name of E 4

E' | NSTANCE_NANE v name STRI NG gnami i;CLUdeSi”Stanti ated
E' PATH_NANE v name STRI NG Z}E\:HiZSXCiUdeSinStantiated

The attribute’ LEFT isimportant because it determines the default initial value of atype. For example,
the default initial valuefor type BI T is BI T' LEFT , whichis’ 0’ . The predefined attributes of signals
arelisted in Table 10.15. The most important signal attribute is’ EVENT , which is frequently used to
detect aclock edge. Noticethat d ock’ EVENT , for example, is afunction that returns a value of type
BOOLEAN , whereas the otherwise equivalent not (Cl ock’ STABLE) , isasignal. The differenceis subtle
but important when these attributes are used in thewai t statement that treats signals and values
differently.

TABLE 10.15 Predefined attributes for signals.

Attribute Kind 6| Parameter T 7| Result type 8| Result/restrictions

S DELAYED [(T)] |S TI ME base(S) Sdelayed by time T

S STABLE [(T)] |S TI ME BOOLEAN TRUE if noevent on Sfortime T

S QUET [(T)] S TI ME BOOLEAN TRUE if Sisquiet fortimeT

S TRANSACTION ||S BIT Toggles each cycleif Sbecomes active
S EVENT F BOOLEAN TRUE when event occurson S

S ACTI VE F BOOLEAN TRUE if Sisactive

S’ LAST_EVENT F TI ME Elapsed time since the last event on S
S LAST_ACTIVE |F TI VE Elapsed time since S was active

S’ LAST_VALUE F base(S) Previous value of S, before last event 9
S DRI VI NG F BOOLEAN TRUE if every element of Sisdriven 10
S' DRI VI NG VALUE| F base(S) :)/ril geesgflghe driver for Sin the current

1. T =Type, F = Function, V = Value, R = Range.

2. any = any type or subtype, scalar = scalar type or subtype, discrete = discrete or physical type or
subtype, name = entity name = identifier, character literal, or operator symbol.

3. base(T) = basetypeof T, T =type of T, Ul = universal_integer, T(Result) = type of object described

in result column.

4. Only available in VHDL-93. For ' ASCENDI NG all enumeration types are ascending.
5. Or reverse for descending ranges.

6. F = function, S=signal.

7. Time T >=0ns. The default, if T isnot present, isT =0ns.

8. base(S) = base type of S.

9. VHDL-93 returns last value of each signal in array separately as an aggregate, VHDL-87 returns the
last value of the composite signal.

10. VHDL-93 only.

Chapter start Previous page Next page

10.10 Sequential Statements

A sequential statement [VHDL LRM8] is defined as follows:

sequential _statenent ::=
wai t _st at emrent | assertion_statenent
| signal assignment _stat enment
| variabl e_assi gnnent _st at emrent
| if_statement | case_statement | | oop_statenent
|
|

next st at enent | exit_statenent
return_statenment | null _statenment | report_statenent

Sequential statements may only appear in processes and subprograms. In the following sections | shall
describe each of these different types of sequential statementsin turn.

10.10.1 Wait Statement

The wait statement is central to VHDL, here are the BNF definitions [VHDL 93LRM8.1]:

wait_statenment ::= [label:] wait [sensitivity_clause]
[condition_clause] [timeout_clause] ;

sensitivity clause ::= on sensitivity |ist

sensitivity_list ::= signal _nane { , signal_nane }

condition_clause ::= until condition

condition ::= bool ean_expression

ti meout _clause ::= for tinme_expression

A wai t statement suspends (stops) a process or procedure (you cannot use awai t statement in a
function). Thewai t statement may be made sensitive to events (changes) on static signals (the value of
the signal must be known at analysistime) that appear in the sensitivity list after the keyword on . These

signals form the sensitivity set of await statement. The process will resume (restart) when an event
occurs on any signal (and only signals) in the sensitivity set.

A wai t statement may also contain a condition to be met before the process resumes. If thereis no
sengitivity clause (there is no keyword on) the sensitivity set is made from signals (and only signals)
from the condition clause that appears after the keyword unt i | (the rules are quite complicated [VHDL
93LRM8.1]).

Finally awai t statement may also contain atimeout (following the keyword f or) after which the
process will resume. Here is the expanded BNF definition, which makes the structure of the wai t
statement easier to see (but we lose the definitions of the clauses and the sensitivity list):

wait_statenent ::= [label:]

wai t
[on signal _nane {, signal_nane}]
[unti| bool ean_expressi on]
[for tine_expression] ;

For example, the statement, wai t on i ght , makesyou wait until atraffic light changes (any change).
The statement, wai t until 1ight = green, makesyou wait (even at agreen light) until the traffic
signal changes to green. The statement,

if light = (red or yellow) then wait
until light = green

end

if;

accurately describes the basic rules at atraffic intersection.

The most common use of thewai t statement isto describe synchronous logic, as in the following model
of aD flip-flop:

entity DFF is port (CLK, D: BIT; Q: out BIT); end;
architecture Behave of DFF is
process begin wait

until C
Ik ='1"; Q<= D; end process;
end;

Notice that the statement in line 3 above, wait until Clk="1",isequivaenttowait on Ok until
clk ="1", and detects a clock edge and not the clock level. Here are some more complex examples of
the use of thewai t Statement:

entity Wait_1 is port (Ck, s1, s2 :in BIT); end;

architecture Behave of Wait_1 is

signal x : BIT_VECTOR (0 to 15);
begin process variable v : BIT;, begin
wait; -- Wit forever, stops sinulation
wait on s1 until s2 ="'1"; -- Legal, but sl1l, s2 are signals so
-- slisin sensitivity list, and s2 is not in the sensitivity set.
-- Sensitivity set is sl and process will not resume at event on s2.
wait on sl, s2; -- resunes at event on signal sl or s2
wait on sl for 10 ns; -- resumes at event on sl or after 10 ns.
wait on x; -- resunes when any elenent of array x has an event.

-- wait on x(1tov); -- Illegal, nonstatic nane, since v is a variable
end process;
end;
entity Wait_2 is port (Ck, s1, s2:in BIT); end;
architecture Behave of Wit 2 is
begin process variable v : BIT;, begin

wait on Ak; -- resumes when dk has an event: rising or falling.
wait until Gk ="'1"; -- resunes on rising edge.

wait on Ak until dk ='1"; -- equivalent to the |ast statenent.
wait on Ak until v ="1";

-- The above is legal, but v is a variable so
-- Ok isin sensitivity list, vis not in the sensitivity set.
-- Sensitivity set is Ok and process will not resune at event on v.
wait on dk until s1 ="1";
-- The above is legal, but sl is a signal so
-- Ok isin sensitivity list, s1 is not in the sensitivity set.
-- Sensitivity set is Ak, process will not resume at event on sl.
end process;
end;

Y ou may only useinterface signals that may be read (port modesi n , i nout , and buf f er --see
Section 10.7) in the sensitivity list of awai t statement.

10.10.2 Assertion and Report Statements

Y ou can use an assertion statement to conditionally issue warnings. The report statement (VHDL-93
only) prints an expression and is useful for debugging.

assertion_statenent ::= [label:] assert

bool ean_expression [report expression] [severity expression]
report _st at enent

.= [label:] report expression [severity expression] ;

Hereis an example of an assertion statement:

entity Assert_1 is port (I:INTEGER =0); end

architecture Behave of Assert 1 is
begi n process begin
assert (I > 0) report "I is negative or zero"; wait;
end process;

end;

The expression after the keyword r epor t must be of type STRI NG (the default is" Asser ti on

vi ol ati on" for theasserti on statement), and the expression after the keyword severi t y must be of
type SEVERI TY_LEVEL (default ERROR for the asser t i on statement, and NOTE for ther eport statement)
defined in the STANDARD package. The assertion statement printsif the assertion condition (after the
keyword assert) iISFALSE . Simulation normally halts for severity of ERROR or FAI LURE (you can
normally control this threshold in the simulator).

10.10.3 Assignment Statements

There are two sorts of VHDL assignment statements: one for signals and one for variables [VHDL
93LRM8.4-8.5]. The difference isin the timing of the update of the LHS. A variable assignment
statement is the closest equivalent to the assignment statement in a computer programming language.
Variable assignment statements are always sequential statements and the LHS of a variable assignment

statement is aways updated immediately. Here is the definition and an example:

vari abl e_assi gnment _statenent ::=
[l abel:] nane| aggregate := expression ;
entity Var_ Assignnent is end,
architecture Behave of Var_Assignnent is
signal sl : INTEGER := 0;
begi n process variable vl,v2 : INTEGER := 0; begin

assert (v1/=0) report "v1l is 0" severity note ; -- this prints
vl :=vl + 1; -- after this statenment vl is 1

assert (v1=0) report "vl1l isn't 0" severity note ; -- this prints
v2 :=v2 + sl; -- signal and variable types nust match

wait;

end process;
end;

Thisisthe output from Cadence Leapfrog for the preceding example:

ASSERT/ NOTE

(time O FS) from : $PROCESS 000 (design unit WORK. VAR ASS| GNVENT: BEHAVE)
ASSERT/ NOTE (

ime 0 FS) from : $PROCESS_000 (design unit WORK. VAR_ASS| GNVENT: BEHAVE)

— —

A signal assignment statement schedules a future assignment to asignal:

si gnal _assi gnment _statenent:: =
[label:] target <=
[transport | [reject tinme_expression] inertial] waveform;

The following example shows that, even with no delay, asignal is updated at the end of a simulation
cycle after all the other assignments have been scheduled, just before simulation time is advanced:

entity Sig Assignnent 1 is end
architecture Behave of Sig Assignnent_1 is
signal sl1,s2,s3 : INTEGER := O;
begi n process variable vl : INTEGER := 1; begin

assert (sl /= 0) report "sl is 0" severity note ; -- this prints.

sl <= s1 +1; -- after this statenent sl is still 0.

assert (sl /= 0) report "sl1 still 0" severity note ; -- this prints.
wai t ;

end process;
end;
ASSERT/ NOTE (time O FS) from : $PROCESS 000 (design unit WORK

S| G_ASSI GNVENT_1: BEHAVE
ASSERT/ NOTE (time O FS) from : $PROCESS 000 (design unit WORK. S

| G
| G_ASSI GNVENT_1: BEHAVE
Hereis an another example to illustrate how time is handled:

entity Sig_Assignnent_2 is end;
architecture Behave of Sig Assignnent 2 is
signal sl1, s2, s3 : INTEGER := 0;
begi n process variable vl : INTEGER := 1; begin
-- sl1, s2, s3 are initially 0; now consider the foll ow ng:

sl <= 1 ; -- schedules updates to sl at end of 0 ns cycle.
s2 <=sl1; -- s2is 0, not 1

wait for 1 ns;

s3 <= sl1; -- nows3 will be 1 at 1 ns.

wait;

end process;
end;

The Compass simulator produces the following trace file for this example:

Time(fs) + Cycle sl s2 s3
0+ 0 0 0 0

0+ 1. * 1= 0 0

1000000+ 1: 1 0 * 1

Timeisindicated in femtoseconds for each ssmulation cycle plus the number of delta cycles (we call this
deltatime, measured in units of delta) needed to calculate all transactions on signals. A transaction
consists of anew value for asignal (which may be the same as the old value) and the time delay for the
value to take effect. An asterisk '*’ before a value in the preceding trace indicates that a transaction has
occurred and the corresponding signal updated at that time. A transaction that does result in achange in
value is an event. In the preceding simulation trace for Sig_Assignment_2:Behave

At0 ns + 0 deta al signalsareo .
At0 ns + 1l deta s1isupdatedto1,s2 isupdatedtoo (notto1).
At1l ns + 1delta s3isupdatedtoai .

The following example shows the behavior of the different delay models: transport and inertial (the
default):

entity Transport 1 is end
architecture Behave of Transport_1 is
signal s1, SLOW FAST, WRE : BIT := "0’
begi n process begin
sl <='1" after 1 ns, 'O after 2 ns, '1' after 3 ns ;
-- schedules s1 to be "1'" at t+l ns, 'O at t+2 ns,’1 at t+3 ns
wait; end process;
-- inertial delay: SLOWNrejects pul sewidths | ess than 5ns:
process (sl1l) begin SLON<= sl after 5 ns ; end process;
-- inertial delay: FAST rejects pul sewidths | ess than 0.5ns:
process (sl1l) begin FAST <= s1 after 0.5 ns ; end process;
-- transport delay: WRE passes all pul sew dths..
process (sl1l) begin WRE <= transport sl after 5 ns ; end process;
end;

Hereisthe trace file from the Compass simulator:

Tinme(fs) + Cycle sl slow fast wire
o+0: 'O 'O 'O 'O
500000+ 0: '0° 'O *'0 'O
1000000+ 0: *'1* 0" 'O 'O
1500000+ 0: '1" 'O *'1" 'O
2000000+ 0: *'0° '0" 'l 'O
2500000+ 0: 0" 'O *'O 'O
3000000+ 0: **1° 'O 'O 'O
3500000+ 0: 1" 'O *'1" 'O
5000000+ 0: 1" 'O 1" *'0O
6000000+ 0: 1" 'O 1" *'1
7000000+ 0: 1" 'O 1" *' O

8oooooo+ 0: 1" *1 "1 L

Inertial delay mimics the behavior of real logic gates, whereas transport delay more closely models the
behavior of wires. In VHDL-93 you can also add a separate pulse rejection limit for the inertial delay
model asin the following example:

process (sl1l) begin RICT <= reject 2 ns s1 after 5 ns ; end process;
10.10.4 Procedure Call

A procedure call in VHDL corresponds to calling a subroutine in a conventional programming language
[VHDL LRM8.6]. The parametersin a procedure call statement are the actual procedure parameters (or
actuals); the parameters in the procedure definition are the formal procedure parameters (or formals).
The two are linked using an association list, which may use either positional or named association
(association works just as it does for ports--see Section 10.7.1):

procedure_call _statenent ::=
[l abel:] procedure_nane [(paraneter_association list)];

Hereis an example:

package And_Pkg is
procedure V_And(a, b : BIT; signhal ¢ : out BIT);
function V_And(a, b : BIT) return BIT;
end;
package body And_Pkg is
procedure V_And(a, b : BIT; signal c: out BIT) is
begin ¢ <= a and b; end;
function V_And(a, b: BIT) return BIT is
begin return a and b; end;

end And_Pkg;
use work. And_Pkg.all; entity Proc_Call _1 is end;
architecture Behave of Proc_Call_1 is signal A B, Y: BIT :="'0

begi n process begin V_And (A B, Y); wait; end process;
end;

Table 10.13 on page 416 explains the rules for formal procedure parameters. There is one other way to
call procedures, which we shall cover in Section 10.13.3.

10.10.5 If Statement

An if statement evaluates one or more Boolean expressions and conditionally executes a corresponding
sequence of statements[VHDL LRM8.7].

if _statement ::=
[if _label:] if bool ean_expression then {sequential statenent}
{el sif bool ean_expression then {sequential statenent}}
[el se {sequential _statenent}]
end if [if_label];

The simplest form of an i f statement isthus:

i f bool ean_expression then {sequential _statenent} end if;

Here are some examples of thei f statement:

entity If_Then Else 1 is end

architecture Behave of If_Then_Else_1 is signal a, b, c: BIT : =7
begi n process begin
if c="1 thenc <=a; elsec <=Db; end if; wait;

end process;
end;
entity If_Then_1 is end,
architecture Behave of If_Then_1 is signal A, B, Y: BIT :=1
begi n process begin
if A= Bthen Y<=A end if; wait;
end process;
end;

10.10.6 Case Statement

A case statement [VHDL LRM8.8] is amultiway decision statement that selects a sequence of
statements by matching an expression with alist of (locally static [VHDL LRM7.4.1]) choices.

case_statenent ::=
[case | abel:] case expression is
when choice {| choice} => {sequential _statenent}
{when choice {| choice} => {sequential statenent}}
end case [case_| abel];

Case statements are useful to model state machines. Here is an example of aMealy state machine with
an asynchronous reset:

library | EEE;, use |EEE. STD LOG C 1164. al | ;
entity smnealy is

port (reset, clock, il, i2: SIDLOAC, 01, 02 : out STD LOd O);
end sm neal y;
architecture Behave of smnealy is
type STATES is (sO, s1, s2, s3); signal current, new : STATES;
begi n
synchronous : process (clock, reset) begin

if To _X0l(reset) = '0" then current <= sO;

el sif rising_edge(clock) then current <= new, end if;
end process;

conbi national : process (current, il, i2) begin
case current is
when s0 =>
if To_X01(il) ='1" then 02 <="0"; 0l <="0"; new <= s2;
else 02 <='1"; 0l <='1"; new <= sl1; end if;
when s1 =>
if To_X01(i2) ='1" then 02 <="1"; 0l <="0"; new <= s1;
else 02 <="0"; 0l <="1'; new <= s3; end if;
when s2 =>
if To_X01(i2) ='1" then 02 <="0"; 0l <="1"; new <= s2;

else 02 <='1"; 01 <='0"; new <= s0; end if;
when s3 => 02 <= '0"; 0l <= '0"; new <= s0;
when others => 02 <= '0"; 0l <= '0"; new <= s0;
end case
end process;
end Behave;

Each possible value of the case expression must be present once, and once only, in the list of choices (or

arms) of the case statement (the list must be exhaustive). You can use’| (that means’or’) or’ to’ to
denote arange in the expression for choi ce . You may also use the keyword ot her s as the last, default
choi ce (evenif thelist is aready exhaustive, asin the preceding example).

10.10.7 Other Sequential Control Statements

A loop statement repeats execution of a series of sequential statements [VHDL LRM8.9]:

| oop_statenent ::=
[1 oop_Il abel :]

[whil e bool ean_expression|for identifier in discrete_range]
I

{sequential statenent}
end | oop [l oop_I abel];

If the loop variable (after the keyword f or) isused, it isonly visible inside the loop. A whi | e loop
evaluates the Boolean expression before each execution of the sequence of statements; if the expression
IS TRUE , the statements are executed. In af or loop the sequence of statements is executed once for each
value of the discrete range.

package And Pkg is function V_And(a, b : BIT) return BIT; end;
package body And Pkg is function V_And(a, b : BIT) return BIT is
begin return a and b; end; end And_Pkg;
entity Loop_1is port (x, vy : inBIT:="1; s : out BIT :="0"); end;
use work. And_Pkg. al | ;
architecture Behave of Loop_l is
begi n | oop
s <= V_And(x, y); wait on x, v;
end | oop;
end;

The next statement [VHDL LRM8.10] forces completion of the current iteration of aloop (the
containing loop unless another loop label is specified). Completion isforced if the condition following
the keyword t hen is TRUE (or if thereis no condition).

next _statenent ::=
[label:] next [loop_ | abel] [when bool ean_expression];

An exit statement [VHDL LRM8.11] forces an exit from aloop.

exit_statement ::=
[label:] exit [loop_|abel] [when condition] ;

As an example:

loop wait on Ck; exit when Ck ='0"; end | oop
-- equivalent to: wait until dk ="'0

The return statement [VHDL LRM8.12] completes execution of a procedure or function.
return_statement ::= [label:] return [expression];

A null statement [VHDL LRM8.13] does nothing (but is useful in acase statement where all choices
must be covered, but for some of the choices you do not want to do anything).

null _statenent ::= [label:] null;

Chapter start Previous page Next page

10.11 Operators

Table 10.16 shows the predefined VHDL operators, listed by their (increasing) order of precedence
[VHDL 93LRM7.2]. The shift operators and the xnor operator were added in VHDL-93.

TABLE 10.16 VHDL predefined operators (listed by increasing order of precedence). 1

logical_operator 2 ::= and | or | nand | nor | xor | xnor
relational_operator ::= =|/=|<|<=|>]|>=
shift_operator 2 ::= dl|srl | sla|sralrol | ror
adding_operator ::= +]-]1&

sign = +]|-

multiplying_operator ::= * |/ | mod | rem
miscellaneous_operator ::= ** | abs| not

The binary logical operators (and , or , nand , nor , xor , xnor) and the unary not logical operator are
predefined for types BI T or BOOLEAN and one-dimensional arrays whose element typeisBI T or BOOLEAN
. The operands must be of the same base type for the binary logical operators and the same length if they
are arrays. Both operands of relational operators must be of the same type and the result type is BOOLEAN
. The equality operator and inequality operator (" =" and’ / =") are defined for all types (other than file
types). The remaining relational operators, ordering operators, are predefined for any scalar type, and for
any one-dimensional array whose elements are of a discrete type (enumeration or integer type).

The |eft operand of the shift operators (VHDL-93 only) is a one-dimensional array with element type of
Bl T or BOOLEAN ; the right operand must be | NTEGER .

The adding operators (" + and’ -’) are predefined for any numeric type. Y ou cannot use the adding
operators on BI T or Bl T_VECTOR without overloading. The concatenation operator * & is predefined for
any one-dimensional array type. Thesigns(+ and’ -’) are defined for any numeric type.

The multiplying operatorsare:” ** ,’/’ ,nod , andrem. The operators’ ** and’ /’ are predefined for
any integer or floating-point type, and the operands and the result are of the same type. The operators
mod and r emare predefined for any integer type, and the operands and the result are of the same type. In
addition, you can multiply an | NTEGER or REAL by any physical type and the result is the physical type.
You can also divide a physical type by REAL or | NTEGER and the result is the physical type. If you divide
aphysical type by the same physical type, the result isan | NTEGER (actually type UNI VERSAL _| NTEGER,
which is a predefined anonymous type [VHDL LRM7.5]). Once again--you cannot use the multiplying
operators on Bl T or Bl T_VECTOR types without overloading the operators.

The exponentiating operator,’ *** , is predefined for integer and floating-point types. The right operand,
the exponent, istype | NTEGER . Y ou can only use a negative exponent with aleft operand that isa

floating-point type, and the result is the same type as the left operand. The unary operator abs (absolute
value) is predefined for any numeric type and the result is the same type. The operatorsabs ,’ **’ , and
not are grouped as miscellaneous operators.

Here are some examples of the use of VHDL operators:

entity Operator_1 is end; architecture Behave of Operator 1 is
begi n process

variable b : BOOLEAN; variable bt : BIT :="'1"; variable i : |INTEGER
variable pi : REAL := 3.14; variable epsilon : REAL := 0.01
variable bv4 : BIT_VECTOR (3 downto 0) := "0001"
variable bv8 : BIT_VECTOR (0 to 7);
begi n
b ;= "0000" < bhvi4; -- b is TRUE, "0000" treated as BI T_VECTOR
b ='f >'qg; -- b is FALSE, 'dictionary’ conparison
bt ='0" and bt; -- bt is 0, analyzer knows 'O is BIT.
bv4 := not bv4; -- bv4 is now "1110"
[=1+ 2 -- Addition, nmust be conpatible types.
[=2 ** 3; -- Exponentiation, exponent nust be integer
[= 7/3; -- Division, L/R rounded towards zero, i=2.
[= 12 rem 7; -- Remi nder, i=5. |In general
-- LremR=L-((L/IR*R).
[= 12 nod 7; -- nmodul us, i=5. In general
-- Lmd R=L-(R*N) for an integer N
-- shift :=sll | srl | sla]| sra| rol | ror (VHDL-93 only)
bv4 := "1001" srl 2; -- Shift right |ogical, now bv4="0100"
-- Logical shift fills with T LEFT.
bv4 := "1001" sra 2; -- Shift right arithnmetic, now bv4="0111".
-- Arithnetic shift fills with elenent at end bei ng vacat ed.
bv4 := "1001" ror 2; -- Rotate right, now bv4="0110"

-- Rotate wraps around.
-- Integer argunent to any shift operator may be negative or zero.

if (pi*2.718)/2.718 = 3.14 then wait; end if; -- This is unreliable.
if (abs(((pi*2.718)/2.718)-3.14)<epsilon) then wait; end if; -- Better
bv8 := bv8(1 to 7) & bv8(0); -- Concatenation, a left rotation

wait; end process;

end;

1. The not operator isalogical operator but has the precedence of a miscellaneous operator. 2. Underline
means "new to VHDL-93."

Chapter start Previous page Next page

10.12 Arithmetic

The following example illustrates type checking and type conversion in VHDL arithmetic operations
[VHDL 93LRM7.3.4-7.3.5]:

entity Arithmetic_1 is end; architecture Behave of Arithmetic_1 is
begi n process

variable i : INTEGER := 1; variable r : REAL := 3.33
variable b : BIT := "1

variable bv4d : BIT_VECTOR (3 downto 0) := "0001";
variable bv8 : BIT_VECTOR (7 downto 0) := B"1000_0000";

begi n

-- i = -- you can't
- - bv4 := bv4d + 2; -- you can’'t
-- bv4d :="1"; -- you can't
-- bv8 : = bv4; -- an error,
r .= REAL(i); -- K

[= I NTEGER(r); --

bv4 = "001" & '1'; --

bv8 = "0001" & bv4; -- XK

wai t; end process; end;

assign REAL to | NTEGER

add BI T_VECTOR and | NTEGER
assign BIT to Bl T_VECTOR

the arrays are different sizes.

uses a type conversion
X (0.5 rounds up or down).
OK, you can mix an array and a scal ar
if argunents are the correct

| engt hs.

The next example shows arithmetic operations between types and subtypes, and also illustrates range

checking during analysis and simulation:

entity Arithmetic_2 is end;
type TCis range 0 to 100;
type TF is range 32 to 212;
subtype STC is I NTEGER range 0 to 100

subtype STF is | NTEGER range 32 to 212;
begi n process
variable t1 : TC := 25; variable t2 : TF : =
variable st1 : STC := 25; variable st2 : STF :=
begi n
-- tl =t2;
- - tl = st1;
st2 = stl;
st2 =stl + 1;
-- st?2 = 213;
- - st2 =212 + 1
stl = stl + 100;
wai t; end process; end;

architecture Behave of Arithmetic_2 is

Illegal, different types.
-- Illegal, different types and su
-- OK to use sane base types.
-- K to use subtype and base type

-- Error, outside range at analys
-- Error, outside range at analys
-- Error, outside range at initia

The MTI simulator, for example, gives the following informative error message during simulation of the

preceding mode!:

** Fatal: Value 25 is out of range 32 to 212
Tine: O ns Iteration: O |Instance:/

Stopped at Arithnetic_2.vhd line 12

Fatal error at Arithmetic_2.vhd line 12

The assignment st2 := st1 causesthis error (since stlisinitialized to 25).

Operations between array types and subtypes are a little more complicated as the following example

illustrates:

entity Arithnetic_3 is end
type TYPE 1 is array (INTEGER range 3 downto 0)
type TYPE 2 is array (INTEGER range 3 downto 0)
subtype SUBTYPE 1 is BIT_VECTOR (3 downto 0);
subtype SUBTYPE 2 is BIT_VECTOR (3 downto 0);
begi n process

vari able bv4 : BIT_VECTOR (3 downto 0) :=

variable st1l : SUBTYPE 1 := "0001"; variable t1
variable st2 : SUBTYPE 2 := "0001"; variable t2
begi n
bv4 = stl; - -
-- bvd .= t1; .-
bv4d := BIT_VECTOR(t1); --

architecture Behave of Arithnetic 3 is

"0001";

of BIT;

of BIT;
TYPE_1 := "0001";
TYPE_2 := "0001";

OK, conpatible type and subtype
Il egal,
G<l

different types.
type conversi on.

stl : = bv4; -- OK, conpatible subtype and base type.
-- stl :=1t1; -- Illegal, different types.

stl := SUBTYPE 1(t1); -- OK, type conversion.
-- tl = st1; -- Illegal, different types.
-- tl = bv4; -- Illegal, different types.

tl = TYPE_1(bv4); -- OK, type conversion.
- - tl =t2; -- Illegal, different types.

tl = TYPE_1(t2); -- OK, type conversion.

stl ;= st2; -- OK, conpatible subtypes.

d.

wai t; end process; en

The preceding example uses Bl T and BI T_VECTOR types, but exactly the same considerations apply to
STD LOG Cand STD_LOG C_VECTOR types or other arrays. Notice the use of type conversion, written as
type_mark’ (expression), to convert between closely related types. Two types are closely related if they
are abstract numeric types (integer or floating-point) or arrays with the same dimension, each index type
isthe same (or are themselves closely related), and each element has the same type [VHDL
93LRM7.3.5].

10.12.1 IEEE Synthesis Packages

The IEEE 1076.3 standard synthesis packages allow you to perform arithmetic on arrays of the type Bl T
and STD_LOG €. 1 The NUMERI C_BI T package defines all of the operatorsin Table 10.16 (except for the
exponentiating operator * **') for arrays of type Bl T . Here is part of the package header, showing the
declaration of the two types UNSI GNED and SI GNED , and an example of one of the function declarations
that overloads the addition operator * + for UNSI GNED arguments:

package Part NUMERIC BIT is

type UNSIGNED is array (NATURAL range <>) of BIT;

type SIGNED is array (NATURAL range <>) of BIT;

function "+" (L, R : UNSIGNED) return UNSI GNED,

-- other function definitions that overload +, -, =, > and so on.
end Part _NUVERI C BIT;

The package bodies included in the 1076.3 standard define the functionality of the packages. Companies
may implement the functions in any way they wish--as long as the results are the same as those defined
by the standard. Here is an example of the parts of the NUMERIC_BIT package body that overload the
addition operator * + for two arguments of type UNSI GNED (even with my added comments the codeis
rather dense and terse, but remember this is code that we normally never see or need to understand):

package body Part NUMERIC BIT is

constant NAU : UNSIGNED(O downto 1) := (others =>"0"); -- Null array.
constant NAS : SIGNED(O downto 1):=(others => "0"); -- Null array.
constant NO WARNI NG : BOCOLEAN := FALSE; -- Default to emt warnings.
function MAX (LEFT, RIGHT : INTEGER) return | NTEGER is

begin -- Internal function used to find | ongest of two inputs.

if LEFT > RIGHT then return LEFT; else return RIGHT; end if; end MAX;
function ADD UNSIGNED (L, R: UNSIGNED, C. BIT) return UNSIGNED i s

constant L_LEFT : INTEGER := L'LENGTH 1; -- L, R nust be sanme | ength.
alias XL : UNSIGNED(L_LEFT downto 0) is L; -- Descending alias,

alias XR: UNSIGNED(L_LEFT downto 0) is R, -- aligns |left ends.
variabl e RESULT : UNSIGNED(L_LEFT downto 0); variable CBIT : BIT := C
begin for I in O to L_LEFT |Ioop -- Descending alias allows |oop.
RESULT(I) := CBIT xor XL(I) xor XR(l); -- CBIT = carry, initially = C
CBIT := (CBIT and XL(1)) or (CBIT and XR(1)) or (XL(Il) and XR(1));

end | oop; return RESULT; end ADD_UNSI GNED;

function RESIZE (ARG : UNSIGNED, NEW SIZE : NATURAL) return UNSIGNED is
constant ARG LEFT : I NTEGER : = ARG LENGTH 1;
alias XARG : UNSI GNED({ ARG LEFT downto 0) is ARG
variabl e RESULT : UNSI GNED(NEW SI ZE-1 downt o 0)
begin -- resize the input ARG to | ength NEW S| ZE
if (NEWSIZE < 1) then return NAU; end if; -- Return null array.
if XARG LENGTH = 0 then return RESULT; end if; -- Null to enpty.
i f (RESULT LENGTH < ARG LENGTH) then -- Check | engths.
RESULT(RESULT' LEFT downto 0) := XARG RESULT LEFT downto 0);
else -- Need to pad the result with sone '0’s.
RESULT(RESULT' LEFT downto XARG LEFT + 1) := (others =>"'0");
RESULT(XARG LEFT downto 0) := XARG
end if; return RESULT;
end RESI ZE;
function "+" (L, R: UNSIGNED) return UNSIGNED is -- Overloaded '+ .
constant SIZE : NATURAL : = MAX(L' LENGTH, R LENGTH);
begin -- If length of L or R< 1 return a null array.
if ((L'LENGTH < 1) or (R LENGTH < 1)) then return NAU;, end if;
return ADD UNSI GNED(RESI ZE(L, SIZE), RESIZE(R, SIZE), '0'); end "+";
end Part NUMERIC BIT;

- Descendi ng range.
(others => '0");

The following conversion functions are also part of the NUMERIC _BIT package:

function TO_ | NTEGER (ARG : UNSI GNED) return NATURAL;

function TO I NTEGER (ARG : SIGNED) return | NTEGER;

function TO UNSI GNED (ARG SIZE : NATURAL) return UNSI GNED;

function TO SIGNED (ARG : | NTEGER, SIZE : NATURAL) return Sl GNED;
function RESIZE (ARG : S| GNED; NEW SI ZE : NATURAL) return Sl GNED,
function RESIZE (ARG : UNSI GNED;, NEW SI ZE : NATURAL) return UNSI GNED;
-- set XMAP to convert unknown val ues, default is "X -> 0

function TO 01(S : UNSIGNED;, XMAP : STD LOJ C := "'0") return UNSI GNED;
function TO 01(S : SIGNED;, XMAP : STD LOG C := "0") return Sl GNED;

The NUMERIC_STD package is almost identical to the NUMERIC_BIT package except that the
UNSIGNED and SIGNED types are declared in terms of the STD_L OGIC type from the
St d_Logi c_1164 package asfollows:

library | EEE; use |EEE. STD LOG C 1164.all;

package Part NUMERIC STD i s

type UNSIGNED is array (NATURAL range <>) of STD LOG G
type SIGNED is array (NATURAL range <>) of STD LOG C
end Part NUMERI C_STD;

The NUMERIC_STD package body is similar to NUVERI C_BI T with the addition of a comparison
function called STD_MATCH, illustrated by the following:

-- function STD MATCH (L, R T) return BOCLEAN;
-- T = STD_ULOCA C UNSI GNED SI GNED STD _LOG C VECTOR STD _ULOGE C_VECTOR

The sTD_MATCH function uses the following table to compare logic values:

type BOOLEAN TABLE is array(STD ULOG C, STD ULOd C) of BOCLEAN,
constant MATCH TABLE : BOOLEAN TABLE : = (

(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), -- | U
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), -- | X |

(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE), --
(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE), --
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), --
(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), --
(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE), --
(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE), --
(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE)); --

! II_ENI—‘O

Thus, for example (notice we need type conversions):

| M. TRUE = STD_MATCH(STD_LOG C VECTOR (" 10HLXWZ-

ll) ,
STD LOG C_VECTOR ("HL10----")) -~ is TRUE

The following code is similar to the first simple example of Section 10.1, but illustrates the use of the
St d_Logi c_1164 and NUVERI C_STD packages:

entity Counter_1 is end;

library STD, use STD. TEXTI QO all
library | EEE; use |EEE. STD LOG C 1164.all;

use wor k. NUMERI C STD. al | ;
architecture Behave 2 of Counter_1 is

end;

signal Cock : STDLOJC :="'0";
signal Count : UNSIGNED (2 downto 0) := "000"
begi n

process begin
wait for 10 ns; C ock <= not C ock
if (now > 340 ns) then wait;
end if;
end process;
process begin
wait until (Clock ='0");
if (Count = 7)
then Count <= "000";
el se Count <= Count + 1;
end if;
end process;
process (Count) variable L: LINE begin wite(L, now);
wite(L, STRING (" Count=")); wite(L, TO_INTEGER(Count));
writeline(output, L);
end process;

The preceding code looks similar to the code in Section 10.1 (and the output isidentical), but thereis
more going on here:

Line3isalibrary clauseand ause clause for thestd_| ogi c_1164 package, so you can use the
STD _LOG Ctype and the NUVERI C_BI T package.

Line4isause clause for NUVERI C_BI T package that was previously analyzed into the library wor k
. If the package isinstead analyzed into the library | EEE , you would use the name

| EEE. NUMERI C BI T. al | here. The NUMERI C_BI T package allows you to use the type UNSI GNED .
Line 6 declares d ock to betype STD_LOG Cand initidlizesitto’ 0’ , instead of the default initial
value STD_LOG C LEFT (whichis’ U).

Line 7 declares Count to be a 3-bit array of type UNSI GNED from NUMVERI C_BI T and initializesit
using a bit-string literal.

Line 10 usesthe overloaded ' not’ operator fromstd_I ogi c_1164 .

Line 15 uses the overloaded '=" operator from st d_| ogi c_1164 .

® Line 16 usesthe overloaded =" operator from NUVERI C_BI T .

® Line 17 requires abit-string literal, you cannot use Count <= 0 here.
® Line 18 usesthe overloaded’ + operator from NUVERI C BI T .

® Line 22 converts Count , type UNSI GNED, to type | NTEGER .

1. IEEE Std 1076.3-1997 was approved by the IEEE Standards Board on 20 March 1997. The synthesis
package code on the following pagesis reprinted with permission from |IEEE Std 1076.3-1997,
Copyright © 1997 IEEE. All rights reserved.

page Next page

10.13 Concurrent Statements

A concurrent statement [VHDL LRM9] is one of the following statements:

concurrent_statenent ::=
bl ock_st at enent
process_st at emrent

[label :] [postponed] procedure_cal
[label :] [postponed] assertion ;
[label :] [postponed] sel ected_signal _assi gnment

conponent _i nstanti ati on_st at enent

|
|
| [label :] [postponed] conditional _signal _assignnent
|
|
| generate_stat enent

The following sections describe each of these statementsin turn.

10.13.1 Block Statement

A block statement has the following format [VHDL LRM9.1]:

bl ock_statenent ::=
bl ock_| abel : bl ock [(guard_expression)] [is]
[generic (generic_interface_list);
[generic map (generic_association_list);]]
[port (port_interface_list);
[port map (port_association list);]]
{bl ock_decl arative_iten}
begi n
{concurrent _statenent}
end bl ock [block | abel]

Blocks may have their own ports and generics and may be used to split an architecture into several
hierarchical parts (blocks can also be nested). As avery general rule, for the same reason that it is better
to split a computer program into separate small modules, it is usually better to split alarge architecture
into smaller separate entity-architecture pairs rather than several nested blocks.

A block does have a unique feature: It is possible to specify a guard expression for ablock. This creates
aspecia signal, GUARD, that you can use within the block to control execution [VHDL LRM9.5]. It also
allows you to model three-state buses by declaring guarded signals (signal kinds register and bus).

When you make an assignment statement to a signal, you define adriver for that signa. If you make
assignments to guarded signals in a block, the driver for that signal is turned off, or disconnected, when
the GUARD signal isFALSE . The use of guarded signals and guarded blocks can become quite
complicated, and not all synthesis tools support these VHDL features.

The following example shows two drivers, A and B, on athree-state bus TSTATE , enabled by signals CEA
and CeB . The drivers are enabled by declaring a guard expression after the block declaration and using
the keyword guar ded in the assignment statements. A disconnect statement [VHDL LRM5.3] models
the driver delay from driving the bus to the high-impedance state (time to "float").

l[ibrary ieee; use ieee.std logic_1164.all

entity bus_drivers is end;

architecture Structure_1 of bus drivers is

signal TSTATE: STD LCd C bus; signal A, B, OEA, CEB : STD LOAC ="'0;
begi n

process begin CEA <= '1" after 100 ns, 'O’ after 200 ns;

CEB <= '1' after 300 ns; wait; end process;

Bl : block (OCEA ="'1")

di sconnect all : STD LOG C after 5 ns; -- Only needed for float tine.
begi n TSTATE <= guarded not A after 3 ns; end bl ock

B2 : block (CEB = '1")

di sconnect all : STD LOGJd C after 5 ns; -- Float time = 5 ns.
begi n TSTATE <= guarded not B after 3 ns; end bl ock
end;
1 2 3 4 5 6 7
Tinme(fs) + Cycle tstate a b oea oeb bl. GUARD b2. GUARD
0+ O: LU 0 L L O L 0§ FALSE FALSE
o+ 1. * 'z 00 0 0 'O FALSE FALSE
100000000+ O: HZANN 0 M 0 B A O N TRUE FALSE
103000000+ 0: * 1" 'O 0" 'l 'O TRUE FALSE
200000000+ O: 1 '0 "0 *rO 0 * FALSE FALSE
200000000+ 1: * 'Z 'O’ 'O 'O 'O FALSE FALSE
300000000+ O: AN 0 K L O A FALSE * TRUE
303000000+ 0: * '1° 'O" 'O 'O 'Ll FALSE TRUE

Notice the creation of implicit guard signals b1. GUARD and b2.GUARD for each guarded block. There
is another, equivalent, method that uses the high-impedance value explicitly asin the following
example:

architecture Structure_2 of bus _drivers is
signal TSTATE : STD LOG C; signal A, B, CEA, OEB : STD LOCJC := '0’;
begi n
process begin
OEA <= '1" after 100 ns, 'O’ after 200 ns; OEB <= '1' after 300 ns; wait; end proces
process(COEA, OEB, A, B) begin
i f (CEA = "1'") then TSTATE <= not A after 3 ns;
elsif (OEB = '1') then TSTATE <= not B after 3 ns;
el se TSTATE <= 'Z' after 5 ns;
end if;
end process;
end;

This last method is more widely used than the first, and what is more important, more widely accepted
by synthesis tools. Most synthesis tools are capable of recognizing the value’ z2 on the RHS of an

assignment statement as a cue to synthesize a three-state driver. It is up to you to make sure that multiple
drivers are never enabled simultaneously to cause contention.

10.13.2 Process Statement

A process statement has the following format [VHDL LRM9.2]:

process_statement ::=
[process_| abel :]
[post poned] process [(signal_nanme {, signal _nane})]

[is] {subprogram decl aration | subprogram body

| type_declaration | subtype_declaration

| constant _decl aration | variabl e_declaration

| file_declaration | alias_declaration

| attribute_declaration | attribute_specification

| use_cl ause

| group_declaration | group_tenpl ate_decl arati on}
begi n

{sequenti al _statenent}
end [postponed] process [process_| abel];

The following process models a2:1 MUX (combinational logic):

entity Mux 1 is port (iO, i1, sel : inBIT:='0"; y : out BIT); end,
architecture Behave of Mux_1 is
begin process (i0, i1, sel) begin -- i0, il, sel = sensitivity set

case sel is when '0" =>y <=1i0; when '1" =>y <= il; end case;
end process; end;

This process executes whenever an event occurs on any of the signalsin the process sensitivity set (i0,
i1, sel). The execution of a process occurs during asimulation cycle--a delta cycle. Assignment
statements to signals may trigger further delta cycles. Time advances when al transactions for the
current time step are complete and all signals updated.

The following code models atwo-input AND gate (combinational logic):

entity And_ 1 is port (a, b: inBIT:="0"; y : out BIT); end;
architecture Behave of And_1 is
begin process (a, b) begin y <= a and b; end process; end;

The next example models aD flip-flop (sequentia logic). The process statement is executed
whenever thereisan eventoncl k . Thei f statement updates the output g with the input d on therising
edge of thesignal cl k . If thei f statement condition isfalse (asit ison the falling edge of cl k), then
the assignment statement g <= d will not be executed, and g will keep its previous value. The process
thus requires the value of g to be stored between successive process executions, and this implies
sequential logic.

entity FF_ 1 is port (clk, d: inBIT :="0"; g : out BIT); end;
architecture Behave of FF_1 is
begi n process (cl k) begin
if clk’ EVENT and clk = "1 then g <= d; end if;
end process; end;

The behavior of the next exampleisidentical to the previous model. Notice that thewai t statement is at

the end of the equivalent process with the signalsin the sensitivity set (in this case just one signal, cl k)
included in the sensitivity list (that follows the keyword on).

entity FF_2 is port (clk, d: in BIT :="0"; g : out BIT); end;
architecture Behave of FF 2 is
begi n process begin -- The equival ent process has a wait at the end:
if clkevent and clk = '1" then g <=d; end if; wait on clk;

end process; end;

If weuseawai t statement inaprocess statement, then we may not use a process sensitivity set (the
reverseistrue: If we do not have a sensitivity set for a process, we must include awai t statement or the
process will execute endlessly):

entity FF_3 is port (clk, d: in BIT :="0"; g : out BIT); end;
architecture Behave of FF 3 is
begin process begin -- No sensitivity set with a wait statement.

wait until clk ="'1"; q <= d;
end process; end;

If you include ports (interface signals) in the sensitivity set of apr ocess statement, they must be ports
that can be read (they must be of modei n , i nout , or buf f er , see Section 10.7).

10.13.3 Concurrent Procedure Call

A concurrent procedure call appears outside apr ocess statement [VHDL LRM9.3]. The concurrent
procedure call is a shorthand way of writing an equivalent pr ocess statement that contains a procedure
call (Section 10.10.4):

package And Pkg is procedure V_And(a, b:BIT, signal c:out BIT); end;

package body And Pkg is procedure V_And(a,b:BIT, signal c:out BIT) is
begin ¢ <= a and b; end; end And_Pkg;

use work.And_Pkg.all; entity Proc_Call_2 is end;

architecture Behave of Proc_Call 2 is signal A, B, Y: BIT :="'0
begin V_And (A B, Y); -- Concurrent procedure call
process begin wait; end process; -- Extra process to stop

end;
10.13.4 Concurrent Signal Assignment

There are two forms of concurrent signal assignment statement. A selected signal assignment statement
isequivalent to acase statement inside apr ocess statement [VHDL LRM9.5.2]:

sel ected_signal _assignnent ::=
wi th expression sel ect
nane| aggr egat e <= [guarded]
[transport|[reject tinme_expression] inertial]
wavef orm when choi ce {| choice}
{, waveform when choice {| choice} } ;

The following design unit, Selected_1, uses a selected signal assignment. The equivalent unit,
Selected 2, usesacase statement inside apr ocess Statement.

entity Selected_1 is end; architecture Behave of Selected_1 is
signal y,i1,i2 : INTEGER; signal sel : INTEGER range 0 to 1

begin with sel select y <= i1 when 0, i2 when 1; end;
entity Selected 2 is end; architecture Behave of Selected 2 is
signal i1,i2,y : INTEGER, signal sel : INTEGER range O to 1
begi n process begin
case sel is when 0 =>y <= il; when 1 =>y <= i2; end case;
wait on il, i2;
end process; end;

The other form of concurrent signal assignment is a conditional signal assignment statement that, in its
most general form, isequivalentto ani f statement inside apr ocess statement [VHDL LRM9.5.1]:

condi tional _signal _assignnent ::=
nanme| aggr egat e <= [guar ded]
[transport|[reject tine_expression] inertial]
{wavef orm when bool ean_expressi on el se}
wavef or m [when bool ean_expressi on];

Notice that in VHDL-93 the el se clauseisoptional. Here is an example of a conditional signal
assignment, followed by a model using the equivalent processwith ani f statement:

entity Conditional 1 is end; architecture Behave of Conditional 1 is

signal y,i,j : INTEGER, signal clk : BIT;
beginy <=i when clk ='1" else j; -- conditional signal assignnent
end;
entity Conditional 2 is end; architecture Behave of Conditional 2 is
signal y,i : INTEGER, signal clk : BIT,
begi n process begin

if clk ="1 theny <=1i; elsey <=y ; endif; wait on clk;

end process; end;

A concurrent signal assignment statement can look just like a sequential signal assignment statement, as
in the following example:

entity Assign_1 is end; architecture Behave of Assign_ 1 is
signal Target, Source : |NTEGER

begin Target <= Source after 1 ns; -- |looks |ike signal assignnent
end;

However, outside apr ocess statement, this statement is a concurrent signal assignment and has its own
equivalent pr ocess statement. Here is the equivalent process for the example:

entity Assign 2 is end; architecture Behave of Assign 2 is
signal Target, Source : |NTEGER
begi n process begin
Target <= Source after 1 ns; wait on Source;
end process; end;

Every process is executed once during initialization. In the previous example, an initial value will be
scheduled to be assigned to Tar get even though there is no event on Sour ce . If, for some reason, you
do not want this to happen, you need to rewrite the concurrent assignment statement asapr ocess
statement with awai t statement before the assignment statement:

entity Assign_3 is end; architecture Behave of Assign_3 is
signal Target, Source : INTEGER begin process begin

wait on Source; Target <= Source after 1 ns;
end process; end;

10.13.5 Concurrent Assertion Statement

A concurrent assertion statement is equivalent to a passive pr ocess statement (without a sensitivity list)
that contains an asser t i on statement followed by awai t statement [VHDL LRM9.4].

concurrent _assertion_stat enment
;=1 label :] [postponed] assertion

If the assertion condition contains asignal, then the equivalent pr ocess statement will include afinal
wai t statement with a sensitivity clause. A concurrent assertion statement with a condition that is static
expression is equivalent to apr ocess statement that endsin awai t statement that has no sensitivity
clause. The equivalent process will execute once, at the beginning of simulation, and then wait
indefinitely.

10.13.6 Component Instantiation

A component instantiation statement in VHDL is similar to placement of acomponent in a
schematic--an instantiated component is somewhere between a copy of the component and a reference to
the component. Here is the definition [VHDL LRM9.6]:

conponent _instantiation_statenment ::=
i nstanti ation_| abel
[component] conponent _name
|entity entity name [(architecture_identifier)]
| configuration configuration_nane
[generic map (generic_association list)]
[port map (port_association_list)]

We examined component instantiation using a component_name in Section 10.5. If we instantiate a
component in this way we must declare the component (see BNF [10.9]). To bind a component to an
entity-architecture pair we can use a configuration, asillustrated in Figure 10.1, or we can use the
default binding as described in Section 10.7. In VHDL-93 we have another alternative--we can directly
instantiate an entity or configuration. For example:

entity And_2 is port (il, i2 : in BIT;, y : out BIT); end;
architecture Behave of And_2 is beginy <=i1l and i2; end;
entity Xor 2 is port (il, i2: inBIT, y : out BIT); end;
architecture Behave of Xor 2 is beginy <= i1l xor i2; end,

entity Half_Adder_2 is port (a,b : BIT :='0"; sum cry : out BIT); end,
architecture Netlist_2 of Half_Adder 2 is
use work.all; -- need this to see the entities Xor_2 and And_2
begi n
X1 : entity Xor_2(Behave) port map (a, b, sun); -- VHDL-93 only
Al : entity And_2(Behave) port map (a, b, cry); -- VHDL-93 only
end;

10.13.7 Generate Statement

A generate statement [VHDL LRM9.7] simplifies repetitive code:

generate_statenent ::=
generate_| abel : for generate_paraneter_specification
| i f bool ean_expression

generate [{block declarative_ itent begin]
{concurrent _statenent}
end generate [generate_ | abel] ;

Hereis an example (notice the labels are required):

entity Full _Adder is port (X, Y, Cn: BIT, Cout, Sum out BIT); end;
architecture Behave of Full _Adder is begin Sum <= X xor Y xor Cin;
Cout <= (X and Y) or (X and Cn) or (Y and G n); end,
entity Adder_1 is
port (A, B: in BIT VECTOR (7 dowmto 0) := (others => '0");
Cn: inBIT:="0; Sum: out BIT VECTOR (7 downto 0);
Cout : out BIT); end;
architecture Structure of Adder_ 1 is use work. all
conponent Full _Adder port (X, Y, Cn: BIT, Cout, Sum out BIT);
end conponent;
signal C: BIT_VECTOR(7 downto 0);
begin AlIBits : for i in 7 dowmnto O generate
LowBit : if i = 0 generate
FA : Full _Adder port map (A(0), B(0), Cn, C(0), Sunm(0));
end generate;
O herBits : if i /=0 generate
FA : Full _Adder port map (A(i), B(i), C(i-1), C(i), Sun(i));
end generate;
end generate;
Cout <= C(7);
end;

The instance names within agener at e loop include the gener at e parameter. For examplefor i =6 ,
FA' | NSTANCE_NAME i s

;adder _1(structure):allbits(6):otherbits:fa:

10.14 Execution

Two successive statements may execute in either a concurrent or sequential fashion depending on where
the statements appear.

statenent _1; statenent_ 2;

In sequential execution, st at ement _1 in this sequence is always evaluated before st at enent 2 . In
concurrent execution, st at ement _1 and st at enent _2 are evaluated at the same time (asfar aswe are
concerned--obviously on most computers exactly parallel execution is not possible). Concurrent
execution is the most important difference between VHDL and a computer programming language.
Suppose we have two signal assignment statementsinside apr ocess statement. In this case

st at enent _1 and st at enent _2 are sequential assignment statements:

entity Sequential 1 is end; architecture Behave of Sequential 1 is
signal s1, s2 : |INTEGER : = 0;

begi n
process begin
sl <= 1; -- sequential signal assignment 1
s2 <= sl + 1; -- sequential signal assignnent 2

wait on sl1, s2 ;

end process;

end;
Time(fs) + Cycle sl s2
0+ O: 0 0
0+ 1: 1+ 1
0+ 2: 1= 2
0+ 3: 1+ 2

If the two statements are outside apr ocess statement they are concurrent assignment statements, asin
the following example:

entity Concurrent_1 is end; architecture Behave of Concurrent_ 1 is
signal sl1, s2 : INTEGER := 0; begin

L1 : s1 <= 1; -- concurrent signal assignment 1
L2 : s2 <=s1 + 1; -- concurrent signal assignnent 2
end;
Time(fs) + Cycle sl s2
0+ 0 0 0
0+ 1: * 1= 1
0+ 2 1* 2

The two concurrent signal assignment statements in the previous example are equivalent to the two
processes, labeled as P1 and P2 , in the following model.

entity Concurrent_2 is end; architecture Behave of Concurrent 2 is
signal s1, s2 : INTEGER := 0; begin
P1 : process begin sl <= 1; wait on s2 ; end process;
P2 : process begin s2 <= sl + 1; wait on sl ; end process;

end;
Time(fs) + Cycle sl s2
0+ O: 0 0
o+ 1: 1~ 1
0+ 2: 1* 2
0+ 3: 1 2

Notice that the results are the same (though the trace files are dlightly different) for the architectures
Sequenti al _1, Concurrent _1, and Concurrent _2. Updatesto signals occur at the end of the
simulation cycle, so the values used will always be the old values. So far things seem fairly smple: We
have sequential execution or concurrent execution. However, variables are updated immediately, so the
variable values that are used are always the new values. The examplesin Table 10.17 illustrate this very
important difference.

TABLE 10.17 Variablesand signalsin VHDL.

Variables

Signals

entity Execute_ 1 is end;

architecture Behave of Execute 1 is

begin
process
variable vl : INTEGER : = 1;
variable v2 : INTEGER := 2
begin
vl :=v2; -- before: vl =1, v2
v2 :=vl;, -- after: vl =2, v2
wait;
end process;
end;

entity Execute 2 is end;

architecture Behave of Execute :

| NTEGER :
| NTEGER :

signal s1 :
signal s2 :
begi n

1;
2,

process
begi n
sl <= s2;
s2 <= sl;
wait;
end process;
end;

- bef
- aft

The various concurrent and sequential statementsin VHDL are summarized in Table 10.18.

TABLE 10.18 Concurrent and sequential statementsin VHDL.

Concurrent [VHDL LRM9]

Sequential [VHDL LRMS8]

block

process
concurrent_procedure_call
concurrent_assertion
concurrent_signal_assignment
component_instantiation

generate

wait

assertion
signal_assignment
variable_assignment
procedure _call

if

case
loop

next

return

null

10.15 Configurations and Specifications

The difference between, the interaction, and the use of component/configuration declarations and

specificationsis probably the most confusing aspect of VHDL. Fortunately this aspect of VHDL is not
normally important for ASIC design. The syntax of component/configuration declarations and
specificationsis shown in Table 10.19.

TABLE 10.19 VHDL binding.

configuration configuration identifier of entity name is

declaration 1 {use_cl ause| attribute_specification|group_declaration}
[VHDL LRML. 3] bl ock_configuration
end [configuration] [configuration_identifier];
bl ock for architecture_nane
configuration | bl ock_st at ement _| abe
[VHDL LRML. 3. 1] | generate_statenent | abel [(index_specification)]

{use sel ected nane {, selected nane};}
{bl ock_confi guration| conponent _confi guration}
end for

configuration |for

specification 1| instantiation_label{,instantiation_|label}:conmponent_nane
[VHDL LRMb. 2] | ot her s: component _nane
| al I : component _name
[use

entity entity nanme [(architecture_identifier)]
| configuration configuration_nane
| open]

[generic map (generic_association_list)]

[port map (port_association_list)];

component conponent identifier [is]
declaration 1 [generic (local _generic_interface list);]
[VHDL LRMA4. 5] [port (local _port_interface list);]

end comnponent [conponent identifier];

conponent for
configuration 1jlinstantiation_|label {, instantiation_|abel}:conponent_nane
[VHDL LRML. 3. 2] ||| ot her s: conponent _nane
| al I : component _nane
[[use
entity entity_name [(architecture_identifier)]
| configuration configuration_nane
| open]
[generic map (generic_association_list)]
[port map (port_association_list)];]
[bl ock_confi guration]
end for;

® A configuration declaration defines a configuration--it isalibrary unit and is one of the basic units
of VHDL code.

® A block configuration defines the configuration of a block statement or a design entity. A block
configuration appears inside a configuration declaration, a component configuration, or nested in
another block configuration.

® A configuration specification may appear in the declarative region of a generate statement, block
statement, or architecture body.

® A component declaration may appear in the declarative region of a generate statement, block
statement, architecture body, or package.

® A component configuration defines the configuration of a component and appearsin a block

configuration.

Table 10.20 shows a simple example (identical in structure to the example of Section 10.5) that
illustrates the use of each of the preceding constructs.

TABLE 10.20 VHDL binding examples.

entity AD2 is port (Al, A2: in BIT; Y: out BIT); end,
architecture B of AD2 is begin Y <= Al and A2; end;
entity XR2 is port (X1, X2: in BIT;, Y: out BIT); end;
architecture B of XR2 is begin Y <= X1 xor X2; end;

entity Half_Adder is port (X Y: BIT, Sum Cout: out BIT); end,
architecture Netlist of Half_Adder is use work. all
conponent conponent MX port (A B: BIT;, Z :out BIT);end conponent;
degParation conponent MA port (A B: BIT, Z :out BIT);end conponent;
; : for GL: MX use entity XR2(B) port map(Xl => A X2 => B, Y => 2);

configuration .
specification begi n

Gl: MX port map(X, Y, Sunm); G:MA port map(X, Y, Cout);
end;

configuration CL of Hal f_Adder is

configuration use work. all

decl arati on

bl ock . ror Netl}gtr @2: MA

ng‘;n'ogﬁ;ﬁ%' on use entity AD2(B) port map(AlL => A A2 => B,"
; . end for;

configuration end for:

end;

1. Underline means "new to VHDL-93".

HREF="CH10.15.htm">Previous page Next page

10.16 An Engine Controller

This section describes part of a controller for an automobile engine. Table 10.21 shows atemperature
converter that converts digitized temperature readings from a sensor from degrees Centigrade to degrees
Fahrenheit.

TABLE 10.21 A temperature converter.

library IEEE; Tin=

use | EEE. STD LOG C 1164.all; -- type STD LOd C, rising_edge & ;
use | EEE. NUMERIC STD. all : -- type UNSI GNED, "+", /" temperature in
entity tconv is generic TPD : TIME = 1 ns; degC

port (T_in : in UNSIGNED(11 downto O);
clk, rst : in STD LOG C, T out : out UNSIGNED(11 downto 0));

end;
architecture rtl of tconv is
signal T : UNSIGNED(7 downto 0); T_out =
constant T2 : UNSIGNED(1 downto 0) := "10" ; temperaturein
constant T4 : UNSIGNED(2 downto 0) := "100" ; degF
constant T32 : UNSI GNED(5 downto 0) := "100000" ;
begin
process(T) begin T out <= T + T/T2 + T/T4 + T32 after TPD;
end process;
end rtl; The conversion
formulafrom
Centigrade to
Fahrenheit is:

T(degF) = (9/5)
X T(degC) + 32

This converter
uses the
approximation:

95=175=1
+05+0.25

To save area the temperature conversion is approximate. Instead of multiplying by 9/5 and adding 32 (so
0 degC becomes 32 degF and 100 degC becomes 212 degF) we multiply by 1.75 and add 32 (so 100
degC becomes 207 degF). Since 1.75 =1 + 0.5 + 0.25, we can multiply by 1.75 using shifts (for divide
by 2, and divide by 4) together with avery simple constant addition (since 32 = "100000"). Using shift
to multiply and divide by powers of 2 isfree in hardware (we just change connections to a bus). For
large temperatures the error approaches 0.05/1.8 or approximately 3 percent. We play these kinds of
tricks often in hardware computation. Notice also that temperatures measured in degC and degF are
defined as unsigned integers of the same width. We could have defined these as separate types to take
advantage of VHDL'’stype checking.

Table 10.22 describes a digital filter to compute a"moving average" over four successive samplesin
time (i(0), i(1), i(2), and i(3), with i (0) being the first sample).

TABLE 10.22 A digital filter.

l'ibrary | EEE;
use | EEE. STD LOG C 1164.all; -- STD LOd C type, rising_edge
use | EEE. NUMERI C STD. al | ; -- UNSIGNED type, "+" and "/"

The
com

entity filter is
generic TPD : TIME := 1 ns;
port (T_in : in UNSIGNED(11 downto 0);
rst, clk : in STD LOQd C;
T out: out UNSIGNED(11 downto 0));

VINDI AN Ly YL, ' v

end;
architecture rtl of filter is
type arr is array (0 to 3) of UNSIGNED(11 downto 0);

signal i : arr ;
constant T4 : UNSIGNED(2 downto 0) := "100";
begin
process(rst, clk) begin
if (rst ='1") then
for nin O to 3 loop i(n) <=
end | oop;
el se

i f(rising_edge(clk)) then

(others =>"0") after

i(0) <= T_in after TPD;i (1) <= i(0) after TPD
i(2) <=i(1) after TPD;i(3) <= i(2) after TPD

end if;
end if;
end process;
process(i) begin

T out <= (i(0) +i(1) +i(2) +i(3))/ T4 after TPD,

end process;
end rtl;

TPD;

aim(
aver
over
Succ

time

Noti

i(0)
i(2)

are ¢
12k
widk

The

i(0)
+i(:

i(3)

is1s
wide
the

(i(0
i(2)

+i(c

is1Z
widk

All «
are(
TPD

The filter uses the following formula:

Tout <= (i(0) +i(1) +i(2) +i(3))/ T4

Divisionby T4 = "100" isfreein hardware. If instead, we performed the divisions before the additions,
this would reduce the number of bitsto be added for two of the additions and saves us worrying about

overflow. The drawback to this approach is round-off errors. We can use the register shown in

Table 10.23 to register the inputs.

TABLE 10.23 Theinput register.

l'ibrary | EEE;
use | EEE. STD LOG C 1164.all; -- type STD LOd C, rising_edge
use | EEE. NUMERI C_STD. all ; -- type UNSI GNED

entity register_inis

generic (TPD: TIME := 1 ns);

port (T_in : in UNSIGNED(11 downto 0);

clk, rst : in STD LOGC, T out : out UNSIGNED(11 downto 0)); end;
architecture rtl of register_inis

begin
process(cl k, rst) begin
if (rst ='1) then T_out <= (others =>'0") after TPD
el se
if (rising _edge(clk)) then T out <= T in after TPD;, end if;
end if;
end process;
end rtl

12-bit-wi
register fi
the
temperat
input

signals.

If theinp
asynchro
(from an

converter
with a
Separate
clock, for
example)
would ne
worry ab
metastabi

All delay
generic T

Table 10.24 shows afirst-in, first-out stack (FIFO). This allows usto buffer the signals coming from the

sensor until the microprocessor has a chance to read them. The depth of the FIFO will depend on the
maximum amount of time that can pass without the microcontroller being able to read from the bus. We

have to determine this with statistical simulations taking into account other traffic on the bus.

TABLE 10.24 A first-in, first-out stack (FIFO).

library | EEE; use | EEE. NUMERI C_STD.all ; -- UNSIGNED type
use ieee.std logic _1164.all; -- STD LOd C type, rising_edge
entity fifois
generic (width : INTEGER := 12; depth : INTEGER : = 16);
port (clk, rst, push, pop : STD LOd C

Di : in UNSIGNED (wi dth-1 downto 0);
Do : out UNSIGNED (wi dth-1 downto 0);
enpty, full : out STD LCOd Q);

end fifo;

architecture rtl of fifois
subtype ptype is INTEGER range 0 to (depth-1);
signal diff, A, Ao : ptype; signal f, e : STD LOQ C
type a is array (ptype) of UNSI GNED(w dt h-1 downto 0);
signal mem: a ;
function bunp(signal ptr : |INTEGER range O to (depth-1))
return | NTEGER i s begin

if (ptr = (depth-1)) then return O;

el se return (ptr + 1);

end if;
end;
begin
process(f,e) begin full <=f ; enpty <= e; end process;
process(di ff) begin
if (diff = depth -1) then f <='1"; else f <='0"; end if;
if (diff = 0) then e <="1"; elsee <='0"; endif;
end process;
process(clk, A, Ao, D, nem push, pop, e, f) begin
i f(rising_edge(clk)) then
i f(push="0")and(pop="1")and(e = '0’) then Do <= nen(Ao); end if;
i f(push="1")and(pop="0")and(f = '0") then men(Ai) <= Di; end if;
end if ;
end process;
process(rst, clk) begin
if(rst ='1") then Al <= 0; Ao <= 0; diff <= 0;
el se if(rising_edge(clk)) then
if (push ='1") and (f ='0") and (pop = '0’) then
Al <= bump(A); diff <=diff + 1;
elsif (pop ='1) and (e ='0") and (push = '0") then
Ao <= bunp(Ao); diff <=diff - 1;
end if;
end if;
end if;
end process;
end;

FIFO

(first-ii
first-ot
registe

Reads
=lar
writes
=lar
synchr
to thel
edge 0
clock.

Read ¢
write s
not oce
the sar
time. T
width

(numb
bitsin
word)

depth

(numb
words)
generic

Extern
signals

clk,cC

rst ,n
active-

push ,
to FIF(

pop , I
from F

D ,da
Do , da

enpty
FIFOf

full ,
flag

Interne
signals

diff,
differe
pointer

A, in|
addres

Ao , OU
addres

f , full

e, emj
flag

No del
this mc

The FIFO hasflags, enpty and f ul | , that signify its state. It uses a function to increment two circular
pointers. One pointer keeps track of the address to write to next, the other pointer tracks the address to
read from. The FIFO memory may be implemented in a number of ways in hardware. We shall assume
for the moment that it will be synthesized as a bank of flip-flops.

Table 10.25 shows a controller for the two FIFOs. The controller handles the reading and writing to the
FIFO. The microcontroller attached to the bus signals which of the FIFOs it wishes to read from. The
controller then places the appropriate data on the bus. The microcontroller can also ask for the FIFO

flags to be placed in the low-order bits of the bus on aread cycle. If none of these actions are requested

by the microcontroller, the FIFO controller three-states its output drivers.

Table 10.25 shows the top level of the controller. To complete our model we shall use a package for the

component declarations:

TABLE 10.25 A FIFO controller.

l'ibrary | EEE; use | EEE. STD LOd C _1164. al | ; use | EEE. NUMERI C_STD. al |
entity fifo_control is generic TPD: TIME := 1 ns;
port(D_1, D 2 : in UNSIGNED(11 downto O);

sel in UNSI GNEDX 1 downto 0) ;
read , f1, f2, el, e2 : in STD LOQ C,
ri, r2, wi2 : out STD LOG C, D : out UNSIGNED(11l downto 0)) ;

end;
architecture rtl of fifo_contro
begi n process

is

(read, sel, D1, D2, f1, f2, el, e2)

begin

rl <='0 after TPD;, r2 <= '0 after TPD

if (read ='1") then
wl2 <= '0" after TPD
case sel is
when "01" => D <= D 1 after TPD;, rl1l <= '1 after TPD
when "10" => D <= D 2 after TPD; r2 <= '1" after TPD
when "00" => D(3) <= f1 after TPD, D(2) <= f2 after TPD

D(1) <= el after TPD, D(0) <= e2 after TPD;

when others => D <= "ZZ77777777777" after TPD,
end case;

elsif (read = '0’) then
D <= "Z77272777777777" after TPD, wl2 <= '1’

else D <= "7772777777777" after TPD

end if;

end process;

end rtl;

after TPD,

This handles
thereading
and writing t
the FIFOs
under control
of the
processor
(mpu). The
mpu can ask
for data fromr
either FIFO ¢
for status fla
to be placed
on the bus.

I nputs:
D1

datain fro
FIFO1

D 2

datain fro
FIFO2

sel

FIFO sele
from mpu

read

FIFO read
from mpu

f1,f2,el,¢

flags from
FIFOs

Outputs:
ri, r2

read enabl
for FIFOs

wl2

write enab
for FIFOs

D

data out to
mpu bus

TABLE 10.26 Top level of temperature controller.

library | EEE; use | EEE. STD LOd C_1164.all; use | EEE. NUMERI C_STD. al | ;
entity T _Control is port (T_inl, T_in2 : in UNSIGNED (11 downto 0);
sensor: in UNSIGNED(1 downto 0);
clk, RD, rst : in STD LOAC, D : out UNSIGNED(11 downto 0));

end;

architecture structure of T_Control is use work. TC Conponents. all;

signal F, E: UNSIGNED (2 downto 1);

signal T_outl, T out2, Routl, Rout2, F1, F2, FIFOL, FIFQ2 : UNSI GNED(11l downto 0);
signal RD1, RD2, WR STD LCd C ;

begin

RGL : register_in generic map (1ns) port map (T_inl,clk,rst,R outl);

R& : register_in generic map (1lns) port map (T_in2,clk,rst,R out?2);

TCl1 : tconv generic map (1ns) port map (R outl, T outl);

TC2 : tconv generic map (1lns) port map (R out2, T out?2);

TF1 : filter generic map (1ns) port map (T_outl, rst, clk, F1);

TF2 : filter generic map (1ns) port map (T_out2, rst, clk, F2);

FI1: fifo generic map (12,16) port map (clk, rst, WR, RD1, F1, FIFOL, E(1), F(1));
FI2 : fifo generic map (12,16) port map (clk, rst, WR RD2, F2, FIF®2, E(2), F(2));
FC1 : fifo_control port map

(FI'FOL, FIF®2, sensor, RD, F(1), F(2), E(1), E(2), RD1, RD2, WR, D);

end structure;

package TC Conponents is
conponent register_in generic (TPD: TIME := 1 ns);
port (T_in : in UNSIGNED(11 downto 0);
clk, rst : in STD LOGC, T out : out UNSIGNED(11 downto 0));
end conponent;
conponent tconv generic (TPD : TIME := 1 ns);
port (T_in : in UNSIGNED (7 downto 0);
clk, rst : in STD LOGC, T out : out UNSIGNED(7 downto 0));
end conponent;
conponent filter generic (TPD: TIME := 1 ns);
port (T_in : in UNSIGNED (7 downto 0);
rst, clk : in STDLOAC, T out : out UNSIGNED(7 downto 0));
end conponent;

conponent fifo generic (width: I NTEGER := 12; depth : INTEGER := 16);
port (clk, rst, push, pop : STD LCGEC,
Di : UNSIGNED (w dth-1 downto 0);
Do : out UNSIGNED (w dth-1 downto 0);
enpty, full : out STD LOd O);
end conponent;
conponent fifo_control generic (TPD:TIME := 1 ns);
port (D 1, D2 : in UNSIGNED(7 downto O);
select : in UNSIGNED(1 downto 0); read, f1, f2, el, e2 : in STD LC4Q C,
ri, r2, wi2 : out STD LOG C, D : out UNSIGNED(7 downto 0)) ;
end conponent;
end;

The following testbench completes a set of reads and writes to the FIFOs:

library |EEE;
use | EEE. std_logic_1164.all; -- type STD LCA C
use | EEE. numeric_std.all; -- type UNSI GNED

entity test _TC is end;

architecture testbench of test TCis

conponent T_Control port (T_1, T_2 : in UNSIGNED(11 downto O);
clk : in STD LOGA C, sensor: in UNSIGNED(1 downto 0) ;
read : in STDLOAC, rst : in STD LCA C,
D : out UNSIGNED(7 downto 0)); end conponent;

signal T 1, T 2 : UNSIGNED(11l downto O);

signal clk, read, rst : STD LCOG G,

signal sensor : UNSIGNED(1 downto 0);

signal D : UNSIGNED(7 downto O);

begin TT1 : T Control port map (T_1, T_2, clk, sensor, read, rst, D);

process begin

rst <='0"; clk <="'0";

wait for 5 ns; rst <='1"; wait for 5ns; rst <='0";

T inl <= "000000000011"; T_in2 <= "000000000111"; read <= '0’;
for i inOto 15 loop -- fill the FIFGCs
clk <='0"; wait for 5ns; clk <='1"; wait for 5 ns;
end | oop;
assert (false) report "FIFCs full" severity NOTE;
clk <= '0"; wait for 5ns; clk <='1"; wait for 5 ns;

read <= '1'; sensor <= "01";
for i inOto 15 loop -- enpty the FlIFGCs
clk <='0"; wait for 5ns; clk <='1"; wait for 5 ns;
end | oop;
assert (false) report "FIFGs enpty" severity NOTE;
clk <='0"; wait for 5ns; clk <="1'; wait;

end process;

end;

Chapter start Previous page

10.17 Summary

Table 10.27 shows the essential elements of the VHDL language. Table 10.28 shows the most important
BNF definitions and their locations in this chapter. The key points covered in this chapter are as follows:

® Theuseof anentity andanarchitecture

Theuse of aconfi gurati on to bind entities and their architectures
The compile, elaboration, initialization, and simulation steps
Types, subtypes, and their use in expressions

Thelogic systems based on Bl T and St d_Logi c_1164 types

The use of the IEEE synthesis packages for BI T arithmetic

Ports and port modes

Initial values and the difference between simulation and hardware
The difference between asi gnal and avari abl e

The different assignment statements and the timing of updates
Theprocess and wai t Sstatements

VHDL isa"wordy" language. The examplesin this chapter are complete rather than code fragments. To
write VHDL "nicely," with indentation and nesting of constructs, requires alarge amount of space.
Some of the VHDL code examplesin this chapter are deliberately dense (with reduced indentation and
nesting), but the bold keywords help you to see the code structure. Most of the time, of course, we do
not have the luxury of bold fonts (or color) to highlight code. In this case, you should add additional
space, indentation, nesting, and comments.

TABLE 10.27 VHDL summary.
VHDL feature Example Book [93LRM
Comments -- thisis a comment 10.3 [13.8

12 10E6 'l "110" 'Z

Literals (fixed-value items) 2#1111 1111# "Helloworld" 104 (134
STRING’ ("110")
IHETtTES a good name Same same
(case-insensitive, start with 104 133
’ 2 Bad bad _bad very_bad
letter)
Severa basic units of code entity architecture configuration 105 |1.1-13
Connections made through ports | port (signal ini : BIT; out o: BIT); 10.7 |4.3
e port (i : BIT :="1");
Default expression =1 if left open 10.7 ||4.3
No built-in logic-value system. |tyPeBITis(0","1'); -- predefined
: 10.8 [14.2
BIT and BIT_VECTOR (STD). signal nyArray: BIT_VECTOR (7 downto 0);
Arrays myArray(1 downto 0) <= (0", '1); 108 |3.2.1
asi gnal correspondsto area wire 4312
Two basic types of logic signals 10.9

avari abl e isamemory location in RAM 43.1.3

Types and explicit initial/default

value signal ONE: BIT :="1; 109 [4.3.2
Implicit initial/default value BITLEFT ="0 109 (4.3.2
Predefined attributes cl k' EVENT, cl k’ STABLE 1094 (141
Sequential statementsinside process begin
processes model things that \é\;?'tv\llj(;‘rﬂl Slarm = fing, 10.10 |8
happen one after another and ’ , SIeep;
repeat end process,

wait for 1 ns; -- not wait 1 ns
Timing with wait statement 10.10.18.1

wait on light until light = green;
Update to signals occurs at the signal <= 1; -- deltatime delay 10.10.3l8.3
end of asimulation cycle signal <= variablel after 2 ns;
Update to variablesisimmediate|variable := 1; -- immediate update 10.10.3|8.4
Processes and concurrent process begin rain ; end process ;
statements model things that process begin sing ; end process ; 10.13 |9.2
happen at the same time process begin dance; end process ;

STD_ULOG C

|EEE Std_Logic_1164 " 210 LLOG C VECTOR

, and STD LOd C VECTOR 10.6 _
(defines logic operators on 1164 type STD ULOGC is '
types) U)X, WL TH L),
|EEE Numeric_Bit and
Numeric_Std UNSI GNED and SI GNED

10.12 ||--

(defines arithmetic operators on
BIT and 1164 types)

X <= "10" * "O01"
-- OKwith nurmeric pkgs.

TABLE 10.28 VHDL definitions.

Structure Page||BNF || [Structure Page||BNF
alias declaration 418 |10.21| [next statement 429 10.32
architecture body 394 (10.8 | [null statement 430 |10.35
assertion statement 423 |10.25| |package declaration 398 (10.11
attribute declaration 418 |10.22| [port interface declaration 406 |10.13
block statement 438 |10.37| [port interface list 406 |10.12
case statement 428 |10.30| (primary unit 393 105

component declaration 395 (10.9 | |[procedure call statement 427 10.28
component instantiation 444 10.42| |process statement 440 |10.38
concurrent statement 438 |10.36| |return statement 430 (10.34
conditional signal assignment||442 |10.40| | secondary unit 393 (10.6

configuration declaration 396 [10.10| | selected signal assignment 442 110.39
constant declaration 414 |10.16| |sequential statement 419 |10.23
declaration 413 |10.15| (signal assignment statement 424 ||10.27
design file 393 (10.4 | |[signal declaration 414 |10.17
entity declaration 394 [10.7 | |lspecia character 391 (10.2

exit statement 430 |10.33| |subprogram body 416 |10.20
generate statement 444 10.43| (subprogram declaration 415 |10.19
graphic character 391 10.1 | |type declaration 411 |10.14
identifier 392 (10.3 | |variable assignment statement| 424 |10.26
if statement 427 |10.29| |variable declaration 415 |10.18
loop statement 429 (10.31| [wait statement 421 (10.24

Appendix A contains more detailed definitions and technical reference material.

page

10.18 Problems
* = Difficult ** = Very difficult *** = Extremely difficult

10.1 (Hello World, 10 min.) Set up anew, empty, directory (use nkdi r VHDL , for example) to run your
VHDL simulator (the exact details will depend on your computer and simulator). Copy the code below
toafilecalled hw 1. vhd inyour VHDL directory (Ileave out comments to save typing). Hint: Use the

vi editor (i insertstext, x deletestext, dd deletesaline, ESC : wwritesthefile, ESC : g quits) or use

cat > hw_1. vhd and typein the code (use CTRL- D to end typing) on a UNIX machine. Remember to
savein’Text Only’ mode (Frame or MS Word) on an IBM PC or Apple Macintosh.

Analyze, elaborate, and simulate your model (include the output in your answer). Comment on how easy
or hard it was to follow the instructions to use the software and suggest improvements.

entity HW1 is end; architecture Behave of HW1 is
constant M: STRING := "hello, world"; signal Ch : CHARACTER : ="
begi n process begin
for i in MRANGE loop Ch <= Mi); wait for 1 ns; end |oop; wait;
end process; end;

10.2 (Running a VHDL simulation, 20 min.) Copy the example from Section 10.1 into afile called
Count er 1. vhd inyour VHDL directory (leave out the comments to save typing). Complete the compile
(analyze), elaborate (build), and execute (initialize and simulate) or other equivalent steps for your
simulator. After each step list the contents of your directory VHDL and any subdirectories and files that
are created (usel s -al RonaUNIX system).

10.3 (Simulator commands, 10 min.) Make a"cheat sheet" for your simulator, listing the commands that
can be used to control simulation.

10.4 (BNF addresses, 10 min.) Create a BNF description of a name including: optional title (Prof., Dr.,
Mrs., Mr., Miss, or Ms.), optional first name and middleinitials (allow up to two), and last name
(including unusual hyphenated and foreign names, such as Miss A-S. de La Salle, and Prof. John T. P.
McTavish-f Fiennes). The lowest level constructsarel etter ::= a-z,’ .’ (period) and’ -’ (hyphen).
Add BNF productions for a postal address in the form: company name, mail stop, street address, address
lines (1 to 4), and country.

10.5 (BNF e-mail, 10 min.) Create a BNF description of avalid internet e-mail address in terms of
letters,” @ ,”.” ,’gov’ ,”’com’,’org’,and’ edu’ . Create a state diagram that "parses’ an e-malil
address for validity.

10.6 (BNF equivalence) Are the following BNF productions exactly equivalent? If they are not, produce
a counterexampl e that shows a difference.

term::
term::

factor { nultiplying operator factor }
factor | termnultiplying_operator factor

10.7 (Environment, 20 min.) Write asimple VHDL model to check and demonstrate that you can get to
the |EEE library and have the environment variables, library statements, and such correctly set up for
your simulator.

10.8 (Work, 20 min.) Write ssmple VHDL models to demonstrate that you can retrieve and use
previously analyzed design units from the library wor k and that you can aso remove design units from
wor k . Explain how your models prove that accessto wor k is functioning correctly.

10.9 (Packages, 60 min.) Write a simple package (use filename PackH. vhd) and package body
(filename PackB. vhd). Demonstrate that you can store your package (call it MyPackage) inthelibrary
wor k . Then store, move, or rename (the details will depend on your software) your package to alibrary
called MyLi brary inadirectory called MyDi r , and use its contents with alibrary clause (i brary

M/Li brary) and ause clause (use MyLi brary. MyPackage. al |) in atestbench called Pack Test
(filename PackT. vhd) in another directory MyWr k . Y ou may or may not be amazed at how
complicated this can be and how poorly most software companies document this process.

10.10 (***1EEE Std 1164, 60 min.) Prior to VHDL-93 the xnor function was not available, and
therefore older versions of the st d_| ogi c_1164 library did not provide the xnor function for

STD _LOG Ctypeseither (it was actually included but commented out). Write a simple model that checks
to seeif you have the newer version of st d_I ogi c_1164 . Can you do this without crashing the
simulator?

Y ou are an engineer on avery large project and find that your design fails to compile because your
design must use the xnor function and the library setup on your company’s system still points to the old
IEEE std_| ogi c_1164 library, even though the new library was installed. Y ou are apparently the first
person to realize the problem. Y our company has a policy that any time alibrary is changed all design
units that use that library must be rebuilt from source. This might require days or weeks of work.
Explain in detail, using code, the aternative solutions. What will you recommend to your manager?

10.11 (**VHDL-93 test, 20 min.) Write asimple test to check if your ssmulator isa VHDL-87 or
VHDL-93 environment--without crashing the simulator.

10.12 (Declarations, 10 min.) Analyze the following changes to the code in Section 10.8 and include the
simulator output in your answers:

Uncomment the declarations for Bad100 and Bad4 in Declaration 1.

Add the following to Constant_2:
signal wacky : wackytype (31 downto 0); -- wacky

Remove the library and use clause in Constant_2.

10.13 (STRI NGtype, 10 min.) Replacethe wri t e statement that printsthe string" count =" in
Text (Behave) in Section 10.6.3 with the following, compileit, and explain the result:

wite(L, " count="); -- No type qualification.

10.14 (Sequentia statements, 10 min.) Uncomment the following linein Wait_1(Behave) in
Section 10.10, analyze the code, and explain the result:

wait on x(1 tov); -- v is a variable.

10.15 (VHDL logical operators, 10 min.)

Explain the problem with the following VHDL statement:
Z <= A nand B nand C
Explain why this problem does not occur with this statement:

Z <= A and B and C,

What can you say about the logical operators: and , or , nand , nor , xnor , xor ?

Isthe following code legal ?

Z <= A and B or C

10.16 (*Initialization, 45 min.) Consider the following code:

entity DFF Plain is port (Ck, D: inBIT, Q: out BIT); end;
architecture Bad of DFF_Plain is begin process (CKk) begin

if dk ='0 and Ak EVENT then Q<= D after 1 ns; end if;
end process; end;

Analyze and simulate this model using a testbench.

Rewrite architecture Bad using an equivalent pr ocess including awai t statement. Simulate this
equivalent model and confirm the behaviors are identical.

What is the behavior of the output Qduring initial execution of the process?
Why does this happen?

Why does this not happen with the following code:

architecture Good of DFF Plain is
begi n process begin wait until Gk ="'0"; Q<= D after 1 ns;
end process; end;

10.17 (Initial and default values, 20 min.) Use code examples to explain the difference between: default
expression, default value, implicit default value, initial value, initial value expression, and default initial
value.

10.18 (Enumeration types, 20 min.) Explain the analysis results for the following:

type WL4 is ("X, "0, "1, "Z'); signal test : ML4;
process begin

test <= 1, test <= Z; test <= z; test <= '1"; test <='2Z7,
end process;

Alter the type declaration to the following, analyze your code again, and comment:
type Mxed4 is (X, 0, "1, 2);
10.19 (Type declarations, 10 min.) Correct these declarations:

type BadArray is array (0 to 7) of BIT_VECTOR

type Byte is array (NATURAL range 7 downto 0) of BIT,;
subt ype BadNi bble is Byte(3 downto 0);

type BadByte is array (range 7 downto 0) of BIT;

10.20 (Procedure parameters, 10 min.) Analyze the following package; explain and correct the error.
Finally, build a testbench to check your solution.

package And Pkg Bad is procedure V_And(a, b : BIT; c: out BIT); end;
package body And Pkg Bad is

procedure V_And(a,b : BIT;c : out BIT) is begin ¢ <= a and b; end;
end And_Pkg_Bad,;

10.21 (Type checking, 20 min.) Test the following code and explain the results:

type T is INTEGER range O to 32; variable a: T,
a:= (16 + 17) - 12; a := 16 - 12 + 17; a := 16 + (17 - 12);

10.22 (Debugging VHDL code, 30 min.) Find and correct the errorsin the following code. Create a
testbench for your code to check that it works correctly.

entity UpDownCount Bad is

port(clock, reset, up: STDLOAdC D. STD LOAd C VECTOR (7 to 0));
end UpDownCount Bad;

architecture Behave of UpDownCount Bad is

begi n process (clock, reset, up); begin

if (reset ='0") then D <= '0000000’

el seif (rising_edge(clock)) then

if (up = 1) D<= D+l; else D<= D1; end if;

end if; end process; end Behave;

10.23 (Subprograms, 20 min.) Write and test subprograms for these declarations:

function Is_X Zero (signal X : in BIT) return BIT;
procedure Is_A Eq B (signal A, B: BIT;, signal Y : out BIT);

10.24 (Simulator error messages, 10 min.) Analyze and attempt to simulate Arithmetic_2(Behave) from
Section 10.12 and compare the error message you receive with that from the MTI simulator (not all
simulators are as informative). There are no standards for error messages.

10.25 (Exhaustive property of case statement, 30 min.) Write and simulate a testbench for the state
machine of Table 10.8 and include your results. Is every state transition tested by your program and is
every transition covered by an assignment statement in the code? (Hint: Think very carefully.) Repeat
this exercise for the state machine in Section 10.10.6.

10.26 (Default values for inputs, 20 min.) Replace the interface declaration for entity Half_Adder in
Section 10.5 with the following (to remove the default values):

port (X, Y: in BIT; Sum Cout: out BIT);

Attempt to compile, elaborate, and simulate configuration Simplest (the other entities needed, AndGat e
and Xor Gat e , must already bein wor k or in the samefile). You should get an error at some stage
(different systems find this error at different points--just because an entity compiles, that does not mean
itiserror-free).

The LRM says"... A port of mode in may be unconnected ...only if its declaration includes a default
expression..." [VHDL 93LRM1.1.1.2].

We face adilemma here. If we do not drive inputs with test signals and leave an input port unconnected,
we can compile the model (sinceit is syntactically correct) but the model is not semantically correct. On
the other hand, if we give the inputs default values, we might accidentally forget to make a connection

and not notice.

10.27 (Adder generation, 10 min.) Draw the schematic for Adder_1(Structure) of Section 10.13.7,
labeling each instance with the VHDL instance name.

10.28 (Generate statement, 20 min.) Draw a schematic corresponding to the following code (1abel the
cells with their instance names):

Bl: block begin L1 : C port map (T, B, A(0), B(0))

L2: for i in 1 to 3 generate L3 : for j in 1 to 3 generate

L4: if i+ > 4 generate L5: C port map (A(i-1), B(j-1), A(i), B(j)) ;
end generate; end generate; end generate;

L6: for i in 1 to 3 generate L7: for j in 1 to 3 generate

L8: if i+] < 4 generate L9: C port map (A(i+1), B(j+1), A(i), B(j))
end generate; end generate; end generate;

end bl ock B1;

Rewrite the code without gener at e statements. How would you prove that your code really is exactly
equivalent to the original ?

10.29 (Case statement, 20 min.) Create a package (ny_equal) that overloads the equality operator so
that’ X =0 and’x =1 areboth TRUE. Test your package. Simulate the following design unit
and explain the resullt.

entity Case_1 is end; architecture Behave of Case 1 is
signal r : BIT; use work.my_equal.all;
begi n process variable twobit: STD LOG C VECTOR(1 to 2); begin
twobit := "X0";
case twobit is
when "10" =>r1 <="'1";
when "00" =>r <='1’;
when others =>r <="'0";
end case; wait;
end process; end;

10.30 (State machine) Create a testbench for the state machine of Section 10.2.5.

10.31 (Mealy state machine, 60 min.) Rewrite the state machine of Section 10.2.5 asaMealy state
machine (the outputs depend on the inputs and on the current state).

10.32 (Gate-level D flip-flop, 30 min.) Draw the schematic for the following D flip-flop model. Create a
testbench (check for correct operation with combinations of Cl ear , Preset , d ock , and Dat a). Have
you covered all possible modes of operation? Justify your answer of yesor no.

architecture RTL of DFF_To Test is

signal A, B, C, Db Q, Qarl : BIT; begin

A <= not (Preset and D and B) after 1 ns;

B <= not (A and Clear and C ock) after 1 ns;
C <= not (B and Cock and D) after 1 ns;

D <= not (C and Clear and Data) after 1 ns;

Q <= not (Preset and B and Barl) after 1 ns;
@Barl <= not (Q and Cear and C) after 1 ns;
Q<= Q,; QBar <= QBarl;

end;

10.33 (Flip-flop model, 20 min.) Add an asynchronous active-low preset to the D flip-flop model of
Table 10.3. Generate a testbench that includes interaction of the preset and clear inputs. What issue do
you face and how did you solveit?

10.34 (Register, 45 min.) Design atestbench for the register of Table 10.4. Adapt the 8-bit register
design to a4-hit version with the following interface declaration:

entity Reg4 is port (D: in STD LOd C VECTOR(7 downto 0);
Ck,Pre,dr : in STDLOGAC Q@B : out STD LOGA C VECTOR(7 downto 0));
end Reg8;

Create atestbench for your 4-bit register with the following component declaration:

conponent DFF
port (Preset, d ear, d ock, Data: STD LOd C;, Q QBar: out STD LOd C VECTOR);
end conponent;

10.35 (* Conversion functions, 30 min.) Write a conversion function from
NATURAL to STD_LOGIC_VECTOR using the following declaration:

function Convert (N, L: NATURAL) return STD LOG C VECTOR,
- Nis NATURAL, L is length of STD LOd C VECTOR

Write asimilar conversion function from STD_LOGIC_VECTOR to NATURAL.:
function Convert (B: STD LOGE C VECTOR) return NATURAL;

Create atestbench to test your functions by including them in a package.

10.36 (Clock procedure, 20 min.) Design a clock procedure for atwo-phase clock (C1, C2) with variable
hightimes(HT1 ,HT2) and low times(LT1, LT2) and the following interface. Include your procedure
in a package and write amodel to test it.

procedure Clock (CL, C2 : out STD LOE C, HT1, HT2, LT1, LT2 : TIME);
10.37 (Random number, 20 min.) Design atestbench for the following procedure:

procedure uniform (seed : inout |INTEGER range 0 to 15) is
variable x : I NTEGER
begin x := (seed*1l) + 7; seed := x nod 16;

end uni form

10.38 (Full-adder, 30 min.) Design and test a behavioral model of afull adder with the following
interface:

entity FAis port (X, Y, Gn: STD LOJC, Cout, Sum: out STD LOd C);
end;

Repeat the exercise for inputs and outputs of type UNSI GNED .

10.39 (8-bit adder testbench, 60 min.) Write out the code corresponding to the generate statements of
Adder 1 (structure)in Section 10.13.7. Write atestbench to check your adder. What problems do
you encounter? How thorough do you believe your tests are?

10.40 (Shift-register testbench, 60 min.) Design atestbench for the shift register of Table 10.4. Convert
thismodel to use STD_LOG C types with the following interface:

entity ShiftNis
port (CLK, CLR, LD, SH, DIR: STD LOG G

D: STD LOGA C VECTOR, Q : out STD LOQE C VECTOR);
end;

10.41 (Multiplier, 60 min.) Design and test a multiplier with the following interface:

entity Mult8 is
port (A, B : STD LOG C VECTOR(3 downto 0);

Start, CLK, Reset : in STD LOG G
Result : out STD LOG C VECTOR(7 downto 0); Done : out BIT);
end;

Create testbench code to check your model.
Catalog each compile step with the syntax errors as you debug your code.
Include alisting of the first code you write together with the final version.

An interesting class project is to collect statistics from other students working on this problem and create
atable showing the types and frequency of syntax errors made with each compile step, and the number
of compile steps required. Does this information suggest ways that you could improve the compiler, or
suggest a new type of tool to use when writing VHDL?

10.42 (Port maps, 5 min.) What iswrong with this VHDL statement?
Ul : nand2 port map (a <= set, b <= qgb, ¢ <= q);

10.43 (DRIVING_VALUE, 15 min.) Use the VHDL-93 attribute Clock’ DRIVING_VALUE to rewrite
the following clock generator model without using atemporary variable.

entity ClockGen_2 is port (Cock : out BIT); end;

architecture Behave of C ockGen_2 is

begi n process variable Tenp : BIT :="1"; begin
Tenp := not Tenp ; Cock <= Tenp after 10 ns; wait for 10 ns;
if (now > 100 ns) then wait; end if; end process;

end;

10.44 (Records, 15 min.) Write an architecture (based on the following skeleton) that uses the record
structure shown:

entity Test_Record_1 is end; architecture Behave of Test_Record_1 is
begi n process type Coordinate is record X, Y : INTEGER;, end record;
-- a record declaration for an attribute declaration

attribute Location: Coordinate; -- an attribute declaration

begin wait; end process; end Behave;

10.45 (** Communication between processes, 30 min.) Explain and correct the problem with the
following skeleton code:

variable vl : INTEGER := 1; process begin vl :
process variable v2 : INTEGER := 2; begin v2 :

v1+3; wait; end process;
vl ; wait; end process;

10.46 (* Resolution, 30 min.) Explain and correct the problems with the following:

entity RBad_1 is port (i : in BIT, o out BIT); end
architecture Behave of RBad 1 is
begin o <= not i after 1 ns; o <=1i after 2 ns; end;

10.47 (*Inputs, 30 min.) Analyze the following and explain the result:

entity And2 is port (Al, A2: in BIT; ZN. out BIT); end;
architecture Sinple of And2 is begin ZN <= Al and A2; end;

entity Input_Bad_1 is end; architecture Netlist of Input_Bad 1 is
conponent And2 port (Al, A2 : in BIT, ZN: out BIT); end conponent;
signal X, Z: BIT begin GL : And2 port map (X, X, Z); end;

10.48 (Association, 15 min.) Analyze the following and explain the problem:

entity And2 is port (Al, A2 : in BIT, ZN: out BIT); end;
architecture Sinple of And2 is begin ZN <= Al and A2; end;

entity Assoc Bad 1 is port (signal X, Y: inBIT; Z: out BIT); end,
architecture Netlist of Assoc_Bad 1 is

conponent And2 port (Al, A2 : in BIT, ZN: out BIT); end conponent;
begi n

GlL: And2 port nmap (X, VY, 2);

&: And2 port map (A2 => Y, ZN => Z, Al => X);

G3: And2 port map (X, ZN => Z, A2 =>Y);

end;

10.49 (Modes, 30 min.) Analyze and explain the errors in the following:

entity And2 is port (Al, A2 : in BIT, ZN: out BIT); end;

architecture Sinple of And2 is begin ZN <= Al and A2; end;

entity Mode Bad 1 is port (X : inBIT;, Y : out BIT; Z: inout BIT); end;
architecture Netlist of Mode Bad 1 is

conponent And2 port (Al, A2 : in BIT, ZN: out BIT); end conponent;
begin GL : And2 port map (X, Y, Z); end;

entity Mode Bad 2 is port (X : in BIT;, Y: out BIT; Z: inout BIT); end;
architecture Netlist of Mode Bad 1 is

conponent And2 port (Al, A2 : in BIT, ZN: inout BIT); end component;
begin GL : And2 port map (X, Y, Z); end;

10.50 (*Mode association, 60 min.) Analyze and explain the errors in the following code. The number
of errors, types of error, and the information in the error messages given by different smulators vary
tremendoudly in this area.

entity Allnode is port

(I : inBIT, O: out BIT; 10: inout BIT; B: buffer BIT);

end;

architecture Sinple of Allnode is begin O<=l; 10<=l; B<=l; end,
entity Mode_1 is port

(I : inBIT, O: out BIT; 10: inout BIT; B: buffer BIT);

end;

architecture Netlist of Mde 1 is

conponent Al | node port

(I : inBIT; O: out BIT; 10: inout BIT; B : buffer BIT); end conponent;
begi n

GL: Al Il rode port map (I , O, 1O B);
@&: Al rode port map (O, 10 B, |);
&3: Al rode port map (IQ B, | , 0O);
&4: Al'l mrode port map (B, I , O, 10;
end;

10.51 (**Declarations, 60 min.) Write atutorial (approximately two pages of text, five pages with code)
with examples explaining the difference between: a component declaration, a component configuration,
a configuration declaration, a configuration specification, and a block configuration.

10.52 (** Guards and guarded signals, 60 min.) Write some simple modelsto illustrate the use of guards,
guarded signals, and the disconnect statement. Include an experiment that shows and explains the use of
the implicit signal GUARD in assignment statements.

10.53 (** std_l ogi c_1164, 120 min.) Write a short (two pages of text) tutorial, with (tested) code
examples, explaining the st d_I ogi c_1164 types, their default values, the difference between the

ul ogi ¢’ and’ | ogi ¢’ types, and their vector forms. Include an example that shows and explains the
problem of connecting ast d_| ogi c_vector toastd_ul ogi c_vector.

10.54 (Data swap, 20 min.) Consider the following code:

library ieee; use ieee.std_logic_1164.all

package config is

type typel is record

f1 : std_logic_vector(31 downto 0); f2 : std_|ogic_vector(3 downto 0);
end record,;

type type2 is record

f1: std logic vector(31 downto 0); f2 : std |ogic_vector(3 downto 0);
end record;

end confi g;

library ieee; use ieee.STD LOG C 1164.all; use work.config.all

entity Swap 1 is

port (Datal : typel; Data2 : type2; sel : STD LCG G

Dat alSwap : out typel; Data2Swap : out type2); end Swap_1;
architecture Behave of Swap_ 1 is begin

Swap: process (Datal, Data2, sel) begin case sel is

when ' 0 => DatalSwap <= Datal; Data2Swap <= Dat aZ2;

when ot hers => DatalSwap <= Dat a2; Data2Swap <= Dat ail;

end case; end process Swap; end Behave;

Compile this code. What is the problem? Suggest a fix. Now write a testbench and test your code. Have
you considered all possibilities?

10.55 (***RTL, 30 min.) "RTL stands for register-transfer level. ...when referencing VHDL, the term
means that the description includes only concurrent signal assignment statements and possibly block
statements. In particular, VHDL data flow descriptions explicitly do not contain either process
statements (which describe behavior) or component instantiation statements (which describe structure)”
(Dr. VHDL from VHDL International).

With your knowledge of process statements and components, comment on Dr. VHDL' s explanation.

In less than 100 words offer your own definition of the difference between RTL, data flow, behavioral,
and structural models.

10.56 (*Operators nod and r em, 20 min.) Confirm and explain the following:

il1:=(-12) rem 7;
i2:=12 rem (-7);
i3 :=(12) rem (-7);
i4:=12 nod 7;
i5:=(-12) nod 7;
i6 := 12 nod (-7);
i7 :=(12) nod (-7);

Evaluate-5 rem 2 and explain the result.

10.57 (***Event and stable, 60 min.) Investigate the differences between cl k’ EVENT and cl k’ STABLE .
Write aminitutorial (in the form of a"cheat sheet") with examples showing the differences and potential
dangers of using cl k’ STABLE .

10.58 (PREP benchmark #2, 60 min.) The following code models a benchmark circuit used by PREP to
measure the capacity of FPGAs. Rewrite the concurrent signal assignment statements (labeled mux and
comparator) as equivalent processes. Draw a datapath schematic corresponding to PREP2(Behave 1).
Write atestbench for the model. Finally (for extra credit) rewrite the model and testbench to use
STD_LOG Cinstead of BI T types.

library ieee; use ieee.STD LOG C 1164.all;
use ieee. NUMERIC BIT.all; use ieee. NUMERI C STD. al | ;
entity PREP2 is
port (CLK, Reset, Sel ,Ldli,Ldhi : BIT;, D1,D2 : STD LOG C VECTOR(7 downto 0);
DQ out STD LOG C VECTOR(7 downto 0));
end;
architecture Behave 1 of PREP2 is
signal EQ: BIT, signal y,lo,hi,Qi : STD LOA C VECTOR(7 downto 0);
begi n
outputDriver: Q<= Qi;
mux: with Sel select y <= hi when 0, Dl when ’'1’;
conparator: EQ<='1 when Qi =10 else '0;
regi ster: process(Reset, CLK) begin
if Reset = '1'" then hi <= "00000000"; |o <= "00000000";
elsif CLK = "1 and CLK EVENT then
if Ldhi="1" then hi<=D2;end if;if Ldlo="1 then |o<=D2;end i
end if;
end process register;
counter: process(Reset, CLK) begin
if Reset = '1'" then Q. <= "00000000";
elsif CLK = '1" and CLK EVENT then
if EQ="1 then Qi <=y,
elsif EQ="0" then Qi <= Qi + "00000001";
end if;
end if;
end process counter;
end;

10.59 (PREP #3, state machine) Draw the state diagram for the following PREP benchmark (see
Problem 10.58). Isthisa Mealy or Moore machine? Write a testbench and test this code.

library ieee; use ieee.STD LOG C 1164. all;
entity prep3_1 is port(Ck, Reset: STD LCGQ C,

| : STD LOd C VECTOR(7 downto 0); O: out STD LOGd C VECTOR(7 downto 0));
end prep3_1;

architecture Behave of prep3 1 is
type STATE TYPE is (sX sO, sa, sb, sc, sd, se, sf, sg);
signal state : STATE TYPE, signal O : STD LOd C VECTOR(7 downto 0);

begi n
O<=0;
process (Reset, C k) begin
if (Reset ='1") then state <= s0; G <= (others =>"'0");
el sif rising_edge(d k) then
case state is
when s0 =>
if (I = X'3c") then state <= sa; O <= X"82"
el se state <= s0; O <= (others => '0");
end if;
when sa =>
if (I = X"2A") then state <= sc; O <= X"40"
elsif (I = X"1F") then state <= sb; O <= X"
el se state <= sa; O <= X'04";
end if;
when sb =>
if (I = X"AA") then state <= se; O <= X'11"
el se state <= sf; O <= X'30";
end if;
when sc => state <= sd; G <= X'08";
when sd => state <= sg; O <= X'80";
when se => state <= s0; O <= X'40";
when sf => state <= sg; G <= X'02";
when sg => state <= s0; G <= X'01";
when others => state <= sX; O <= (others =>"'X);
end case;
end if;
end process;
end;

10.60 (Edge detection, 30 min) Explain the construction of the IEEE 1164 function to detect the rising
edge of asignal, ri si ng_edge(s) . List all thechangesin signal s that correspond to arising edge.

function rising edge (signal s : STD ULOA C) return BOOLEAN i s
begin return
(s’ EVENT and (To_X01(s) = '1') and (To_X01(s'LAST VALUE) = '0')); end;

10.61 (*Real, 10 min.) Determine the smallest real in your VHDL environment.
10.62 (* Stop, 30 min.) How many ways are there to stop aVHDL simulator?

10.63 (* Arithmetic package, 60 min.) Write afunction for an arithmetic package to subtract two’s
complement numbers. Create a test bench to check your function. Y our declarations in the package
header should look like this:

type TCis array (INTEGER range <>) of STD LCQ C
function "-"(L : TC, R: TC) return TC

10.64 (*** Reading documentation, hours) There are afew gray areas in the interpretation of the
VHDL-87 LRM some of which were clarified in the VHDL-93 revision. One VHDL system has a
"compatibility mode" that allows alternative interpretations. For each of the following "issues’ taken
from the actual tool documentation try to interpret what was meant, determine the interpretation taken
by your own software, and then rewrite the explanation clearly using examples.

* "Unassociated variable and signal parameters. Compatibility mode allows variable and signal
parameters to subprograms to be unassociated if they have a default value. Otherwise, an error is
generated.”

Example answer: Consider the following code:

package Uil _2 is

procedure C(signal Ok : out BIT, signal P: TIME := 10 ns);
end Uil _2;

package body Wil _2 is

procedure C(signal Ck : out BIT; signal P: TIME := 10 ns) is

begin loop Ak <='1" after P/2, 'O after P

wait for P; end |oop; end; end Uil _2;

entity Test _Conpatibility 1 is end; use work. Uil _2.all;
architecture Behave of Test_Conpatibility 1 is

signal v,w,x,y,z : BIT; signal s : TIME := 5 ns;

begin process variable v : TIME := 5 ns; begin

Clv, s); -- paraneter s is K
- C(w, Vv); -- would be K if P
- C(x, 5 ns); -- would be XK if P
- dy); -- unassoci ated, an
- C(z, open); -- open, an error if

end process; end;

The Compass Scout simulator (which does not have a compatibility mode) generates an error during
analysisif asignal or variable subprogram parameter is open or unassociated (a constant subprogram
parameter may be unassociated or open).

* "Allow ot her s in an aggregate within arecord aggregate. The LRM [7.3.2.2] defines nine situations
where ot her s may appear in an aggregate. |n compatibility mode, a tenth caseis added. In this case,
ot her s isalowed in an aggregate that appears as an element association in arecord element.”

*" BT (1) pasedasBIT ' ('1') . Thetick (') character is being used twice in this example. In
the first case as an attribute indicator, in the second case, to form a character literal. Without the
compatibility option, the analyzer adopts a strict interpretation of the LRM, and without white space
around the first tick, the fragment isparsed asBI T * (* 1') , that is, the left parenthesis(* (*) isthe
character literal."

** "Generate statement declarative region. Generate statements form their own declarative region. In
compatibility mode, configuration specifications will apply to items being instantiated within a generate
statement.”

** " Allow type conversion functions on open parameters. If a parameter is specified as open, it indicates
a parameter without an explicit association. In such cases, the presence of atype conversion function is
meaningless. Compatibility mode allows the type conversion functions.”

*** "Entity class flexibility. Section [3.1.2] of the LRM defines the process of creating a new integer
type. The type name given is actually assigned to a subtype name, related to an anonymous base type.
Thisimplies that the entity class used during an attribute specification [LRM 5.1] should indicate
subtype, rather than type. Because the supplied declaration was type rather than subtype, compatibility
mode allows type."

*** " Allowing declarations beyond an all/others specification. Section [5.1] of the LRM states that the
first occurrence of the reserved word al | or ot her s in an attribute specification terminates the
declaration of the related entity class. The LRM declares that the entity/architecture and
package/package body library units form single declaration regions [LRM 10.1] that are the
concatenation of the two individual library declarative regions. For example, if asigna attribute
specification with al | or ot her s was specified in the entity, it would be impossible to declare a signal
in the architecture. In compatibility mode, thisLRM limitation is removed.”

*** "User-defined attributes on overloaded functions. In compatibility mode, user-defined attributes are
allowed to be associated with overloaded functions. Note: Even in compatibility mode, there is no way
to retrieve the different attributes.”

10.65 (* 1076 interpretations, 30 min.) In a DAC paper, the author writes:. ‘It was experienced that
(company R) might have interpreted | EEE 1076 differently than (company S) did, e.g. concatenations
(&) arenot allowed in "case selector” expressions for (company S).” Can you use concatenation in your
VHDL tool for either the expr essi on or choi ces for acase statement?

10.66 (** Interface declarations, 15 min.) Analyze the following and comment:

entity Interface 1 is
generic (I : INTEGER, J : INTEGER :=1; K, L : | NTEGER)
port (A : BIT_VECTOR, B : BIT_VECTOR(A RANGE); C: BIT VECTOR (Kto L));
procedure X(P, Q: INTEGER, R : INTEGER range P to Q;
procedure Y(S : INTEGER range Kto L);
end Interface 1;

10.67 (**Wait statement, 10 min.) Construct the sensitivity set and thus the sensitivity list for the
following wai t statement (that is, rewrite thewai t statement intheformwait on sensitivity_|ist
until condition).

entity Conplex Wit is end;
architecture Behave of Conplex_Wait is
type Ais array (1 to 5) of BOOLEAN
function F (P : BOOLEAN) return BOOLEAN
signal S: A signal i, j : INTEGER range 1 to 5;
begi n process begin
wait until F(S(3)) and (S(i) or S(j));
end process;
end;

10.68 (** Shared variables, 20 min.) Investigate the following code and comment:

architecture Behave of Shared 1 is
subtype Sis INTEGER range 0 to 1; shared variable C: S := 0; begin

process begin C:= C+ 1; wait; end process;
process begin C:= C- 1; wait; end process;
end;

10.69 (Undocumented code and ranges, 20 min.) Explain the purpose of the following function (part of a
package from awell-known synthesis company) with a parameter of type SIGNED. Write atestbench to
check your explanation. Investigate what happens when you call this function with a string-literal
argument, for example with the statement X <= 1M ("11100"). What is the problem and why does it
happen? Rewrite the code, including documentation, to avoid this problem.

type SIGNED is array (NATURAL range <>) of BIT;
function IM(L : SIGNED) return INTEGER is variable M: | NTECER;
begin M:= L' RI GHT-1;
for i in L'LEFT-1 downto L' RI GHT | oop
if (L(i) = (not L(L'LEFT))) then M:=1i; exit; end if;
end | oop; return M
end;

10.70 (Timing parameters, 20 min.) Write amodel and a testbench for atwo-input AND gate with
separate rising (tpLH) and falling (tpHL) delays using the following interface:

entity And_Process is
generic (tpLH, tpHL : TIME); port (a, b : BIT, z : out BIT) end,;

10.71 (Passive code in entities, 30 min.) Write a procedure (CheckTiming, part of a package

Ti mi ng_Pkg) to check that two timing parameters (tPLH and tPHL) are both greater than zero. Include
this procedure in atwo-input AND gate model (And_Pr ocess). Write atestbench to show your
procedure and gate model both work. Rewrite the entity for And_Pr ocess to include the timing check as
part of the entity declaration. Y ou are allowed to include passive code (no assignments to signals and so
on) directly in each entity. This avoids having to include the timing checks in each architecture.

10.72 (Buried code, 30 min.) Some companies bury instructions to the software within their packages.
Hereis an example of part of the arithmetic package from an imaginary company called SissyN:

function UN plus(A, B : UN) return UNis

variable CRY : STD ULOE C, variable X,SUM: UN (A LEFT downto 0);
- pragma map_t o_operator ADD UNS OP

- pragma type_function LEFT_UN ARG

- pragnma return_port_nane Z

begi n

-- sissyn synthesis_off

if (A(ALEFT) ='X or B(B LEFT) = 'X) then SUM:= (others => "X);
return(SUM ;

end if;

-- sissyn synthesis_on

CRY :='0"; X:= B;

for i in O to A LEFT | oop

SUMi) := A(i) xor X(i) xor carry;

CRY := (A(i) and X(i)) or (A(i) and CRY) or (CRY and X(i));

end | oop; return SUM

end;

Explain what this function does. Can you now hazard a guess at what each of the comments means?
What are the repercussions of using commentsin this fashion?

10.73 (* Deferred constants, 15 min.) "If the assignment symbol * : = followed by an expression is not
present in a constant declaration, then the declaration declares a deferred constant. Such a constant
declaration may only appear in a package declaration. The corresponding full constant declaration,
which defines the value of the constant, must appear in the body of the package" [VHDL
93LRM4.3.1.1].

package Constant is constant s1, s2 : BIT_VECTOR end Constant;
package body Constant is

constant sO : BIT_VECTOR := "00"; constant s1 : BIT_VECTOR := "01";
end Const ant;

It istempting to use deferred constants to hide information. However, there are problems with this
approach. Analyze the following code, explain the results, and correct the problems:

entity Deferred_1 is end; architecture Behave of Deferred_1 is
use work.all; signal y,il,i2 : INTECER; signal sel : |INTEGER range 0 to 1;
begin with sel select y <= i1l when s0, i2 when sl; end;

10.74 (***Viterbi code, days) Convert the Verilog model of the Viterbi decoder in Chapter 11 to
VHDL. This problem is tedious without the help of some sort of Verilog to VHDL conversion process.
There are two main approaches to this problem. The first uses a synthesis tool to read the behavioral
Verilog and write structural VHDL (the Compass ASIC Synthesizer can do this, for example). The
second approach uses conversion programs (Alternative System Concepts Inc. at

htt p: // www. asci nc. comis one source). Some of these companies allow you to e-mail code to them
and they will automatically return atranslated version.

10.75 (*Wait statement, 30 min.) Rewrite the code below using asinglewai t statement and write a
testbench to prove that both approaches are exactly equivalent:

entity Wait_Exit is port (Odk : in BIT); end;
architecture Behave of Wait_Exit is
begi n process begin
loop wait on Ck; exit when Ck ="'1"; end | oop
end process;
end;

10.76 (Expressions, 10 min.) Explain and correct the problems with the following:

variable b : BOOLEAN, b := "00" < "11";
variable bv8 : BIT VECTOR (7 downto 0) := "1000_0000"

10.77 (Combinational logic using case statement, 10 min.) A Verilog user suggests the following
method to model combinational logic. What are the problems with this approach? Can you get it to
work?

entity AndCase is port (a, b : BIT, y : out BIT); end;

architecture Behave of AndCase is begin process (a , b) begin
case a & b is
when '1'& 1’ =>y <= '1"; when others =>vy <="'0
end case

end process; end;

10.78 (* Generics and back-annotation, 60 min.)

Construct design entities And_3(Behave), atwo-input AND gate, and Xor _3(Behave) , atwo-input
XOR gate. Include generic constants to model the propagation delay from each input to the output
separately. Use the following entity declaration for And_3:

entity And_3 is port (11, 12 : BIT; O: out BIT);
generic (11toO 12t0o0 : DELAY_LENGTH := 0.4 ns); end,

Create and test a package, P_1, that contains And_3 and Xor _3 as components.

Create and test adesign entity Half_Adder_3 (Structure_3) that usesP_1, with the following

interface:
entity Half_Adder _3 is port (X, Y : BIT, Sum Carry : out BIT); end,

Modify and test the architecture Structure_3 for Half _Adder_3 so that you can use the following
configuration:

configuration Structure_3 of Half_Adder 3 is

for Structure_ 3

for L1 : XOR generic map (0.66 ns,0.69 ns); end for;

for L2 : AND generic map (0.5 ns, 0.6 ns) port map (12 => H'); end for;
end for; end,

10.79 (SNUG' 95, *60 min.) In 1995 John Cooley organized a contest between VHDL and Verilog for
ASIC designers. The goal was to design the fastest 9-bit counter in under one hour using Synopsys
synthesistools and an LS| Logic vendor technology library. The VHDL interfaceis asfollows:

library ieee; use ieee.std logic 1164.all

- use ieee.std_logic_arith.all; -- substitute your package here
entity counter is port (

data_in : in std_|ogic vector(8 downto 0);

up : in std_|ogic;

down . in std_|logic;

cl ock : in std_|logic;

count _out : inout std |ogic vector(8 downto 0);

carry_out : out std_|ogic;

borrow out : out std_l ogic;

parity out : out std_logic); end counter
architecture exanple of counter is begin
- insert your design here

end exanpl e;

The counter is positive-edge triggered, counts up withup = ' 1' and down withdown = ' 1° . The
contestants had the advantage of a predefined testbench with a set of test vectors, you do not. Design a
model for the counter and a testbench. How confident are you that you have thoroughly tested your
model? (In the real contest none of the VHDL contestants managed to even complete aworking design
in under one hour. In addition, the VHDL experts that had designed the testbench omitted a test case for
one of the design specifications.)

10.80 (* A test procedure, 45 min.) Write aprocedure al | (for apackaget est) that serially generates
all possible input values for asignal spaced in time by adelay, dl y . Use the following interface:

library ieee; use ieee.std _logic_1164.all; package test is
procedure all (signal SLV : out STD LOd C VECTOR, dly : in TIM)
end package test

10.81 (Direct instantiation, 20 min.) Write an architecture for afull-adder, entity Full_Adder_2, that
directly instantiates units And_2(Behave) and Xor_2(Behave). Thisisonly possiblein aVHDL-93
environment.

entity And 2 is port (il, i2: BIT;, y : out BIT); end;
entity Xor_2 is port (il, i2: BIT, y : out BIT); end;
entity Full _Adder_2 is port (a, b, ¢ : BIT; sum cout : out BIT); end,

10.82 (** Shift operators for 1164, 60 min.) Write a package body to implement the VHDL-93 shift

operators, sl and st1, for thetype STD_LOGIC _VECTOR. Use the following package header:

package 1164 shift is

function "sll"(x : STD LOJ C VECTOR, n : | NTEGER)
return STD LOG C VECTOR,;

function "srl"(x : STD LOA C VECTOR, n : | NTEGER)
return STD LOGE C _VECTOR,

end package 1164 shift;

10.83 (**VHDL wai t statement, 60 min.) What is the problem with the following VHDL code? Hint:
Y ou may need to consult the VHDL LRM.

procedure p is begin wait on b; end,;
process (a) is begin procedure p; end process;

10.84 (**Null range, 45 min.) A rangesuchas1 to -1 0r0 downto 1isanull range(0 to Oisa
legal range). Write a one-page summary on null ranges, including code examples. Isanull range treated
as an ascending or descending range?

10.85 (**Loops, 45 min.) Investigate the following issues with loops, including code examples and the
results of analysis and simulation:

Try to alter the loop parameter within aloop. What happens?

What is the type of the loop parameter?

Can the condition inside aloop depend on aloop parameter?

What happensin af or loop if the rangeis null?

Can you pass aloop parameter out of a procedure as a procedure parameter?

10.86 (Signals and variables, 30 min.) Write a summary on signals and variables, including code
examples.

10.87 (Type conversion, 60 min.) There are some very subtle rules involving type conversion, [VHDL
93LRM7.3.5]. Does the following work? Explain the type conversion rules.

BV <= BI T_VECTOR("1111");

HREF="CH10.18.htm">Previous page Next page

10.19 Bibliography

The definitive reference guide to VHDL isthe IEEE VHDL LRM [IEEE, 1076-1993]. The LRM is
initially difficult to read because it is concise and precise (the LRM isintended for tool builders and
experienced tool users, not asatutorial). The LRM does form a useful reference--as does a dictionary
for serious users of any language. Y ou might think of the LRM asalega contract between you and the

company that sells you software that is compliant with the standard. VHDL software uses the
terminology of the LRM for error messages, so it is necessary to understand the terms and definitions of
the LRM. The WAVES standard [|EEE 1029.1-1991] deals with the problems of interfacing VHDL
testbenches to testers.

VHDL International maintains VIUF (VHDL International Users' Forum) Internet Services (
ht t p: / wwv. vhdl . or g) and links to other groups working on VHDL including the IEEE synthesis
packages, |IEEE WAVES packages, and |IEEE VITAL packages (see also Appendix A).

The frequently asked questions (FAQ) list for the VHDL newsgroup conp. | ang. vhdl isauseful
starting point (the list isarchived a gopher : // kona. ee. pi tt. edu/ h0/ NewsG oupAr chi ves).
Information on character sets and the problems of exchanging information across national boundaries
canbefound at ft p: / / wat sun. cc. col unbi a. edu/ kermi t/charsets .

HREF="CH10.19.htm">Previous page

10.20 References

Page numbers in brackets after the reference indicate the location in the chapter body.

|[EEE 1029.1-1991. |IEEE Sandard for Waveform and Vector Exchange (WAVES). |IEEE Std
1029.1-1991. The Ingtitute of Electrical and Electronics Engineers, Inc., New Y ork. Available from The
Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017 USA.

|EEE 1076-1993. |IEEE Standard VHDL Language Reference Manual (ANS). IEEE Std. 1076-1993.
The Institute of Electrical and Electronics Engineers, Inc., New Y ork. Available from The Institute of
Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY 10017 USA. [p. 380]

|EEE 1076.2-1996. Standard VHDL Language Mathematical Packages. |EEE Ref. AD129-NYF.
Approved by |EEE Standards Board on 19 September 1996. [p. 404].

SO 8859-1. 1987 (E). Information Processing--8-bit single-byte coded graphic character sets--Part 1.
Latin Alphabet No. 1. American National Standards Institute, Hackensack, NJ; 1987. Available from
Sales Department, American National Standards Institute, 105-111 South State Street, Hackensack, NJ
07601 USA. [p. 391]

Chapter start Previous

