to index of chapters

CHAPTER 10
VERILOG HDL

In this chapter we look at the Verilog hardware description language. Gateway Design Automation
developed Verilog as a simulation language. The use of the Verilog-XL simulator is discussed in more
detail in Chapter 13. Cadence purchased Gateway in 1989 and, after some study, placed the Verilog
language in the public domain. Open Verilog International (OV1) was created to develop the Verilog
language as an | EEE standard. The definitive reference guide to the Verilog language is now the Verilog
LRM, IEEE Std 1364-1995 [1995]. 1 This does not mean that all Verilog simulators and tools adhere
strictly to the |IEEE Standard--we must abide by the reference manual for the software we are using.
Verilog isafairly ssmple language to learn, especially if you are familiar with the C programming
language. In this chapter we shall concentrate on the features of Verilog applied to high-level design
entry and synthesisfor ASICs.

11.1 A Counter

11.2 Basicsof the Verilog Language

11.3 Operators

11.4 Hierarchy

11.5 Procedures and Assignments

11.6 Timing Controls and Delay

11.7 Tasks and Functions

11.8 Control Statements

11.9 Logic-Gate Modeling

11.10 Modeling Delay

11.11 Altering Parameters

11.12 A Viterbi Decoder

11.13 Other Verilog Features

11.14 Summary

11.15 Problems

11.16 Bibliography

11.17 References

1. Some of the material in this chapter is reprinted with permission from |IEEE Std
Chapter start
Previous page

Next page

11.1 A Counter

The following Verilog code models a"black box" that contains a 50 MHz clock (period 20 ns), counts
from 0 to 7, resets, and then begins counting at 0 again:

‘timescale 1ns/1ns // Set the units of tine to be nanoseconds.
nmodul e counter;
reg clock; // Declare a reg data type for the clock
i nteger count; // Declare an integer data type for the count.
initial // Initialize things; this executes once at t=0.
begi n
clock = 0; count = 0; // Initialize signals.
#340 $finish; // Finish after 340 tine ticks.
end
/* An always statenent to generate the clock; only one statenent follows the al ways
al ways #10 clock = ~ clock; // Delay (10ns) is set to half the clock cycle.
/* An always statenent to do the counting; this executes at the same tinme (concurren
al ways begi n /1l Wit here until the clock goes from1l to O.
@ (negedge cl ock);
/1 Now handl e the counti ng.

if (count == 7)
count = 0;
el se count = count + 1
$di splay("tine = ", $tine," count =", count);
end
endnodul e

Verilog keywor ds (reserved words that are part of the Verilog language) are shown in bold type in the
code listings (but not in the text). Referencesin this chapter such as[Verilog LRM 1.1] refer you to the
|EEE Verilog LRM.

The following output is from the Cadence Verilog-XL simulator. This example includes the system
input so you can see how the tool is run and when it is finished. Some of the banner information is
omitted in the listing that follows to save space (we can use "quiet” modeusinga’ - q’ flag, but then the
version and other useful information is also suppressed):

> verilog counter.v
VERILOG XL 2.2.1 Apr 17, 1996 11:48:18

Banner information onmtted here..
Conpiling source file "counter.v"
H ghest | evel nodul es:

count er

time = 20 count = 1
time = 40 count = 2
(... 12 lines onmitted...)

time = 300 count = 7
time = 320 count = 0
L10 "counter.v": $finish at sinmulation tinme 340

223 sinul ation events

CPUtime: 0.6 secs to conmpile + 0.2 secs to link + 0.0 secs in simulation
End of VERILOG XL 2.2.1 Apr 17, 1996 11:48:20

>

Here isthe output of the VeriWell ssmulator from the console window (future examples do not show all
of the compiler output-- just the model output):

Veriwell -k Veriwell.key -1 VeriWell.log -s :counter.v

. banner information omtted

Menory Available: 0

Entering Phase I...

Conpiling source file : :counter.v

The size of this nodel is [1% 1% of the capacity of the free version
Entering Phase I1...

Entering Phase I11l...

No errors in conpilation

Top- 1 evel nodul es:

count er
Cl> .
tinme = 20 count = 1
time = 40 count = 2
(... 12 lines omtted...)
time = 300 count = 7
tinme = 320 count = 0

Exiting VeriWell for Macintosh at tine 340
O Errors, 0 Warnings, Menory Used: 29468
Conpile time = 0.6, Load time = 0.7, Sinmulation tine = 4.7
Nor mal exit

Thank you for using VeriWll for Macintosh

Chapter start
Previous page
Chapter start
Previous page

Next page

11.2 Basicsof the Verilog Language

A Verilog identifier [Verilog LRM2.7], including the names of variables, may contain any sequence of
letters, digits, adollar sign’ $' , and the underscore’ _* symbol. The first character of an identifier must
be aletter or underscore; it cannot be adollar sign’ $' , for example. We cannot use characters such as

' -7 (hyphen), brackets, or* # (for active-low signals) in Verilog names (escaped identifiers are an
exception). The following is a shorthand way of saying the same thing:

identifier ::= sinple_identifier | escaped_identifier
simple_identifier ::= [a-zA Z][a-zA Z_$]
escaped_identifier ::=

\ {Any_ASCI| character_except_white_space} white_space
white space ::= space | tab | newine

If wethink of ' : : =" asan egual sign, then the preceding "equation” defines the syntax of an identifier.
Usually we use the Backus-Naur form (BNF) to write these equations. We a so use the BNF to describe
the syntax of VHDL. Thereis an explanation of the BNF in Appendix A. Verilog syntax definitions are
givenin Appendix B. In Verilog all names, including keywords and identifiers, are case-sensitive.
Special commands for the simulator (a system task or a system function) begin with adollar sign’ ¢
[Verilog LRM 2.7]. Here are some examples of Verilog identifiers:

nodul e identifiers;
/* Multiline comments in Verilog
ook Iike C comments and // is OKin here. */
/1 Single-line conment in Verilog.
reg legal _identifier,two__underscores;
reg _OK OK ,OK $, OK 123, CASE_SENSI Tl VE, case_sensitive;
reg \/clock ,\a*b ; // Add white_space after escaped identifier
/1reg $_BAD, 123_BAD; // Bad nanmes even if we declare then
initial begin
| egal _identifier
two__underscores

0; // Enbedded underscores are OK
0; // even two underscores in a row.

K =0; // ldentifiers can start with underscore
OK_ = 0; // and end with underscore.
OK$ =0; // $ signis OK but beware foreign keyboards.

K 123 =0; // Enbedded digits are K

CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).
case_sensitive = 1;

\/clock = 0; // An escaped identifier with \ breaks rules,

\a*b = 0; // but be careful to watch the spaces!

$di spl ay("Vari abl e CASE_SENSI TI VE= %", CASE_SENSI TI VE) ;

$di spl ay("Vari abl e case_sensitive= %", case_sensitive);

$di splay("Variable \/clock = %",\/cl ock);

$di splay("Variable \\a*b = %l",\a*b);

end endnodul e

The following is the output from this model (future examplesin this chapter list the simulator output
directly after the Verilog code).

Vari abl e CASE_SENSI Tl VE= 0
Vari abl e case_sensitive= 1
Variable /clock = 0
Variable \a*b = 0

11.2.1 Verilog Logic Values

Verllog has a predefined logic-value system or value set [Verilog LRM 3.1] that uses four logic values:
"0’ ,’1 ,'x’ ,and’ z’ (lowercase’ x* andlowercase’ z'). Thevalue’ x’ represents an uninitialized
or an unknown Ioglc value--an unknown valueiseither’ 1’ ,” 0’ ,’ z’ , or avaluethat isin a state of
change. Thelogic value’ z' represents a high-impedance value, which is usually treated asan’ x’
value. Verilog uses a more complicated internal logic-value system in order to resolve conflicts between
different drivers on the same node. This hidden logic-value system is useful for switch-level simulation,
but for most ASIC simulation and synthesis purposes we do not need to worry about the internal
logic-value system.

11.2.2 Verilog Data Types

There are several data typesin Verilog--all except one need to be declared before we can use them. The
two main datatypes are nets and registers[Verilog LRM 3.2]. Nets are further divided into several net
types. The most common and important net types are: wire and tri (which areidentical); supplyl and
supply0 (which are equivaent to the positive and negative power supplies respectively). Thewi r e data
type (which we shall refer to asjust wi r e from now on) isanalogousto awireinan ASIC. Awire
cannot store or hold avalue. A wi r e must be continuously driven by an assignment statement (see
Section 11.5). The default initial valuefor awi re is’ z’ [Verilog LRM3.6]. There are aso integer,
time, event, and real data types.

nodul e decl arations_1;
wire pw_good, pw _on, pw _stable; // Explicitly declare wires.
integer i; // 32-bit, signed (2's conplenent).
time t; // 64-bit, unsigned, behaves |like a 64-bit reg.
event e; // Declare an event data type
real r; // Real data type of inplenentation defined size.
/1 An assign statement continuously drives a wire:
assign pw _stable = 1'bl; assign pw_on =1; // 1 or 1'bl
assign pw_good = pw _on & pw _stabl e;
initial begin
[123.456; // There nust be a digit on either side
r 123456e-3; // of the decimal point if it is present.
123456e-3; // Time is rounded to 1 second by default.
$d|splay(|—@@g",i," t=0%.2f",t," r=%",r);
#2 $di splay("TI ME=%®Od", $tinme, " ON=", pwr_on,

" STABLE=", pwr_stabl e, " GOOD=", pw _good);
$finish; end
endnodul e
i =123 t=123. 00 r=123. 456000
TI ME=2 ON=1 STABLE=1 GOOD=1

A register datatype is declared using the keyword r eg and is comparable to a variable in a programming
language. On the LHS of an assignment aregister data type (which we shall refer to asjust r eg from
now on) is updated immediately and holds its value until changed again. The default initial value for a
reg is’ x’ . We can transfer information directly from awi r e to ar eg as shown in the following code:

nodul e decl arations_2;
reg Q dKk; wire D

/1 Drive the wire (D):

assign D = 1;

/1 At a +ve clock edge assign the value of wire Dto the reg Q
al ways @ posedge C k) Q = D

initial Ak = 0; always #10 dk = ~ dKk;

initial begin #50; $finish; end

al ways begin

$di spl ay("T=%2g", $tinme," D=",D" Ak=",dk," &",Q; #10; end

endnodul e

T= 0 D=z d k=0 Q=x
T=10 D=1 d k=1 Q=x
T=20 D=1 d k=0 Q=1
T=30 D=1 d k=1 @1
T=40 D=1 d k=0 Q=1

We shall discuss assignment statements in Section 11.5. For now, it isimportant to recognize that ar eg
is not always equivalent to a hardware register, flip-flop, or latch. For example, the following code
describes purely combinational logic:

nodul e decl arati ons_3;
reg a,b,c,d,e;
initial begin

#10; a = 0;b = 0;c = 0;d =0; #10; a = 0;b = 1;c = 1;d = 0;
#10; a = 0;b = 0;c = 1;d = 1; #10; S$stop
end

al ways begin
@a or b or cor d e = (alb)&c|d);
$di spl ay("T=%0g", $tine," e=",e);

end

endnodul e

T=10 e=0

T=20 e=1

T=30 e=0

A single-bit wi re or reg isascalar (the default). We may also declareawi re or reg asavector with a
range of bits[Verilog LRM 3.3]. In some situations we may use implicit declaration for ascalar wi re ;
it isthe only data type we do not always need to declare. We must use explicit declaration for a vector

wi re or any reg . We may access (or expand) the range of bitsin avector one at atime, using a
bit-select, or as a contiguous subgroup of bits (a continuous sequence of numbers--like astraight in
poker) using apart-select [Verilog LRM 4.2]. The following code shows some examples:

nodul e decl arati ons_4;

wire Data; // A scalar net of type wre.

wire [31:0] ABus, DBus; // Two 32-bit-w de vector wres:
/1 DBus[31] = leftnmost = nost-significant bit = nsb

/1 DBus[0O] = rightnmost = least-significant bit = Isb

/1 Notice the size declaration precedes the nanes.

/1 wire [31:0] TheBus, [15:0] BigBus; // This is illegal
reg [3:0] vector; // A 4-bit vector register

reg [4:7] nibble; // msb index < Isb index is OK

i nteger i;

initial begin

i = 1;

vector = 'bl1l010; // Vector without an index.

ni bbl e vector; // This is OK too.

#1; $display("T=%0g", $tine," vector=", vector," nibble=", nibble);
#2; $display("T=%0g", $tinme," Bus=%", DBus[15:0]);

end

assign DBus [1] = 1; // This is a bit-select.

assign DBus [3:0] = 'bl111; // This is a part-select.

/1 assign DBus [0:3] = 'b1111; // Illegal : wong direction
endnodul e

T=1 vector=10 ni bbl e=10
T=3 Bus=zzzzzzzzzzzz1111

There are no multidimensional arraysin Verilog, but we may declare amemory datatype as an array
of registers[Verilog LRM 3.8]:

nodul e decl arati ons_5;
reg [31:0] VideoRam|[7:0]; // An 8-word by 32-bit w de nenory.

initial begin

Vi deoRani 1] = 'bxz; // W nust specify an index for a nenory.
VideoRani2] =1

Vi deoRani 7] = Vi deoRani Vi deoRan{2]]; // Need 2 clock cycles for this.
VideoRan{ 8] = 1; // Careful! the conpiler won’t conplain about this!

/1 Verify what we entered:

$di spl ay("Vi deoRan{0] is %", Vi deoRani 0])
$di spl ay("Vi deoRan{ 1] is %", Vi deoRani 1])
$di spl ay("VideoRan{ 2] is %", VideoRan{ 2])
$di spl ay("Vi deoRan{ 7] is %", Vi deoRani 7])
end

endnodul e

Vi deoRanf 0] i S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Vi deoRanmf 1] 1S XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXZ
Vi deoRan{ 2] i s 00000000000000000000000000000001
Vi deoRan 7] s XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXZ

We may also declare an integer array or time array in the same way as an array of reg , but there are
no real arrays[Verilog LRM 3.9]:

nodul e decl arati ons_6;

i nteger Nunmber [1:100]; // Notice that size follows nane
time Time_Log [1:1000]; // - as in an array of reg.

/1 real Illegal [1:10]; // lllegal. There are no real arrays.
endnodul e

11.2.3 Other Wire Types

There are the following other Verilog wire types (rarely used in ASIC design) [Verilog LRM 3.7]:

® wand ,wor ,triand,andtrior model wired logic. Wiring, or dotting, the outputs of two gates
generates alogic function (in emitter-coupled logic, ECL, or in an EPROM, for example). Thisis
one areain which thelogic values’ z' and’ x’ aretreated differently.

® trioandtri 1 model resistive connectionsto VSS or VDD.

® trireg islikeaw re but associates some capacitance with the net, so it can model charge
storage.

There are a so other keywords that may appear in declarations:

® scal ared and vect ored are properties of vectors[Verilog LRM 3.3].
® smal | , medi um, and | ar ge model the charge strength of t ri r eg connections[Verilog LRM 7].

11.2.4 Numbers

Constant numbers are integer or real constants [Verilog LRM 2.5]. Integer constants are written as
wi dt h’ radi x val ue

wherewi dt h and r adi x are optional. The radix (or base) indicates the type of number: decimal (d or D
),hex (horH),octal (oor0),orbinary (b orB). A number may be sized or unsized. The length of
an unsized number isimplementation dependent. Wecanuse’ 1’ and’ 0° as numbers since they cannot
be identifiers, but we must write 1’ bx and 1’ bz for’ x> and’ z’ . A number may be declared as a
parameter [Verilog LRM 3.10]. A parameter assignment belongs inside a modul e declaration and has
local scope [Verilog LRM3.11]. Real constants are written using decimal (100.0) or scientific notation
(1€2) and follow IEEE Std 754-1985 for double-precision floating-point numbers. Reals are rounded to
the nearest integer, ties (numbers that end in .5) round away from zero [Verilog LRM 3.9], but not all
implementations follow this rule (the output from the following code is from VeriWell, which rounds
ties toward zero for negative integers).

nodul e constants;

parameter H12 UNSIZED = 'h 12; // Unsized hex 12 = deci mal 18.
parameter H12_SIZED = 6'h 12; // Sized hex 12 = deci mal 18.

/1 Note: a space between base and value is K

/1 Note: '’ (single apostrophes) are not the sane as the ' character
paranmeter D42 = 8 B0010_1010; // bin 101010 = dec 42

/1 OK to use underscores to increase readability.

paranmeter D123 = 123; // Unsized decimal (the default).

parameter D63 = 8 o0 77; // Sized octal, decinnal 63.

/1 parameter ILLEGAL = 1'09; // No 9's in octal nunbers!

/1 A ="hx and B = 'ox assunme a 32 bit w dth.

parameter A= 'h x, B="0x, C=8b x, D="hz, E= 16"h ???7?;
/1 Note the use of ? instead of z, 16’ h ???? is the same as 16’ h zzzz.
/1 Also note the automatic extension to a width of 16 bits.

reg [3:0] BO00O11, Bxxx1,Bzzz1; real R1,R2,R3; integer 11,13,1_3;
paranmeter BXZ = 8 b1x0x1zO0z;

initial begin

BO011 = 4’ bll; Bxxx1l = 4'bx1; Bzzz1l = 4'bzl; // Left padded.

Rl = 0.1el; R2 = 2.0; R3 = 30E-01; // Real nunbers.

11 =1.1; I3 =2.5; 1_3=-2.5; // IEEE rounds away fromO0

end initial begin #1;

$di spl ay

("H12_UNSI ZED, H12_SI ZED (hex) = 9%, %", H12_UNSI ZED, H12_SI ZED);
$display("D42 (bin) = %",D42," (dec) = %", D42);

$di spl ay("D123 (hex) = %", D123," (dec) = %", D123);

$di spl ay(" D63 (oct) = %", D63);

$di splay("A (hex) = %",A " B (hex) = %", B)

$display("C (hex) = %",C," D (hex) = %",D, " E (hex) = %", E)
$di splay("BXZ (bin) = %",BXZ," (hex) = %", BXZ);

$di spl ay("B0011, Bxxx1l, Bzzzl (bin) = %, %, %", B0OOl1l, Bxxx1, Bzzz1);
$display("Rl, R2, R3 (e, f, g) = %, %, %", R, R2, R3);
$display("11, 13, 1_3 (d) =%, %, %", 11, 13, 1_3);

end

endnodul e

H12_UNSI ZED, H12_SI ZED (hex) = 00000012, 12

D42 (bin) = 00101010 (dec) = 42

D123 (hex) = 0000007b (dec) = 123

D63 (oct) = 077

A (hex) = xxxxxxxx B (hex) = XXXXXXXX

C (hex) = xx D (hex) = zzzzzzzz E (hex) = zzzz

BXZ (bin) = 1x0x1z0z (hex) = XZ

BO011, Bxxx1l, Bzzzl (bin) = 0011, xxx1, zzz1l

R1, R2, R3 (e, f, g) = 1.000000e+00, 2.000000, 3

11, 13, 1_3 (d) = 1, 3, -2

11.2.5 Negative Numbers

Integer numbers are signed (two’' s complement) or unsigned. The following example illustrates the

handling of negative constants [Verilog LRM 3.2, 4.1]:

nodul e negative_nunbers;

paranmeter PA = -12, PB = -'d12, PC = -32"dl12, PD = -4'd12;
integer 1A, IB, IC, ID; reg [31:0] RA, RB, RC, RD
initial begin #1;

A =-12; IB=-"d12; IC=-32"d12; ID = -4"d12;
RA = -12; RB = -'d12; RC = -32'd12; RD = -4'd12; #1,
$di spl ay(" par aret er i nt ege reg[31:0]");
$display ("-12 =", PA A, , RA;
$di spl ayh(" "L PA L LLTA L, RA) ;G
$display ("-'d12 =",,PB,IB,,,RB);
$di spl ayh(" ",,,,PB,,,,1B,,,,,RB);
$display ("-32'd12 =",,PC 1C,,,RO;
$di spl ayh(" “..,.,PC,,,1C,,,,RO;
$di splay ("-4'd12 =,,,,,,,,,,PDID,,,RD);
$di spl ayh(" "y aasaass,PD L, ID,,,,,RD;
end
endnodul e
par anet er i nt eger reg[31: 0]
-12 = -12 -12 4294967284
fffffff4a fffffff4 fffffff4
- d12 = 4294967284 -12 4294967284
fffffff4 fffffff4 fffffff4
-32'd12 = 4294967284 -12 4294967284
fffffff4a fffffff4 fffffff4
-4'd12 = 4 -12 4294967284

4 fffffff4 fffffff4

Verilog only "keeps track” of the sign of a negative constant if it is (1) assigned to ani nt eger or (2)
assigned to apar anet er without using a base (essentially the same thing). In other cases (even though
the bit representations may be identical to the signed number--hexadecimal f f f f f f f 4 in the previous
example), a negative constant is treated as an unsigned number. Once Verilog "loses" the sign, keeping

track of signed numbers becomes your responsibility (see also Section 11.3.1).

11.2.6 Strings

The code listings in this book use Cour i er font. The ISO/ANSI standard for the ASCII code defines the
characters, but not the appearance of the graphic symbol in any particular font. The confusing characters
are the quote and accent characters:

nodul e characters; /*
" is ASCII 34 (hex 22), double quote.
is ASCII 39 (hex 27), tick or apostrophe.
/ is ASCI| 47 (hex 2F), forward sl ash.
\ is ASCII 92 (hex 5C), back sl ash.
‘ is ASCIlI 96 (hex 60), accent grave.
| is ASCII 124 (hex 7C), vertical bar
There are no standards for the graphic synbols for codes above 128.
" is 171 (hex AB), accent acute in alnmost all fonts.
is 210 (hex D2), open double quote, like 66 (in some fonts).

is 211 (hex D3), close double quote, like 99 (in sone fonts).
is 212 (hex D4), open single quote, like 6 (in sone fonts).
" is 213 (hex D5), close single quote, like 9 (in some fonts).

*/ endnodul e

Hereis an example showing the use of string constants[Verilog LRM 2.6]:

nmodul e text;

parameter A String = "abc"; // string constant, must be on one |line
paranmeter Say = "Say \"Hey!\"";

/1 use escape quote \" for an enbedded quote

paranmeter Tab = "\t"; // tab character

paranmeter NewLine = "\n"; // newl ine character

par amet er BackSlash = "\\"; // back slash

parameter Tick = "\047"; // ASCIl code for tick in octal

/1 parameter Illegal = "\500"; // illegal - no such ASCI| code

initial begin$display("A String(str) =% ",A String," (hex) = % ",A String);
$display("Say = % ", Say," Say \"Hey!\"");

$di spl ay("NewLi ne(str) = % ", NewLine," (hex) = % ", NewLi ne);
$display("\\(str) = % ", BackSlash," (hex) = % ", BackSl ash);

$di spl ay("Tab(str) = % ", Tab," (hex) = % ", Tab,"1 newline...");
$di splay("\n");

$display("Tick(str) = % ", Tick," (hex) = % ", Tick);

#1.23; Sdisplay("Time is %", $tinme);

end

endnodul e

A String(str) = abc (hex) = 616263

Say = Say \"Hey!\" Say "Hey!"

NewLi ne(str) = \n (hex) = Oa

\(str) =\\ (hex) = 5¢c

Tab(str) =\t (hex) =09 1 newine..

Tick(str) ="' (hex) = 27
Tine is

Instead of parameters you may use adefine directive that isacompiler directive, and not a statement
[Verilog LRM 16]. The def i ne directive has global scope:

nmodul e defi ne;

define G BUSWDTH 32 // Bus width paraneter (G_ for global).

/* Note: there is no semicolon at end of a conpiler directive. The character ‘ is AS
wire [G BUSW DTH O] MyBus; // A 32-bit bus.

endnodul e

Chapter start
Previous page
Chapter start
Previous page

Next page

11.3 Operators

An expression uses any of the three types of operators: unary operators, binary operators, and asingle
ternary operator [Verilog LRM 4.1]. The Verilog operators are similar to those in the C programming
language--except there is no autoincrement (++) or autodecrement (- -) in Verilog. Table 11.1 shows
the operatorsin their (increasing) order of precedence and Table 11.2 shows the unary operators. Hereis
an example that illustrates the use of the Verilog operators:

TABLE 11.1 Verilog operators (in increasing order of precedence).

?. (conditional) [legal for real; associates right to left (others associate | eft to right)]

|| (logical or) [A smaller operand is zero-filled from its msb (O-fill); legal for real]

& & (logical and)[O-fill, legal for real]

| (bitwise or) ~| (bitwise nor) [O-fill]

A (bitwise xor) A~ ~ (bitwise xnor, equivalence) [O-fill]

& (bitwise and) ~& (bitwise nand) [O-fill]

== (logical) != (logical) === (case) !== (case) [O-fill, logical versions are legal for real]

< (It) <= (It or equal) > (gt) >= (gt or equal) [O-fill, all arelegal for real]

<< (shift left) >> (shift right) [zero fill; no -ve shifts; shift by x or z results in unknown]

+ (addition) - (subtraction) [if any bitisx or z for + - * / % then entire result is unknown|]

* (multiply) / (divide) % (modulus) [integer divide truncates fraction; + - * / legal for real]

Unary operators. ! ~& ~& |~ » ~ "~ + Fdiske11.2 for precedence]

TABLE 11.2 Verilog unary operators.

Operator [Name Examples

! logical negation 11231is’b0 [0, 1, or x for ambiguous; legal for real]
~ bitwise unary negation|~1'b10xz is 1’ bO1xx

& unary reductionand & 4'b1111is1'bl, & 22bx1is1 bx, & 2'bzlis1 bx
~& unary reduction nand |~& 4'b1111is1'b0, ~& 2'bx1is1 bx

| unary reduction or Note:

~| unary reduction nor Reduction is performed left (first bit) to right

A unary reduction xor Beware of the non-associative reduction operators
~N A~ unary reduction xnor | zistreated as x for all unary operators

+ unary plus +2'bxz is+2'bxz [+m isthe same as m; legal for real]
- unary minus -2’bxz isx [-misunary minus m; legal for real]

nodul e operators;

paraneter AlOxz = {1’ b1, 1" b0, 1 bx, 1 bz}; // Concatenation and

par amet er A01010101 = {4{2'bO01}}; // replication, illegal for real
/1 Arithnetic operators: +, -, *, /, and nmodulus %

parameter Al = (3+2) 9%; // The sign of a %b is the sane as sign of a.
/1 Logical shift operators: << (left), >> (right)

parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // Note: zero fill.
/1 Rel ational operators: <, <= >, >=

initial if (1 > 2) $stop;

/1 Logical operators: ! (negation), & (and), || (or)

parameter BO = 112; paranmeter Bl = 1 && 2,

reg [2: 0] AOOx; initial begin A0OOx = 'bl1ll; A0Ox = !2' bx1; end
parameter CL = 1 || (1/0); /* This may or may not cause an

error: the short-circuit behavior of & and || is undefined. An

evaluation including & or || may stop when an expression i s known
to be true or false. */

/1 == (logical equality), !'= (logical inequality)

parameter Ax = (1==1"bx); paranmeter Bx = (1 bx!=1"bz);

paranmeter DO = (1==0); paranmeter Dl = (1==1);

/1l === case equality, !== (case inequality)

/1 The case operators only return true (1) or false (0).
parameter EO = (1===1'bx); paraneter E1 = 4’ b0lxz === 4’ b0lxz;
paranmeter F1 = (4’ bxxxx === 4’ bxxxX);

/1 Bitwi se |ogical operators:

/1 ~ (negation), & (and), | (inclusive or),

/1 "~ (exclusive or), ~" or ~~ (equival ence)

paranmeter A00 = 2'b01 & 2’ bl0;

/1 Unary | ogical reduction operators:

/! & (and), ~& (nand), | (or), ~| (nor),

/1~ (xor), ~" or "~ (xnor)

paranmeter Gl= & 4’ bl1111;

/1 Conditional expression f =a ? b : c [if (a) then f=b else f=c]
/1 if a=(x or z), then (bitwise) f=0 if b=c=0, f=1if b=c=1, else f=x
reg HO, a, b, c; initial begin a=1; b=0; c=1; HO=a?b:c; end
reg[2:0] JO1x, Jxxx, J01z, JO11

initial begin Jxxx = 3 bxxx; J01z = 3" b01z; JO011 = 3’ bhOl1
JO1x = Jxxx ? JO01z : JO11; end // A bitwise result.

initial begin #1;

$di spl ay("AlOxz=%", A10xz," A01010101=%", A01010101);

$di spl ay("Al=9%9d", Al," A2=909d",A2," A4=9%0d", A4);

$di spl ay("B1=%", Bl1," BO=%",B0," A00x=%", AOOX);

$di splay("Cl=%",Cl," Ax=%", Ax," Bx=%", Bx);

$di spl ay("D0=%", DO," D1=%", Dl1);

$di spl ay("E0O=%", EO," E1=%",6El," F1=%", Fl);

$di spl ay(" A00=%", AOO, " Gl=%", Gl," HO=%", HO);

$di spl ay("J01x=%", JO1x); end

endnodul e

AlOxz=10xz A01010101=01010101

Al=1 A2=2 A4=4

Bl1=1 BO=0 A00x=00x

Cl=1 Ax=x Bx=x

D0=0 Di1=1

EO=0 El1=1 F1l=1

A00=00 Gl=1 HO=0

J01x=01x

11.3.1 Arithmetic

Arithmetic operations on n-bit objects are performed modulo 2" in Verilog,

nodul e nodul o; reg [2:0] Seven;

initial begin

#1 Seven 7; #1 $display("Before=", Seven);

#1 Seven Seven + 1; #1 $display("After =", Seven);
end

endnodul e

Bef or e=7

After =0

Arithmetic operationsin Verilog (addition, subtraction, comparison, and so on) on vectors (reg or
wi re) are predefined (Tables 11.1 and 11.2 show which operators are legal for real). Thisisavery
important difference for ASIC designers from the situation in VHDL. However, there are some

subtleties with Verilog arithmetic and negative numbers that areillustrated by the following example
(based on an exampleinthe LRM [Verilog LRM4.1]):

nmodul e LRM arithmetic;
integer 1A IB, IC ID IE reg [15:0] RA, RB, RG
initial begin

A = -4"d12; RA = IA/ 3; I/ reg is treated as unsigned.
RB = -4'd12; IB= RB/ 3; //
IC=-4d12/ 3; RC=-12/ 3; /Il real is treated as signed
ID = -12/ 3; IE= 1A/ 3; I/ (tw's conplenent).
end
initial begin #1;
$di spl ay(" hex default");
$display("l1A = -4"d12 = %%, 1A 1A);
$display("RA = 1A/ 3 = % %", RA RA);
$di splay("RB = -4’ d12 = %h %", RB, RB) ;
$display("IB=RB/ 3 = %%",1B,1B);
$display("IC = -4d12/ 3 = %%",IC 1C);
$di splay("RC = -12 / 3 = % %", RC, RO ;
$display("ID = -12 / 3 = %%l",ID1D);
$display("IE= A/ 3 = %%l",1E IE);
end
endnodul e

hex def aul t
A = -4"d12 = fffffff4 -12
RA=I1A/ 3 = fffc 65532
RB = -4'd12 = fff4 65524
IB=RB/ 3 = 00005551 21841
IC = -4dl12 / 3 = 55555551 1431655761
RC=-12/ 3 = fffc 65532
ID=-12/ 3 = fffffffc -4
IE= 1A/ 3 = fffffffc -4

We might expect the results of al these divisionsto be - 4 = -12/3. For integer assignments, the results
are correctly signed (IDand 1 E). Hex f f f ¢ (decimal 65532) is the 16-bit two’'s complement of - 4, so
RA and RC are also correct if we keep track of the signs ourselves. The integer result | B isincorrect
because Verilog treats RB as an unsigned number. Verilog also treats - 4’ d12 as an unsigned number in
the calculation of 1 C. Once Verilog "loses’ asign, it cannot get it back (see also Section 11.2.5).

Chapter start
Previous page
Chapter start
Previous page

Next page

11.4 Hierarchy

The module isthe basic unit of code in the Verilog language [Verilog LRM 12.1],

nodul e holiday_1(sat, sun, weekend);
i nput sat, sun; output weekend;
assign weekend = sat | sun;
endnodul e

We do not have to explicitly declare the scalar wires: sat ur day , sunday , weekend because, since
these wires appear in the module interface, they must be declared in ani nput , out put , Or i nout
statement and are thus implicitly declared. The module interface provides the means to interconnect
two Verilog modules using ports[Verilog LRM 12.3]. Each port must be explicitly declared as one of
input, output, or inout. Table 11.3 shows the characteristics of ports. Notice that a r eg cannot be an
i nput port or ani nout port. Thisisto stop ustrying to connect a r eg to another r eg that may hold a
different value.

TABLE 11.3 Verilog ports.
Verilog port [input output inout

reg or wire (or other net)
Characteristics|wire (or other net) wire (or other net)
We can read an output port inside amodule

Within a module we may instantiate other modules, but we cannot declare other modules. Ports are
linked using named association or positional association,

‘timescale 100s/1s // Units are 100 seconds with precision of 1s.
nodule life; wire [3:0] n; integer days;
wire wake_7am wake_8am // Wake at 7 on weekdays el se at 8.
assign n =1 + (days %7); // nis day of the week (1-7)
al ways@wake_8am or wake_ 7am
$di spl ay("Day=",n," hours=%d ", ($tine/36)%R4," 8am=",
wake 8am " 7am = ",wake_7am" nR2.weekday = ", nR.weekday);
initial days = 0;
initial begin #(24*36*10); $finish; end // Run for 10 days.
al ways #(24*36) days = days + 1; // Bunp day every 24hrs.
rest nil(n, wake_8an); // Mdul e instantiation
/1l Creates a copy of nodule rest with instance nanme mml,
/1 ports are |inked using positional notation
wor k n2(.weekday(wake_7am), .day(n));
/1l Creates a copy of nodule work with instance name ng,
/1 Ports are |inked using named associ ation
endnodul e
nodul e rest (day, weekend); // Modul e definition
/1 Notice the port nanmes are different fromthe parent.
i nput [3:0] day; output weekend; reg weekend;
al ways begin #36 weekend = day > 5; end // Need a del ay here.
endnodul e
nodul e wor k(day, weekday);
i nput [3:0] day; output weekday; reg weekday;
al ways begin #36 weekday = day < 6; end // Need a del ay here.
endnodul e

Day= 1 hours=0 8am= 0 7am=0 nR.weekday = 0
Day= 1 hours=1 8am= 0 7am=1 nR2.weekday =1
Day= 6 hours=1 8am=1 7am=0 nR.weekday = 0
Day= 1 hours=1 8am=0 7am=1 nR. weekday =1

The port names in a modul e definition and the port names in the parent module may be different. We
can associate (link or map) ports using the same order in the instantiating statement as we use in the
module definition--such asinstancenit. in modulel i f e . Alternatively we can associate the ports by
naming them--such asinstance n2 in modulel i f e (using aperiod’ . before the port name that we
declared in the module definition). Identifiers in amodule have local scope. If we want to refer to an
identifier outside a module, we use a hierar chical name [Verilog LRM12.4] such asni. weekend or
2. weekday (asin modulel i f e), for example. The compiler will first search downward (or inward)
then upward (outward) to resolve a hierarchical name [Verilog LRM 12.4-12.5].

Chapter start
Previous page
Chapter start
Previous page

Next page

11.5 Proceduresand Assignments

A Verilog procedure [Verilog LRM 9.9] isanal ways orinitial statement, atask ,orafunction.
The statements within a sequential block (statements that appear between abegi n and anend) that is
part of a procedure execute sequentialy in the order in which they appear, but the procedure executes
concurrently with other procedures. Thisis afundamental difference from computer programming
languages. Think of each procedure as a microprocessor running on its own and at the sametime as all
the other microprocessors (procedures). Before | discuss procedures in more detail, | shall discussthe
two different types of assignment statements:

@ continuous assignments that appear outside procedures
® procedural assignments that appear inside procedures

To illustrate the difference between these two types of assignments, consider again the example used in
Section 11.4:

nodul e holiday_1(sat, sun, weekend);

i nput sat, sun; output weekend;

assign weekend = sat | sun; // Assignment outside a procedure.
endnodul e

We can change weekend to a r eg instead of awi r e , but then we must declare weekend and use a
procedural assignment (inside a procedure--an al ways statement, for example) instead of a continuous
assignment. We also need to add some delay (one time tick in the example that follows); otherwise the
computer will never be able to get out of the al ways procedure to execute any other procedures:

nmodul e holiday_2(sat, sun, weekend);

i nput sat, sun; output weekend; reg weekend;
al ways #1 weekend = sat | sun; // Assignnment inside a procedure.
endnodul e

We shall cover the continuous assignment statement in the next section, which is followed by an
explanation of sequential blocks and procedural assignment statements. Here is some skeleton code that
illustrates where we may use these assignment statements:

nodul e assi gnment s
/1... Continuous assignments go here.
al ways // begi nning of a procedure
begin // begi nning of sequential bl ock

/1... Procedural assignments go here.
end
endnodul e

Table 11.4 at the end of Section 11.6 summarizes assignment statements, including two more forms of
assignment--you may want to look at this table now.

11.5.1 Continuous Assignment Statement

A continuous assignment statement [Verilog LRM 6.1] assignsavaluetoa wire inasimilar way
that areal logic gate drives areal wire,

nodul e assi gnnent _1();

wire pw_good, pw _on, pw _stable; reg Ok, Fire;

assign pw_stable = Gk & (!Fire);

assign pw_on =1

assign pw_good = pw _on & pw _stabl e;

initial begin Ok = 0; Fire =0; #1 Ok = 1; #5 Fire = 1; end

initial begin $nonitor("TlIME=%®Od", $tinme," ON=",pw _on, " STABLE=",

pw _stable,” OK=",Ck," FIRE=",Fire," GOOD=", pw _good);

#10 $finish; end

endnodul e

TIME=0 ON=1 STABLE=0 OK=0 FI RE=0 GOOD=0

TIME=1 ON=1 STABLE=1 OK=1 FlI RE=0 GOOD=1

TIME=6 ON=1 STABLE=0 OK=1 FI RE=1 GOOD=0

The assignment statement in this next example models a three-state bus:

nodul e assignnent_2; reg Enable; wire [31:0] Data;
/* The followi ng single statenent is equivalent to a declaration and conti nuous ass
wire [31:0] DataBus = Enable ? Data : 32’ bz;
assign Data = 32'b10101101101011101111000010100001
initial begin

$nmoni t or ("Enabl e=% Dat aBus=% ", Enabl e, Dat aBus);

Enable = 0; #1; Enable = 1; #1; end
endnodul e
Enabl e
Enabl e

O DataBus =zzzz7z7z77772727272722722222222222222222
1 DataBus =10101101101011101111000010100001

11.5.2 Sequential Block

A sequential block [Verilog LRM 9.8] isagroup of statements between abegin and an end. We may
declare new variables within a sequential block, but then we must name the block. A sequentia block is

considered a statement, so that we may nest sequential blocks.

A sequential block may appear in an always statement [Verilog LRM9.9.2], in which case the block
executes repeatedly. In contrast, an initial statement [Verilog LRM9.9.1] executes only once, so a
sequential block withinani ni ti al statement only executes once--at the beginning of a simulation. It
does not matter wherethei ni ti al statement appears--it still executesfirst. Hereis an example:

nodul e always_1; reg Y, dKk;
always // Statenents in an always statenent execute repeatedly:
begin: ny_block // Start of sequential block

@ posedge C k) #5 Y =1; // At +ve edge set Y=1,

@ posedge C k) #5 Y = 0; // at the NEXT +ve edge set Y=0.
end // End of sequential bl ock.
al ways #10 dk = ~ dk; // W need a clock
initial Y =0; // These initial statements execute
initial Ak =0; // only once, but first.
initial $nonitor("T=%Rg", $time,"” dk=",dk," Y=",V);
initial #70 $finish;

endrmodul e

T= 0 dk=0 Y=0
T=10 d k=1 Y=0
T=15 dk=1 Y=1
T=20 dk=0 Y=1
T=30 d k=1 Y=1
T=35 d k=1 Y=0
T=40 dk=0 Y=0
T=50 d k=1 Y=0
T=55 d k=1 Y=1
T=60 d k=0 Y=1

11.5.3 Procedural Assignments

A procedural assignment [Verilog LRM 9.2] is similar to an assignment statement in a computer
programming language such as C. In Verilog the value of an expression on the RHS of an assignment
within a procedure (a procedura assignment) updates ar eg (or memory element) on the LHS. In the
absence of any timing controls (see Section 11.6), ther eg is updated immediately when the statement
executes. Ther eg holdsits value until changed by another procedural assignment. Here isthe BNF
definition:

bl ocki ng_assignnent ::= reg-lvalue = [delay_or_event _control] expression

(Notice this BNF definition is for a blocking assignment--a type of procedural assignment--see
Section 11.6.4.) Hereis an example of a procedural assignment (notice that awi r e can only appear on
the RHS of a procedura assignment):

nodul e procedural _assign; reg Y, A
al ways @A)
Y = A, // Procedural assignnent.
initial begin A=0; #5; A=1; #5; A=0; #5; $f|n|sh end
initial $nonitor("T=92g", $t|ne,, A=A LLTYE"L Y
endnodul e
T= 0 A=0 Y=0
T=5 A=1 Y=1
T=10 A=0 Y=0

Chapter start
Previous page
Chapter start
Previous page

Next page

11.6 Timing Controlsand Delay

The statements within a sequential block are executed in order, but, in the absence of any delay, they all
execute at the same simulation time--the current time step. In reality there are delays that are model ed
using atiming control.

11.6.1 Timing Control

A timing control is either adelay control or an event control [Verilog LRM 9.7]. A delay control
delays an assignment by a specified amount of time. A timescale compiler directiveis used to specify
the units of time followed by the precision used to calculate time expressions,

‘“tinmescale 1ns/10ps // Units of time are ns. Round times to 10 ps.

Time unitsmay only bes , ns , ps , or f s and the multiplier must be 1, 10, or 100. We can delay an
assignment in two different ways:

® Samplethe RHS immediately and then delay the assignment to the LHS.
® Wait for a specified time and then assign the value of the LHS to the RHS.

Here is an example of thefirst alternative (an intra-assignment delay):

x = #1 y; [/ intra-assignment del ay

The second alternative is delayed assignment:

#1 x = vy; /Il delayed assi gnnment

These two alternatives are not the same. The intra-assignment delay is equivalent to the following code:

begin // Equivalent to intra-assi gnment del ay.

hold = vy; // Sanple and hold y inmediately.

#1; [/ Del ay.

x = hold; // Assignnent to x. Overall sane as x = #1 vy.
end

In contrast, the delayed assignment is equivalent to a delay followed by an assignment as follows:

begin // Equival ent to del ayed assi gnment.

#1; |/ Del ay.
X =y; I/ Assigny to x. Overall sane as #1 x = y.
end

The other type of timing control, an event control, delays an assignment until a specified event occurs.
Hereisthe formal definition:

event_control ::= @event_identifier | @ (event_expression)
event _expression ::= expression | event_identifier

| posedge expression | negedge expression

| event _expression or event_expression

(Notice there are two different usesof * or’ in thissimplified BNF definition--the last one, in bold, is
part of the Verilog language, a keyword.) A positive edge (denoted by the keyword posedge) isa
transitionfrom’ 0’ to’ 1' or’ x’ , or atransitionfrom’ x’ to’ 1. A negative edge (negedge) isa
transitionfrom’ 1’ to’ 0’ or’ x’ , or atransitionfrom ’ x’ to’ 0’ . Transitionsto or from’ z’ do not
count. Here are examples of event controls:

nodul e delay _controls; reg X, Y, dk, Dumy;
al ways #1 Dunmy=! Dumy; // Dummy cl ock, just for graphics.
/1 Exanpl es of delay controls:
al ways begin #25 X=1;#10 X=0;#5; end
/1 An event control
al ways @ posedge C k) Y=X; // Wait for +ve cl ock edge.
al ways #10 dk = 1dk; // The real clock
initial begin dk = 0;
$display("T dk X Y');
$monitor ("%Rg", $tinme,,,dKk,,,, X ,Y);
$dunpvars; #100 $fini sh; end
endnodul e
T dk X

N
o
PORPRPOORORROORO
COORROOOOREX X X
ORPRPPRPOOORRREX XX X <

The dummy clock in delay_controls helps in the graphical waveform display of the results (it provides a
one-time-tick timing grid when we zoom in, for example). Figure 11.1 shows the graphical output from
the Waves viewer in VeriWell (white is used to represent the initial unknown values). The assignment
statementsto’ X intheal ways statement repeat (every 25 + 10 + 5 = 40 time ticks).

Clk <delag_contr
FIGURE 11.1 Output from the module T
del ay_Cont rols. Woddelaycontral

Events can be declared (as named events), triggered, and detected as follows:

nodul e show_event;

reg clock;

event event 1, event 2; // Declare two naned events.

al ways @ posedge cl ock) -> event_1; // Trigger event 1.
al ways @event _1

begi n $display("Strike 1!'!"); -> event_2; end // Trigger event_2.
al ways @event_2 begin $display("Strike 2!1");

$finish; end // Stop on detection of event_2.

al ways #10 clock = ~ clock; // W need a cl ock.

initial clock = 0;

endnodul e

Strike 1!!

Strike 2!!

11.6.2 Data Slip

Consider this model for a shift register and the ssimulation output that follows:

nodul e data_slip_1 (); reg Ak, D Q, Q;

/************* bad Sequentlal |OgIC bel OW ***************/
al ways @ posedge k) QL = D

al ways @ posedge k) @ = Ql; // Data slips here!
/************* bad Sequent|a| |OgIC above ***************/
initial begin dk =0; D= 1; end always #50 Cdk = ~dKk;
initial begin $display("t Ck DQ @");

$rmonitor ("¥Bg", $time, ,Adk,,,,D,,QL,,,@®); end

initial #400 $finish; // Run for 8 cycles.

initial $dunpvars;

endnodul e

t Gk DQA @
00 1 x X
50 1 11 1
100 O 11 1
150 1 11 1
200 0 11 1
250 1 11 1
300 0 11 1
350 1 11 1

Thefirst clock edge at t = 50 causes QL to be updated to the value of D at the clock edge (a’ 1’), and at
the sametime @ isupdated to this new value of QL . The data, D, has passed through both al ways
statements. We call this problem data dlip.

If weinclude delays in the al ways statements (labeled 3 and 4) in the preceding example, like this--

al ways @ posedge A k) Q1

#1 D, // The delays in the assignnents
al ways @ posedge A k) @ /1 f

1
#1 QL; ix the data slip.

--we obtain the correct output:

t Gk DAL @
00 1x X
50 1 1 x X
51 1 11 x
100 O 11 x
150 1 11 x
151 1 11 1
200 0 11 1
250 1 11 1
300 0 11 1
350 1 11 1

11.6.3 Wait Statement

The wait statement [Verilog LRM9.7.5] suspends a procedure until a condition becomes true. There
must be another concurrent procedure that aters the condition (in this case the variable Done --in general
the condition is an expression) in the following wai t statement; otherwise we are placed on "infinite
hold":

wait (Done) $stop; // Wit until Done = 1 then stop.

Notice that the Verilog wai t statement does not look for an event or a change in the condition; instead it
islevel-sensitive--it only cares that the condition is true.

nmodul e test _dff_wait;
reg D, dock, Reset; dff_wait ul(D, Q < ock, Reset);
initial begin D=1; O ock=0; Reset=1"bl; #15 Reset=1"b0; #20 D=0; end
al ways #10 O ock = !d ock;
initial begin $display("T dk D Q Reset");
$moni tor (" 929", $time,, A ock,,,,D,,Q ,Reset); #50 $finish; end
endnodul e
nmodul e dff_wait(D, Q O ock, Reset);
output @ input D, dock, Reset; reg Q wre D

al ways @ posedge Clock) if (Reset !'== 1) Q= D
al ways begin wait (Reset == 1) Q= 0; wait (Reset !==1); end
endnodul e

T dk D Q Reset

00 101

10 1 101

15 1 100

20 0 100

30 1 110

351 010

400 010

Wemust includewai t statementsin moduledf f _wai t above to wait for both Reset ==1 and Reset ==0 .
If we wereto omit thewai t statement for Reset ==0, asin the following code:

nodul e dff _wait (D, Q d ock, Reset);
output @ input D Cock,Reset; reg Q wre D

al ways @ posedge Clock) if (Reset !'==1) Q= D
/1 W need another wait statenent here or we shall spin forever.
al ways begin wait (Reset == 1) Q= 0; end

endnodul e

the simulator would cycle endlessly, and we would need to pressthe’ st op’ button or’ CTRL- C to halt
the simulator. Here is the console window in VeriWell:

Cl> .

T dk D Q Reset <- at this point nothing happens, so press CTRL-C
Interrupt at time O

C1>

11.6.4 Blocking and Nonblocking Assignments

If aprocedural assignment in a sequential block contains atiming control, then the execution of the
following statement is delayed or blocked. For this reason a procedural assignment statement is also
known as a blocking procedural assignment statement [Verilog LRM 9.2]. We covered this type of
statement in Section 11.5.3. The nonblocking procedural assignment statement allows executionin a
sequential block to continue and registers are al updated together at the end of the current time step.
Both types of procedural assignment may contain timing controls. Here is an artificially complicated
example that illustrates the different types of assignment:

nodul e del ay;
reg a, b,c,d,e,f,qg,bds, bsd;
initial begin

a=1 b=20; // No delay control

#1 b = 1; /1 Del ayed assi gnnment.

c = #1 1, /1 Intra-assignment del ay.

#1; /1 Delay control

d = 1; /1

e <= #1 1; /1 1ntra-assignment del ay, nonbl ocki ng assi gnnment
#1 f <= 1; /1 Del ayed nonbl ocki ng assi gnnent.

g <= 1; /1 Nonbl ocki ng assi gnnent.

end

initial begin #1 bds = b; end // Delay then sanple (ds).
initial begin bsd = #1 b; end // Sanple then delay (sd).
initial begin $display("t a b c d e f g bds bsd");
$rmonitor ("%", $tinme,,a,,b,,c,,d,,e,,f,,q,,bds,,,,bsd); end

endnodul e

t abcdef g bds bsd
0 0 X X X X X X X
111xxxxx1 0
2111xxxx1 0
31111xxx1 0
411111111 0

Many synthesistools will not allow us to use blocking and nonblocking procedural assignmentsto the
samer eg within the same sequential block.

11.6.5 Procedural Continuous Assignment

A procedural continuous assignment statement [Verilog LRM 9.3] (sometimes called a

guasi continuous assignment statement) is a special form of the assi gn statement that we use within a
sequential block. For example, the following flip-flop model assignsto q depending on the clear, cir_,
and preset, pre_, inputs (in general it is considered very bad form to use atrailing underscore to signify
active-low signals as | have done to save space; you might use” _n " instead).

nodul e dff _procedural _assign;
reg d,clr_,pre_,clk; wire q; dff _clr_pre dff_1(q,d,clr_,pre_, clk);
al ways #10 cl k = ~cl k;
initial beginclk =0; clr_=1; pre_ =1; d =1
#20; d = 0; #20; pre_ = 0; #20; pre_ = 1; #20; clr_ = 0;
#20; clr_ = 1; #20; d = 1; #20; $finish; end
initial begin
$di splay("T CLK PRE_ CLR_ D Q');
$rmoni tor ("%8g", $tine,,,clk,,,,pre_,,,,clr_,,,,d,,q); end
endnodul e
nodul e dff _clr_pre(q,d,clear_, preset_, cl ock);
out put q; input d,clear_,preset_,clock; reg q;
al ways @clear_ or preset)
if (!clear_) assign q = 0; // active-low clear
else if(!preset_) assign q = 1; // active-low preset
el se deassign q;
al ways @ posedge cl ock) gq = d;
endnodul e
T CLKPRE_ CLR DQ

0 O 1 1 1x
10 1 1 1 11
20 O 1 1 01
30 1 1 1 00
40 O 0 1 01
50 1 0 1 01
60 O 1 1 01
70 1 1 1 00
80 O 1 0 00
90 1 1 0 00

100 O 1 1 00
110 1 1 1 00
120 O 1 1 10
130 1 1 1 11

We have now seen all of the different forms of Verilog assignment statements. The following skeleton
code shows where each type of statement belongs:

nodul e al | _assi gnnents
//... continuous assignments.
al ways // begi nning of procedure
begin // begi nning of sequential block

/1... blocking procedural assignhnments.
/1... nonbl ocking procedural assignnments.
/1... procedural continuous assignnents.
end

endnodul e

Table 11.4 summarizes the different types of assignments.

TABLE 11.4 Verilog assignment statements.
Type of - _ Procedural Nonblocking Proc_edural
Verilo Continuous assignment assignment procedural continuous
1109 statement 9 assignment assignment
assignment statement
statement statement
Whereit can outside an always or :)?Si'gﬁigln aways inside an aways or|aways or initial
occur initial statement, task, or otatement. task. or initial statement, | statement, task, or
function Lo ' task, or function |function
function
al ways
wire [31:0] DataBus; |reg YV, @ Enabl e)
Ex | assi gn DataBus = al ways reg v, i f (Enabl e)
ampie Enable ? Data : @ posedge always Y <= 1; |[assign Q = D
32’ bz clock) Y = 1; el se deassign
Q
Val_id LHS of net register or register or memory net
assignment memory element |element
<expression> <expression> <expression> <expression>
Vaid RHS of
assignment net, reg or memory net, reg or net, reg or memory | net, reg or
element memory element |element memory element
Book 1151 1153 11.6.4 11.6.5
VerilogLRM 6.1 9.2 922 9.3
Chapter start
Previous page
Previous page
Next page

11.7 Tasksand Functions

A task [Verilog LRM 10.2] isatype of procedure, called from another procedure. A task has both
inputs and outputs but does not return avalue. A task may call other tasks and functions. A function
[Verilog LRM 10.3] isaprocedure used in any expression, has at |east one input, no outputs, and returns
asingle value. A function may not call atask. In Section 11.5 we covered all of the different Verilog
procedures except for tasks and functions. Now that we have covered timing controls, we can explain
the difference between tasks and functions: Tasks may contain timing controls but functions may not.
The following two statements help illustrate the difference between a function and a task:

Call _A Task_And_Wait (Inputl, Input2, CQutput);
Result I mrediate = Call _A Function (Al | nputs);

Functions are useful to model combinational logic (rather like a subroutine):

nodul e F_subset _decode; reg [2:0]A B, C, D E F;
initial begin A=1, B=0; D=2; E = 3;
C = subset _decode(A, B); F = subset_decode(D, E)
$di splay("A B CDEF'); $display(A ,B,,C ,D ,E ,F); end
function [2:0] subset_decode; input [2:0] a, b;
begin if (a <= b) subset decode = a; el se subset _decode = b; end
endf uncti on
endnodul e
ABCDEF
100232

Chapter start

Previous page

Previous page

Next page

11.8 Control Statements

In this section we shall discussthe Verilogif , case, | oop, di sable,fork,andj oi n statements that
control the flow of code execution.

11.8.1 Caseand If Statement

Anif statement [Verilog LRM 9.4] represents a two-way branch. In the following example, swi t ch
hasto betrueto execute’ Y = 1’ ; otherwise’ Y = 0’ isexecuted:

if(switch) Y =1; else Y = 0;

The case statement [Verilog LRM 9.5] represents a multiway branch. A controlling expression is
matched with case expressions in each of the case items (or arms) to determine a match,

nodul e test _mux; reg a, b, select; wire out;

mux mux_1(a, b, out, select);

initial begin #2; select = 0; a
#2; select = 1'bx; #2; select

0; b =1;
1'bz; #2; select = 1; end

initial $nonitor("T=%2g",$tinme," Select=",select," Qut=",out);
initial #10 $finish;
endnodul e

nmodul e mux(a, b, mux_output, nmux_select); input a, b, mux_sel ect;

out put nmux_out put; reg nmux_out put;
al ways begin
case(mux_sel ect)
0: nmux_out put = a;
1: mux_out put = b;
default nmux_output = 1'bx; // If select = x or z set output to Xx.
endcase

#1; // Need sonme delay, otherwise we'll spin forever.
end

endnodul e

T= 0 Select=x Qut=x
T= 2 Select=0 Qut=x
T= 3 Select=0 Qut=0
T= 4 Select=x Qut=0
T=5 Select=x Qut=x
T= 6 Select=z Qut=x
T= 8 Select=1 OQut=x
T=9 Select=1 Qut=1

Notice that the case statement must be inside a sequential block (inside an al ways statement). Because
the case statement isinside an al ways Statement, it needs some delay; otherwise the simulation runs
forever without advancing simulation time. The casex statement handlesboth’ z' and’ x’ asdon’t care
(so that they match any bit value), the casez statement handles’ z’ bits, and only’ z’ bits, asdon’t
care. Bitsin case expressions may be set to’ ?’ representing don’t care values, as follows:

casex (instruction_register[31:29])
3b’ ??1 : add;
3b’ ?1? : subtract;
3b’ 1?? : branch;

endcase

11.8.2 Loop Statement

A loop statement [Verilog LRM 9.6] isafor, while, repeat, or forever statement. Here are four
examples, one for each different type of loop statement, each of which performs the same function. The
comments with each type of 1oop statement illustrate how the controls work:

nodul e | oop_1;

integer i; reg [31:0] DataBus; initial DataBus = O;

initial begin

/************** Insert Ioop COde after here ******************/
/* for(Execute this assignnent once before starting |loop; exit loop if this express
for(i =0; i <=15; i = i+1l) DataBus[i] =1

/*************** Insert Ioop COde before here ****************/
end

initial begin

$di spl ay(" Dat aBus = %", Dat aBus) ;

#2; $di spl ay("DataBus = %", Dat aBus); $finish;

end

endnodul e

Hereisthewhi | e statement code (to replace line 4 in module | oop_1):
i =0;

/* mhfle(Execute next statenent while this expression is true.) */
while(i <= 15) begin DataBus[i] = 1; i = i+1; end

Hereistherepeat statement code (to replaceline4 in module 1 oop_1):

i = 0;
/* repeat (Execute next statement the nunber of tinmes corresponding to the eval uation
repeat (16) begin DataBus[i] =1; i =i+1; end

Hereisthef orever statement code (to replaceline 4 in module | oop_1):

i = 0;

/* A forever statenent |oops continuously. */

forever begin : ny_loop
Dat aBus[i] = 1;
if (i == 15) #1 disable nmy _loop; // Need to let time advance to exit.
i =i+l

end

The output for all four forms of looping statement is the same:

Dat aBus = 00000000000000000000000000000000
Dat aBus = 0000000000000000111172172127212122172121212
11.8.3 Disable

The disable statement [Verilog LRM 11] stops the execution of alabeled sequential block and skips to
the end of the block:

forever

begi n: m croprocessor_block // Label ed sequential bl ock
@ posedge cl ock)
if (reset) disable mcroprocessor_block; // Skip to end of bl ock
el se Execute_code;

end

Use the di sabl e statement with caution in ASIC design. It isdifficult to implement directly in
hardware.

11.8.4 Fork and Join

Thefork statement and join statement [Verilog LRM 9.8.2] allows the execution of two or more
parallel threadsin aparallel block:

nmodul e fork_ 1
event eat_breakfast, read_paper
initial begin

fork
@at _breakfast; @ead_paper;
join

end

endnodul e

Thisis another Verilog language feature that should be used with carein ASIC design, becauseit is
difficult to implement in hardware.

Chapter start
Previous page
Chapter start
Previous page

Next page

11.9 Logic-Gate Modeling

Verilog has a set of built-in logic models and you may also define your own models.

11.9.1 Built-in Logic Models

Verilog's built-in logic models are the following primitives[Verilog LRM7]:
® and, nand, nor, or, xor, Xxnor

Y ou may use these primitives as you use modules. For example:

nodul e primtive;

nand (strong0, strongl) #2.2
Nand_1(n001, n004, n005),
Nand_2(n003, n001, n005, n002);

nand (n006, n005, n002);

endnodul e

This module models three NAND gates (Figure 11.2). Thefirst gate (line 3) is atwo-input gate named
Nand_1 ; the second gate (line 4) is athree-input gate named Nand_2 ; the third gate (line 5) is unnamed.
The first two gates have strong drive strengths [Verilog LRM3.4] (these are the defaults anyway) and
2.2 nsdelay; the third gate takes the default values for drive strength (strong) and delay (zero). The first
port of a primitive gate is always the output port. The remaining ports for a primitive gate (any number
of them) are the input ports.

Mand_1

hild oy
Mand_2
RS niis
00z | G
B

| — it

FIGURE 11.2 An example schematic (drawn with Capilano’s DesignWorks) to illustrate the use of
Verilog primitive gates.

Table 11.5 shows the definition of the and gate primitive (I use lowercase * and’ asthe name of the
Verilog primitive, rather than’ AND' , since Verilog is case-sensitive). Notice that if one input to the
primitive’ and’ gateis zero, the output is zero, no matter what the other input is.

TABLE 11.5 Definition of the Verilog primitive’and’ gate.
"and’ 0 1 X z
0 0 0 0 0
1 0 1 X X
X 0 X X X
z 0 X X X

11.9.2 User-Defined Primitives

We can define primitive gates (a user-defined primitive or UDP) using a truth-table specification
[Verilog LRM8]. Thefirst port of a UDP must be an out put port, and this must be the only o ut put
port (we may not use vector or i nout ports):

primtive Adder(Sum |nA, 1nB)
out put Sum input Ina, InB

t abl e

/1 inputs : output
00 : O;

01 : 1;

10 . 1;

11 : O;

endt abl e

endprimtive

We may only specify thevalues’ 0’ ,’ 1" ,and’ x’ asinputsinaUDP truth table. Any ’ z’ inputis
treated asan’ x’ . If thereis no entry in a UDP truth table that exactly matches a set of inputs, the output
is’x’ (unknown).

We can construct a UDP model for sequential logic by including a state in the UDP truth-table
definition. The state goes between an input and an output in the table and the output then represents the
next state. The following sequential UDP model also illustrates the use of shorthand notation in a UDP
truth table:

primtive DLatch(Q d ock, Data);

output @ reg Q input Cock, Data;

tabl e

/linputs : present state : output (next state)
f) .

10: 0; // ? represents 0,1, or x (input or present state).
11 b: 1; // brepresents 0 or 1 (input or present state).
11: x: 1; /! Could have conbined this with previous |ine.
0?: ?: -; Il - represents no change in an output.

endt abl e

endprimtive

Be careful not to confusethe’ 2 inaUDP table (shorthand for’ 0’ ,” 1’ ,or’ x*)withthe’ 2’ ina

constant that represents an extensionto’ z' (Section 11.2.4) or the’ ?’ inacase statement that
represents don’'t care values (Section 11.8.1).

For sequential UDP models that need to detect edge transitions on inputs, there is another special
truth-table notation (ab) that represents achangein logic value from a to b . For example, (01)
represents arising edge. There are also shorthand notations for various edges:

® * S (??)
® r is (01)
® f iS (10)
® p is (01), (0x), or (x1)
® n is (10), (1x), or (x0)

primtive DFlipFlop(Q Cock, Data);
output @ reg Q input Cock, Data;

tabl e

/linputs : present state : output (next state)

r O0: ?: 0; [/l rising edge, next state = output =0
r 1: ?: 1; /] rising edge, next state = output =1
(Ox) O0: O0: O ; // rising edge, next state = output =0
(Ox) 1 : 1 : 1 ; // rising edge, next state = output =1
(?0) ?2: 2?2 : - ; [l falling edge, no change in output
?(??) @ ?: ; /1 no clock edge, no change in out put
endt abl e

endprimtive

Chapter start
Previous page
Chapter start
Previous page

Next page

11.10 Modeling Delay

Verilog has a set of built-in methods to define delays. Thisisvery important in ASIC physical design.
Before we start layout, we can use ASIC cell library models written in Verilog that include logic delays
as afunction of fanout and estimated wiring loads. After we have completed layout, we can extract the
wiring capacitance, allowing us to calculate the exact delay values. Using the techniques described in
this section, we can then back-annotate our Verilog netlist with postlayout delays and complete a
postlayout simulation.

We can compl ete this back-annotation process in a standard fashion since delay specification is part of
the Verilog language. This makes working with an ASIC cell library and the ASIC foundry that will
fabricate our ASIC much easier. Typically an ASIC library company might sell usacell library

complete with Verilog models that include all the minimum, typical, and maximum delays as well as the
different values for rising and falling transitions. The ASIC foundry will provide us with adelay
calculator that calculates the net delays (thisis usually proprietary technology) from the layout. These
delays are held in a separate file (the Standard Delay For mat, SDF, iswidely used) and then mapped
to parametersin the Verilog models. If we complete back-annotation and a postlayout simulation using
an approved cdll library, the ASIC foundry will "sign off" on our design. Thisis basically a guarantee
that our chip will work according to the simulation. This ability to design sign-off quality ASIC cell
librariesis very important in the ASIC design process.

11.10.1 Net and Gate Delay

We saw how to specify adelay control for any statement in Section 11.6. In fact, Verilog allows usto
specify minimum, typical, and maximum values for the delay as follows[Verilog LRM7.15]:

#(1.1:1.3:1.7) assign delay_a = a; // mn:typ: max
We can also specify the delay properties of a wi re inasimilar fashion:
wire #(1.1:1.3:1.7) a_delay; // mn:typ: max

We can specify delay in awi r e declaration together with a continuous assignment as in the following
example:

wire #(1.1:1.3:1.7) a _delay = a; // mn:typ: max

but in this case the delay is associated with the driver and not with the wire .

In Section 11.9.1 we explained that we can specify adelay for alogic primitive. We can also specify
minimum, typical, and maximum delays as well as separate delays for rising and falling transitions for
primitives as follows [Verilog LRM4.3]:

nand #3.0 ndOl(c, a, b);

nand #(2.6:3.0:3.4) nd02(d, a, b); // mn:typ: max
nand #(2.8:3.2:3.4, 2.6:2.8:2.9) nd03(e, a, b);

/1 #(rising, falling) delay

The first NAND gate, ndo1 , has adelay of 3 ns (assuming we specified nanoseconds as the timescale)
for both rising and falling delays. The NAND gate ndo2 has atriplet for the delay; this corresponds to a
minimum (2.6 ns), typical (3.0 ns), and a maximum delay (3.4 ns). The NAND gate nd03 has two
triplets for the delay: Thefirst triplet specifies the min/typ/max risingdelay (' 0’ or’ x’ or’z’ to’ 1’
), and the second triplet specifies the min/typ/max fallingdelay (* 1 or’ x* or’z’ to’ 0’).

Some primitives can produce a high-impedance output, * z’ . In this case we can specify atriplet of
delay values corresponding to rising transition, falling transition, and the delay to transitionto’ z* (from
'0" or’1 to'z --thisisusualy the delay for athree-state driver to turn off or float). We can do the
same thing for net types,

wire #(0.5,0.6,0.7) a_z = a; // rise/fall/float del ays

11.10.2 Pin-to-Pin Delay

The specify block [Verilog LRM 13] isaspecia construct in Verilog that allows the definition of
pin-to-pin delays across a module. The use of a specify block can include the use of built-in system
functions to check setup and hold times, for example. The following example illustrates how to specify
pin-to-pin timing for aD flip-flop. We declare the timing parameters first followed by the paths. This
example uses the UDP from Section 11.9.2, which does not include preset and clear (so only part of the
flip-flop function is modeled), but includes the timing for preset and clear for illustration purposes.

nodul e DFF_Spec; reg D, clk
DFF_Part DFF1 (Q clk, D, pre, clr);
initial begin D=0; clk = 0; #1; clk = 1; end
initial $rmonitor("T=%2g", $time," clk=", clk," &E", Q;
endnodul e
nodul e DFF_Part(Q clk, D, pre, clr);
input clk, D, pre, clr; output Q
DFli pFlop(Q clk, D; // No preset or clear in this UDP.

speci fy

specpar am

tPLH clk_Q =3, tPHL_clk_Q = 2.9,

tPLH set_ Q= 1.2, tPHL_set_Q = 1.1,
(clk == Q :(tPLHcIkQ tPHL_cl k_Q;
(pre, clr *> Q (tPLH set_Q tPHL_set _Q;

endspeci fy
endnodul e
T= 0 cl k=0 Q&x
T= 1 cl k=1 Q@x
T= 4 cl k=1 Q0

There are the following two ways to specify paths (module DFF_part above uses both) [Verilog
LRM13.3]:

® x => y specifiesaparallel connection (or parallel path) between x andy (x andy must have the
same number of bits).

® x *> y specifiesafull connection (or full path) between x andy (every bit in x is connected toy)
.Inthiscasex andy may be different sizes.

The delay of some logic cells depends on the state of the inputs. This can be modeled using a
state-dependent path delay. Here is an example:

‘timescale 1 ns / 100 fs
nodul e M Spec; reg Al, A2, B; MM (Z, Al, A2, B);
initial begin Al=0; A2=1; B=1; #5; B=0; #5; Al=1; A2=0; B=1; #5; B=0; end
initial
$rmoni tor ("T=%lg", $real tinme," Al=",6Al," A2=",6A2," B=",B," Z=",2);
endnodul e
‘“tinmescale 100 ps / 10 fs
nodule M Z, Al, A2, B); input Al, A2, B; output Z
or (Z1, Al, A2); nand (Z, Z1, B); // QAl21
/*Al A2 B Z Delay=10*100 ps unless indicated in the table bel ow

0 0 01
0 0 11
0 1 01 B0->1 Z1->0 delay=t2
0 1 10 B:1->0 Z:0->1 delay=t1
1 0 01 B:0->1 Z:1->0 del ay=t4
1 0 10 B:1->0 Z:0->1 delay=t3
1 1 01

1 1 10 *
specify specparamtl = 11, t2 = 12; specparamt3 = 13, t4 = 14;
(A1 => 2) = 10; (A2 => 2Z) = 10;
if (~A1) (B=>2) = (t1, t2);if (Al) (B=>2) = (t3, t4);
endspeci fy

endrmodul e

T= 0 A1=0 A2=1 B=1 Z=Xx
T= 1 A1=0 A2=1 B=1 Z=0
T= 5 Al=0 A2=1 B=0 Z=0
T= 6.1 Al=0 A2=1 B=0 Z-1
T= 10 Al=1 A2=0 B=1 Z=1
T= 11 Al=1 A2=0 B=1 Z=0
T= 15 Al=1 A2=0 B=0 Z=0
T=16.3 Al=1 A2=0 B=0 z-1
Chapter start

Previous page

Previous page

Next page

11.11 Altering Parameters

Hereis an example of amodule that uses a parameter [Verilog LRM3.10, 12.2]:

nodul e Vector_And(Z, A, B);
paramet er CARDI NALITY = 1;
i nput [CARDI NALITY-1:0] A B
out put [CARDI NALI TY-1: 0] Z;
wire [CARDI NALITY-1:0] Z = A & B;
endnodul e

We can override this parameter when we instantiate the module as follows:

nodul e Four And_Gat es(Qut Bus, |nBusA, |nBusB);

input [3:0] InBusA, InBusB; output [3:0] QutBus;

Vector _And #(4) My_AND(Qut Bus, InBusA, InBusB); // 4 AND gates
endnodul e

The parameters of a module have local scope, but we may override them using a defparam statement
and a hierarchical name, asin the following example:

nodul e And_Gat es(Qut Bus, | nBusA, |nBusB)
paranmeter WDTH = 1;
i nput [WDTH 1: 0] I nBusA, |1nBusB; output [WDTH 1:0] CutBus;
Vector _And #(WDTH) My_And(Qut Bus, |nBusA, |nBusB);
endnodul e
nodul e Super_Si ze; def param And_Gat es. WDTH = 4; endnodul e

Chapter start

Previous page

Previous page

Next page

11.12 A Viterbi Decoder

This section describes an ASIC design for a Viterbi decoder using Verilog. Christeen Gray completed
the original design as her MSthesis at the University of Hawaii (UH) working with VL SI Technology,
using the Compass ASIC Synthesizer and a VLS| Technology cell library. The design was mapped from
VLS| Technology design rules to Hewlett-Packard design rules; prototypes were fabricated by
Hewlett-Packard (through Mosis) and tested at UH.

11.12.1 Viterbi Encoder

Viterbi encoding iswidely used for satellite and other noisy communications channels. There are two
important components of a channel using Viterbi encoding: the Viterbi encoder (at the transmitter) and
the Viterbi decoder (at the receiver). A Viterbi encoder includes extrainformation in the transmitted
signal to reduce the probability of errorsin the received signal that may be corrupted by noise.

| shall describe an encoder in which every two bits of a data stream are encoded into three bits for
transmission. The ratio of input to output information in an encoder isthe rate of the encoder; thisisa

rate 2/3 encoder. The following equations relate the three encoder output bits (Yn2 , Ynl , and Yn0) to
the two encoder input bits (X and X 1) at atime nT:

2_vy 2
Yn _Xn
1_ 1 1
Yo =X, xor X 5
0_— 1
Yn _xn-l

We can write the input bits as a single number. Thus, for example, if an =1land an =0, we can write
X, =2 . Equation 11.1 defines a state machine with two memory elements for the two last input values
for X1 X, ;L and X ,1 . These two state variables define four states: { X, %, X, ,1} , with Sy ={
0,0}, S;={1,0},S,={0, 1}, and S; = {1, 1}. The 3-bit output Y, isafunction of the state and current
2-bitinput X .

Z-JIL Tput /\n .

The following Verilog code describes the rate 2/3 encoder. This model uses two D flip-flops as the state
register. When reset (using active-high input signd r es) the encoder startsin state S, . In Verilog |

represent Y .2 by Y2N , for example.

/**/

/* nodul e viterbi _encode */
/**/

/* This is the encoder. X2N (nsb) and XIN formthe 2-bit input
message, XN. Example: if X2N=1, X1IN=0, then XN=2. Y2N (nsb), Y1N, and
YON formthe 3-bit encoded signal, YN (for a total constellation of 8
PSK signals that will be transmitted). The encoder uses a state
machine with four states to generate the 3-bit output, YN, fromthe
2-bit input, XN Exanple: the repeated i nput sequence XN = (X2N, X1N)
=0, 1, 2, 3 produces the repeated output sequence YN = (Y2N, YIN,
YON) =1, 0, 5, 4. */

nodul e viterbi_encode(X2N, X1N, Y2N, Y1N, YON, cl k, res);

i nput X2N, XIN, cl k, res; out put Y2N, Y1N, YON;

wire XIN 1, XIN_ 2, Y2N, YIN, YON;

df f dff _1(XIN, XIN 1,clk,res); dff dff_2(XIN 1, XIN 2,clk, res);

assign Y2N=X2N; assign YIN=XIN ~ XIN 2; assign YON=X1N_1;

endnodul e

Figure 11.3 shows the state diagram for this encoder. The first four rows of Table 11.6 show the four
different transitions that can be made from state S, . For example, if we reset the encoder and the input
isX,=3(X,2=1and X! =1), then the output will be Y, =6 (Y 2=1, Y, 1=1,Y 0=0)and the
next state will be S; .

FIGURE 11.3 A state diagram for arate 2/3 Viterbi encoder. The inputs and outputs are shown in
binary as X2 X 1/ Y 2y 1Y O andindecima asX /Y.

TABLE 11.6 Statetable for the rate 2/3 Viterbi encoder.
Outputs
Present state| [Inputs | [Statevariables|Y 2 [Y ! YO Next state
X 2IX [Xngt 1%t (X2 =Xt xor X ot =X 0t Xt X0

S 0o |0 0 0 o |[o 0 0 S
S 0 |1 0 0 0 1 0 10 S
S 1 |0 0 0 1 |o 0 0 |S
S 1 |1 0 0 1 1 0 10 S
S o |0 1 0 o |o 1 o S
S 0 |1 1 0 0 1 1 11 S
S 1 o 1 0 1 |o 1 o S
S 1 |1 1 0 1 1 1 11 S
S, 0O |0 0 1 0 1 0 00 S
S, 0 |1 0 1 o |o 0 10 |S
S, 1 |0 0 1 1 1 0 00 S
S, 1 |1 0 1 1 |o 0 10 |S
S 0O |0 1 1 0 1 1 01 S,
S; 0 |1 1 1 o |[o 1 11 [S5
S 1 |0 1 1 1 1 1 01 S,
S; 1 |1 1 1 1 |o 1 11 [S5

As an example, the repeated encoder input sequence X, =0, 1, 2, 3, ... produces the encoder output
sequence Y, =1, 0,5, 4, ... repeated. Table 11.7 shows the state transitions for this sequence, including
the initialization steps.

{1

FIGURE 11.4 The signal constellation for an 8 PSK (phase-shift keyed)

e
/'/‘Qﬁ
o

o g
]

code. o,
b a.25h (S
b 2 5 (2
T ¢ 25 (3xE)

TABLE 11.7 A sequence of transmitted signals for the rate 2/3 Viterbi encoder
Time||I nputs State variables| |Outputs

< an an Xn-ll Xn-zl Yn2 Ynl Yno Present state|Next state
0 1 |1 X X 1 Ix |[x S, S,
10 |1 1 0 0 1 1 0 S S
50 [0 [0 1 0 o [0 |1 S S,
150 |0 |1 0 1 o o |o S, S
250 (1 |0 1 0 1 o |1 S S,
350 |1 |1 0 1 1 o |o S, S
450 |0 |0 1 0 o [0 |1 S S,
550 |0 |1 0 1 o o |o S, S
650 |1 [0 1 0 1 o |1 S S,
750 |1 |1 0 1 1 o |o S, S
850 [0 [0 1 0 o [0 |1 S S,
950 |0 |1 0 1 o o |o S, S

Next we transmit the eight possible encoder outputs (Y, = 0-7) as signals over our noisy

communications channel (perhaps a microwave signal to asatellite) using the signal constellation
shown in Figure 11.4. Typically thisis done using phase-shift keying (PSK) with each signal position
corresponding to a different phase shift in the transmitted carrier signal.

11.12.2 The Received Signal

The noisy signal entersthe receiver. It is now our task to discover which of the eight possible signals
were transmitted at each time step. First we calculate the distance of each received signal from each of
the known eight positionsin the signal constellation. Table 11.8 shows the distances between signalsin
the 8PSK constellation. We are going to assume that there is no noise in the channel to illustrate the
operation of the Viterbi decoder, so that the distancesin Table 11.8 represent the possible distance
measures of our received signal from the 8PSK signals.

The distances, X, in the first column of Table 11.8 are the geometric or algebraic distances. We measure
the Euclidean distance, E = X2 shown as B (the binary quantized value of E) in Table 11.8. The
rounding errors that result from conversion to fixed-width binary are quantization errorsand are
important in any practical implementation of the Viterbi decoder. The effect of the quantization error is
to add aform of noise to the received signal.

The following code models the receiver section that digitizes the noisy analog received signal and
computes the binary distance measures. Eight binary-distance measures, i n0-i n7 , are generated each
time asignal isreceived. Since each of the distance measuresis 3 bits wide, there are atotal of 24 bits (8
¥ 3) that form the digital inputs to the Viterbi decoder.

TABLE 11.8 Distance measures for Viterbi encoding (8PSK).

, Euclidean L Quantization
Signal g}gﬁ;ﬁ% ?rom ?(ro:mDsiiZtr?glcg distance gB;J;En?: Qgrdyval ue \[/) alzugi? rgal error

E = X2 Q=D-175E

0 g)g nO&pi:/ 1600 0.00 000 0 0
1 é)g N(L&pi:/ 1o77 0.59 001 1 100325
2 é)g N@2&pi/ 19 49 2,00 100 4 05
3 g)g NE&pi/ 1 g5 3.41 110 6 0.0325
4 é)g LS PYV 4.00 111 7 0
5 g)Si NO&pE/ 1 g5 3.41 110 6 0.0325
6 g)Si NG&p/ 19 49 2.00 100 4 05
7 é)g n(7&pi:/ 1o77 0.59 001 1 100325

/**/

/* modul e viterbi distances */
/**/
/* This nodule sinulates the front end of a receiver. Normally the
received anal og signal (with noise) is converted into a series of
di stance nmeasures fromthe known eight possible transmitted PSK
signals: sO,..., s7. We are not sinulating the analog part or noise in
this version, so we just take the digitally encoded 3-bit signal, Y,
fromthe encoder and convert it directly to the di stance neasures.
d[N] is the distance fromsignal = Nto signal = 0
d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100)
Exanple: d[3] = 1.85**2 = 3.41 = 110
inNis the distance fromsignal = N to encoder signal
Example: in3 is the distance fromsignal = 3 to encoder signal
d[N] is the distance fromsignal = N to encoder signal = 0.
If encoder signal = J, shift the distances by 8-J positions.
Exanple: if signal =2, in0Ois d[6], inlis D7], in2is D0], etc. */
nodul e viterbi distances

(Y2N, YIN, YON, cl k,res,in0,inl,in2,in3,in4,in5,in6,in7);
i nput clk, res, Y2N, YIN, YON; output in0O,inl,in2,in3,in4,in5,in6,in7,
reg [2:0] J,in0,inl,in2,in3,in4,in5,in6,in7; reg [2:0] d [7:0];

initial begin d[0]= b000;d[1]= b001;d[2]=" bl00;d[3]="bll0;
d[4] =" b111; d[5] =" b110; d[6] = b100; d[7] = b001; end

always @ Y2N or YIN or YON) begin

J[0] =YON; J[1] =Y1IN; J[2] =Y2N,

J=8-J;in0=d[J];J=J+1;inl=d[J]; J=J+1;in2=d[J];J=J+1;in3=d[J];
J=J+1;ind=d[J];J=J+1;in5=d[J];J=J+1;in6=d[J]; J=J+1;in7=d[J];
end endnodul e

As an example, Table 11.9 shows the distance measures for the transmitted encoder output sequence Y,
=1,0,5, 4, ... (repeated) corresponding to an encoder input of X, =0, 1, 2, 3, ... (repeated).

TABLE 11.9 Receiver distance measures for an example transmission sequence.
Time| I nput

Output Y n| Present state|Next statefinOfinl|in2(in3|ind|in5|in6|in7
ns |[Xn
0 |3 X S, S, x Ix [x [x [x [x [x [x
10 |3 6 S S 4 16 |7 (6 |4 |1 (O |1
50 |0 1 S S, 1 (0 |1 (4 (6 |7 |6 (4
150 |1 0 S, S O [1 {4 (6 |7 |6 [4 |1
250 |2 5 S S, 6 [7 [6 (4 (1 [0 (1 (4
350 |3 4 S, S 7 |6 |4 (1 (O |1 (4 |6
450 |0 1 S S, 1 (0 |1 (4 |6 |7 |6 |4
550 |1 0 S, S O [1 {4 (6 |7 |6 [4 |1
650 |2 5 S S, 6 [7 |6 (4 (|1 [0 (1 (4
750 |3 4 S, S 7 |6 |4 (1 (O |1 (4 |6
850 |0 1 S S, 1 (0 |1 (4 |6 |7 |6 |4
950 |1 0 S, S O [1 {4 (6 |7 |6 [4 |1

11.12.3 Testing the System

Here is atestbench for the entire system: encoder, receiver front end, and decoder:

/***/

/* nodule viterbi _test CDD */
/***/

/* This is the top-level nodule, viterbi _test CDD, that nodels the
conmuni cations link. It contains three nodul es: viterbi_encode,
viterbi distances, and viterbi. There is no anal og and no noise in
this version. The 2-bit nmessage, X, is encoded to a 3-bit signal, Y.
In this nodule the nessage X is generated using a sinple counter.
The digital 3-bit signal Y is transntted, received with noise as an

anal og signal (not nodel ed here), and converted to a set of eight
3-bit distance neasures, in0, ..., in7. The distance nmeasures form
the input to the Viterbi decoder that reconstructs the transnitted
signal Y, with an error signal if the nmeasures are inconsistent.
CDD = counter input, digital transm ssion, digital reception */

nodul e viterbi test CDD;

wire Error; /| decoder out

wire [2:0] Y, Qut; // encoder out, decoder out
reg [1:0] X /1 encoder inputs

reg dk, Res; /1 clock and reset

wire [2:0] in0O,inl,in2,in3,in4,in5,in6,in7;
al ways #500 $di splay("t Gk XY Qut Error");
initial $nonitor("%g", $tine,,dk,,,,X,Y,,Qut,,,,Error);
initial $dunpvars; initial #3000 $finish;
al ways #50 Gk = ~Ck;initial begin Ak = 0;
X =3; // No special reason to start at 3.
#60 Res = 1;#10 Res = 0; end // Hit reset after inputs are stable.
al ways @ posedge C k) #1 X = X + 1; // Drive the input with a counter.
viterbi _encode v_1
(X[1],X0],Y[2],VY[1],VY][0], Ak, Res);
viterbi _distances v_2
(Y[2],Y[1],VY[0],Ck,Res,in0,inl,in2,in3,in4,in5,in6,in7);
viterbi v_3
(in0,inl,in2,in3,in4,in5,in6,in7, Qut,dk, Res, Error);
endnodul e

The Viterbi decoder takes the distance measures and cal culates the most likely transmitted signal. It does
this by keeping arunning history of the previously received signalsin a path memory. The path-memory
length of this decoder is 12. By keeping a history of possible sequences and using the knowledge that
the signals were generated by a state machine, it is possible to select the most likely sequences.

TABLE 11.10 Output from the Viterbi testbench
t Gk XY Qut Error |t Clk XY Qut Error

0 O 3 X X 0 1351 1 100 0

50 1 3 X X 0 1400 O 100 0

51 1 0 x x 0 1450 1 100 0

60 1 00O 0 1451 1 252 0
100 O 00O 0 1500 O 252 0
150 1 000 0 1550 1 252 0
151 1 120 0 1551 1 345 0

Table 11.10 shows part of the simulation results from the testbench, viterbi_test CDD, in tabular form.
Figure 11.5 shows the Verilog ssimulator output from the testbench (displayed using Veriwell from
Wellspring).

Clk <witerbi_tes

FIGURE 11.5 Viterbi encoder testbench simulation results. (Top) Initialization and the start of the
encoder output sequence 2, 5,4, 1,0, ... on Y[2:0] at t = 151. (Bottom) The appearance of the same
encoder output sequence at the output of the decoder, Out[2:0], at t = 1451, 1300 time units (13
positive clock edges) later.

The system input or message, X[1: 0] , isdriven by a counter that repeats the sequence0, 1, 2, 3, ...
incrementing by 1 at each positive clock edge (with adelay of one time unit), starting with X equal to 3
at t = 0. The active-high reset signal, Res , isasserted at t = 60 for 10 time units. The encoder output,

Y[2: 0] , changesat t = 151, which is one time unit (the positive-edge-triggered D flip-flop model
contains a one-time-unit delay) after the first positive clock edge (at t = 150) following the deassertion
of thereset at t = 70. The encoder output sequence beginningatt=151is2, 5, 4, 1, O, ... and then the
sequence 5, 4, 1, 0, ... repeats. This encoder output sequence is then imagined to be transmitted and
received. The receiver module cal cul ates the distance measures and passes them to the decoder. After 13
positive clock-edges (1300 time ticks) the transmitted sequence appears at the output, cut [2: 0]
beginning at t = 1451 with 2, 5, 4, 1, 0, ..., exactly the same as the encoder output.

11.12.4 Verilog Decoder Model

The Viterbi decoder model presented in this section iswritten for both simulation and synthesis. The
Viterbi decoder makes extensive use of vector D flip-flops (registers). Early versions of Verilog-XL did
not support vector instantiations of modules. In addition the inputs of UDPs may not be vectors and
there are no primitive D flip-flopsin Verilog. This makes instantiation of aregister difficult other than
by writing a separate module instance for each flip-flop.

The first solution to this problem isto use flip-flop models supplied with the synthesis tool such asthe
following:

asDf f #(3) suboutO(in0O, subO, clk, reset);

The asDff isamodel in the Compass ASIC Synthesizer standard component library. This statement
triggers the synthesis of three D flip-flops, with an input vector i na (with arange of three) connected to

the D inputs, an output vector sub0 (also with arange of three) connected to the Q flip-flop outputs, a
common scalar clock signal, cl k , and acommon scalar r eset signal. The disadvantage of this approach
isthat the names, functional behavior, and interfaces of the standard components are different for every
software system.

The second solution, in new versions of Verilog-XL and other tools that support the |EEE standard, isto
use vector instantiation as follows[LRM 7.5.1, 12.1.2]:

nmyDff suboutO[0: 2] (inO, subO, clk, reset);

This instantiates three copies of a user-defined module or UDP called my Df f . The disadvantage of this
approach isthat not all simulators and synthesizers support vector instantiation.

The third solution (which is used in the Viterbi decoder model) isto write amodel that supports vector
inputs and outputs. Here is an example D flip-flop model:

/**/

/* nodul e dff */
/**/
/[* ADflip-flop nodule. */

nodul e dff (D, Q O ock, Reset); // N.B. reset is active-I|ow
out put Q input D, O ock, Reset;

paranmeter CARDI NALITY = 1; reg [CARDINALITY-1:0] Q

wi re [CARDI NALI TY-1:0] D

al ways @ posedge Cock) if (Reset '==0) #1 Q = D
al ways begin wait (Reset == 0); Q= 0; wait (Reset == 1); end
endnodul e

We use this model by defining a parameter that specifies the bus width as follows:
dff #(3) suboutO(in0, subO, clk, reset);

The code that models the entire Viterbi decoder is listed below (Figure 12.6 on page 578 shows the
block digram). Notice the following:

® Comments explain the function of each module.

® Each moduleis about apage or less of code.

® Each module can be tested by itself.

® Thecodeis as simple as possible avoiding clever coding techniques.

The codeis not flexible, because bit widths are fixed rather than using parameters. A model with
parameters for rate, signal constellation, distance measure resolution, and path memory length is
considerably more complex. We shall use this Viterbi decoder design again when we discuss logic
synthesisin Chapter 12, test in Chapter 14, floorplanning and placement in Chapter 16, and routing in
Chapter 17.

/* Verilog code for a Viterbi decoder. The decoder assunes a rate
2/ 3 encoder, 8 PSK nodul ation, and trellis coding. The viterbi nodule
contai ns ei ght subnmodul es: subset decode, netric, conmpute_netric,
conpar e_sel ect, reduce, pathin, path_nmenmory, and output_deci sion

The decoder accepts eight 3-bit neasures of ||r-si||**2 and, after
an initial delay of thirteen clock cycles, the output is the best
estimate of the signal transmtted. The distance neasures are the

Eucl i dean di stances between the received signal r (with noise) and
each of the (in this case eight) possible transmtted signals sO to s7.
Oiginal by Christeen Gray, University of Hawaii. Heavily nodified

by MISS; any errors are mine. Use freely. */
/**/

/* nodul e viterbi */
/**/
/* This is the top level of the Viterbi decoder. The eight input
signals {in0,...,in7} represent the distance neasures, ||r-si|]|**2.
The other input signals are clk and reset. The output signals are
out and error. */
nodul e viterb
(in0,inl,in2,in3,in4,inb5,in6,in7,
out,clk, reset,error);
input [2:0] in0,inl,in2,in3,in4,in5,in6,in7,
output [2:0] out; input clk,reset; output error
i re soutO, sout 1, sout 2, sout 3;
re [2:0] s0,s1,s2,s3
re [4:0] minO, minl, min2 min3
re [4:0] moutO, moutl, mout2, mout3
re [4:0] p0_0,p2 0,p0_1,p2 1,p1 2,p3_2,pl_3,p3_3;
re ACS0, ACS1, ACS2, ACS3;
re [4:0] outO,outl, out?2, out3;
re [1:0] control
re [2:0] pO,pl,p2,ps;
re [11: 0] pathO;
subset decode ul(in0,inl,in2,in3,in4,in5,in6,in7,
s0, s1, s2,s3,sout 0, sout 1, sout 2, sout 3, cl k, reset);
metric u2(m.inO, minl, min2, min3, moutO,
m out 1, m out 2, mout 3, cl k, reset);
conpute_netric u3(mout0, moutl, mout?2, mout3,s0,sl,s2,s3,
p0_0,p2_0,p0_1,p2_1,pl 2,p3_2,pl 3,p3 _3,error);
conpare_sel ect u4(p0_0,p2 0,p0_1,p2 1,pl 2,p3 _2,pl 3,p3_3,
out 0, out 1, out 2, out 3, ACS0, ACS1, ACS2, ACS3) ;
reduce u5(outO, out 1, out 2, out 3,
minO, minl, min2 min3,control);
pat hi n u6(sout0, sout 1, sout 2, sout 3,
ACS0, ACS1, ACS2, ACS3, pat h0, cl k, reset);
pat h_menory u7(po0, pl, p2, p3, pat ho, cl k, reset,
ACS0, ACS1, ACS2, ACS3) ;
out put _deci si on u8(po0, pl, p2, p3,control, out);

£ 22 sss2:2:2%2

endnodul e
/**/
/* nmodul e subset decode */

/**/

/* This nodul e chooses the signal corresponding to the smallest of
each set {||r-sO||**2,|]|r-s4||**2}, {||r-s1|]|**2, ||r-s5]]|**2},
{Ir-s2||**2,||r-s6]|**2}, {||r-s3||**2,||r-s7||**2}. Therefore
there are eight input signals and four output signals for the
di stance neasures. The signals soutO, ..., sout3 are used to control
the path nenory. The statement dff #(3) instantiates a vector array
of 3 Dflip-flops. */
nodul e subset decode

(in0,inl,in2,in3,in4,in5,in6,in7,

s0, s1,s2,s3

sout 0, sout 1, sout 2, sout 3,

clk, reset);
input [2:0] in0,inl,in2,in3,in4,in5,in6,in7,;
out put [2:0] sO,s1,s2,s3;
out put sout 0, sout 1, sout 2, sout 3;
i nput clk, reset;

wire [2:0] sub0, subl, sub2, sub3, sub4, sub5, sub6, sub7
df f #(3) suboutO(inO, subO, clk, reset);
df f #(3) subout1(inl, subl, clk, reset);
df f #(3) subout2(in2, sub2, clk, reset);
df f #(3) subout3(in3, sub3, clk, reset);
df f #(3) subout4(ind, sub4, clk, reset);
df f #(3) subout5(in5, sub5, clk, reset);
df f #(3) subout6(in6, sub6, clk, reset);
df f #(3) subout7(in7, sub7, clk, reset);
function [2:0] subset _decode; input [2:0] a,b;
begi n
subset decode = 0;
i f (a<=b) subset decode = a; el se subset_ decode = b;

end
endf uncti on
function set_control; input [2:0] a,b;
begi n
if (a<=b) set _control = 0; else set _control =1
end
endf uncti on
assign sO = subset _decode (subO, sub4);
assign s1 = subset _decode (subl, sub5);
assign s2 = subset _decode (sub2, sub6);
assign s3 = subset_decode (sub3, sub7);

assign soutO
assign soutl
assign sout 2
assign sout 3

set _control (subO, sub4);
set _control (subl, sub5);
set _control (sub2, sub6);
set _control (sub3, sub7);

endnodul e
/**/
/* nodul e conmpute_netric */

/**/

/* This nodul e conputes the sum of path nmenory and the di stance for
each path entering a state of the trellis. For the four states,
there are two paths entering it; therefore eight suns are conputed
in this nmodule. The path metrics and output sums are 5 bits wi de.
The output sumis bounded and should never be greater than 5 bits
for a valid input signal. The overflow fromthe sumis the error
out put and indicates an invalid input signal.*/
nodul e conpute_netric
(m out 0, m out 1, m out 2, m out 3,
s0, s1,s2,s3, p0_0, p2_0,
pO_1,p2_1,pl_2,p3_2,pl_3,p3_3,
error);
i nput [4:0] moutO, moutl, mout2, mout3;
i nput [2:0] s0,s1,s2,s3
output [4:0] p0_0,p2 _0,p0_1,p2 1,pl 2,p3_2,pl _3,p3_3;
out put error;

assign
pO_0 = mout0 + sO
p2_0 = mout2 + s2
pO_1 = mout0 + s2,
p2_1 = mout2 + sO
pl 2 = moutl + sli,
p3_2 = mout3 + s3,
pl 3 = moutl + s3,
p3_3 = mout3 + si;

function is_error; input x1,x2,x3, x4, x5, x6, X7, x8

begi n

if (x1]|x2|]|x3]|x4]]|x5]||x6]|x7||x8) is_error =1
else is_error = 0;

end

endf uncti on

assign error = is_error(p0_0[4],p2_0[4],p0_1[4],p2_1[4],
pl_2[4],p3_2[4],pl_3[4],p3_3[4]);

endnodul e
/**/
/* nodul e conpare_sel ect */

/**/

/* This nodul e conpares the summations fromthe conpute netric
nodul e and selects the netric and path with the | owest value. The
out put of this nodule is saved as the new path nmetric for each
state. The ACS output signals are used to control the path menory of
t he decoder. */
nodul e conpare_sel ect
(p0_0, p2_0,p0_1,p2_1,p1_2,p3_2,pl_3,p3_3,
out 0, out 1, out 2, out 3,
ACS0, ACS1, ACS2, ACS3) ;
i nput [4:0] p0_0,p2 0,p0 1,p2 1,p1 2,p3 2,pl1 3,p3_3;
out put [4:0] outO, outl, out2, out3;
out put ACS0, ACS1, ACS2, ACS3;
function [4:0] find_mn_netric; input [4:0] a,b;

begi n
if (a<=Db) find_mn_metric = a; else find_mn_netric = b
end
endfuncti on
function set_control; input [4:0] a,b;
begi n
if (a <=Db) set_control = 0; else set_control =1
end

endfuncti o
assign outO
assign outl
assign out2
assign out3

find_mn_netric(p0_0,p2_0);
find_mn_netric(p0_1,p2_1);
find_ mn_netric(pl_2,p3_2);
find_mn_netric(pl_3,p3_3);

mununnnnnns

assi gn ACSO set_control (p0_0,p2 0);

assi gn ACS1 set_control (p0_1,p2_1);

assi gn ACS2 set _control (pl_2,p3_2);

assi gn ACS3 set _control (pl_3,p3_3);

endnodul e
/**/
/* nodul e path */

/**/

/[* This is the basic unit for the path nmenory of the Viterb
decoder. It consists of four 3-bit Dflip-flops in parallel. There
is a2 1 mux at each Dflip-flop input. The statenent dff #(12)
instantiates a vector array of 12 flip-flops. */
nodul e pat h(in, out, cl k, reset, ACS0, ACS1, ACS2, ACS3) ;
i nput [11:0] in; output [11:0] out;
i nput cl k, reset, ACS0, ACS1, ACS2, ACS3; wire [11:0] p_in;
df f #(12) pathO(p_in,out,clk,reset);

function [2:0] shift_path; input [2:0] a,b; input control

begi n
if (control == 0) shift_path = a; else shift_path = b
end
endf uncti on

assign p_in[11:9] = shift_path(in[11:9],in[5:3], ACS0);
assign p_in[8:6] = shift_path(in[11:9],in[5:3], ACSl);
assign p_in[5:3] = shift_path(in[8: 6],in[2:0],AC82);
assign p_in[2:0] = shift_path(in[8: 6],in[2:0], ACS3);

endnodul e
/**/

/* nodul e path_menory */
/**/
/* This nodul e consists of an array of nmenory elenents (D
flip-flops) that store and shift the path menory as new signals are
added to the four paths (or four nost |ikely sequences of signals).
This nmodul e instantiates 11 i nstances of the path nodule. */
nodul e pat h_nenory
(pO, p1, p2, p3,
pat hO, cl k, reset,
ACS0, ACS1, ACS2, ACS3) ;
out put [2:0] pO, pl, p2,p3; input [11l:0] pathoO;
i nput cl k, reset, ACSO, ACS1, ACS2, ACS3;
wire [11: 0] out 1, out 2, out 3, out 4, out 5, out 6, out 7, out 8, out 9, out 10, out 11
path x1 (pathO,outl ,clk,reset, ACSO, ACS1, ACS2, ACS3),
x2 (outl, out2 ,clk,reset, ACSO, ACS1, ACS2, ACS3),
x3 (out2, out3 ,clk,reset, ACSO, ACS1, ACS2, ACS3) ,
x4 (out3, outd ,clk,reset, ACSO, ACS1, ACS2, ACS3) ,
x5 (out4, out5 ,clk,reset, ACSO, ACS1, ACS2, ACS3) ,
x6 (outb, out6 ,clk,reset, ACSO, ACS1, ACS2, ACS3),
X7 (out6, out?7 ,clk,reset, ACSO, ACS1, ACS2, ACS3) ,
x8 (out7, out8 ,clk,reset, ACSO, ACS1, ACS2, ACS3) ,
x9 (out8, out9 ,clk,reset, ACSO, ACS1, ACS2, ACS3) ,
x10(out 9, out10, cl k, reset, ACSO, ACS1, ACS2, ACS3) ,
x11(out 10, out 11, cl k, reset, ACSO, ACS1, ACS2, ACS3) ;

assign p0 = out11]11:9];

assign pl = outll] 8:6];

assign p2 = outl1l] 5:3];

assign p3 = outl1ll] 2:0];

endnodul e
/**/
/* nodul e pat hin */

/**/

/* This nodule determines the input signal to the path for each of
the four paths. Control signals fromthe subset decoder and conpare
sel ect nmodul es are used to store the correct signal. The statenent
df f #(12) instantiates a vector array of 12 flip-flops. */
nodul e pat hin
(sout 0, sout 1, sout 2, sout 3,
ACS0, ACS1, ACS2, ACS3,
pat hO, cl k, reset);
i nput sout0, sout 1, sout 2, sout 3, ACSO, ACS1, ACS2, ACS3;
i nput clk,reset; output [11:0] pathO;
wire [2:0] sig0,sigl,sig2,sig3; wire [11:0] path_in;
df f #(12) firstpath(path_in, pathO,clk,reset);
function [2:0] subsetO; input soutO

begi n
if(sout0 == 0) subset0 = 0; el se subset0 = 4;
end
endfuncti on
function [2:0] subsetl; input soutl;
begi n
if(soutl == 0) subsetl = 1; else subsetl = 5;
end
endf uncti on
function [2:0] subset2; input sout?2
begi n
if(sout2 == 0) subset2 = 2; el se subset2 = 6;
end

endf uncti on
function [2:0] subset3; input sout3;
begi n

if(sout3 == 0) subset3 = 3; else subset3 = 7;
end
endf uncti on
function [2:0] find_path; input [2:0] a,b; input control
begi n
if(control==0) find path = a; else find path = b
end
endf uncti on
assign sig0 = subsetO(soutO0);
assign sigl = subsetl1(soutl);
assign sig2 = subset2(sout?2);
assign si g3 = subset 3(sout3);
[

assign path_in[11:9] = find_path(sig0,sig2, ACS0);

assign path_in[8:6] = find_path(sig2,sig0, ACSl);

assign path_in[5:3] = find_path(sigl,sig3, ACS2);

assign path_in[2:0] = find_path(sig3,sigl, ACS3);
endnodul e
/**/
[* nodul e netric */

/**/

/* The registers created in this nmodule (using D flip-flops) store
the four path netrics. Each register is 5 bits wi de. The statenent
df f #(5) instantiates a vector array of 5 flip-flops. */
nodul e nmetric
(min0,minl, min2, min3,
m _out O, m out 1, m out 2, m out 3,
clk, reset);
input [4:0] min0O, minl, min2, min3;
out put [4:0] moutO, moutl, mout2, mout3;
i nput clk, reset;
dff #(5) metric3(m.in3, mout3, clk, reset);
df f #(5) netric2(min2, mout2, clk, reset);
df f #(5) netricl(minl, moutl, clk, reset);
df f #(5) netricO(minO, moutO, clk, reset);

endnodul e
/***************************-k-k-k-k***********************/
/* nodul e out put _deci si on */

/**/

/* This nodul e deci des the output signal based on the path that
corresponds to the smallest netric. The control signal cones from
the reduce nodule. */
nodul e out put _deci si on(p0, p1, p2, p3,control, out);
i nput [2:0] pO,pl,p2,p3; input [1:0] control; output [2:0] out;
function [2:0] decide;
i nput [2:0] pO0, pl, p2,p3; input [1:0] control

begi n
if(control == 0) decide = pO;
el se if(control == 1) decide = pl
el se if(control == 2) decide = p2;
el se deci de = p3;
end

endf uncti on
assign out = decide(p0, pl, p2, p3,control);

endnodul e
/**/
/* nodul e reduce */

/**/

/* This nodul e reduces the netrics after the addition and conpare
operations. This algorithmselects the smallest netric and subtracts
it fromall the other netrics. */

nodul e reduce

(in0,inl,in2,in3,
min0O, minl, min2, min3
control);
input [4:0] in0,inl,in2,in3;
output [4:0] minO, minl, min2, min3;
output [1:0] control; wire [4:0] snallest;
function [4:0] find_smallest;
input [4:0] in0,inl,in2,in3; reg [4:0] a,b;

begi n
if(inO <=inl) a =in0; else a=1inl
if(in2 <=in3) b =in2; else b =in3;
if(a <=Db) find_smallest = a;
else find_smallest = b
end
endf uncti on
function [1:0] smallest_no;
input [4:0] in0,inl,in2,in3,snallest;
begi n
if(smallest == in0) smallest_no = O;
else if (smallest == inl) smallest_no = 1;
else if (smallest == in2) smallest _no = 2;
el se smallest_no = 3;
end

endf uncti on
assign smallest = find_smallest(in0,inl,in2,in3);
assign minO =in0 - smallest;
assign minl =inl - smallest;
assign min2 =in2 - smallest;
I

assign min3 in3 - smallest;
assign control = smallest_no(in0,inl,in2,in3,snallest);
endnodul e

Chapter start

Previous page

Previous page

Next page

11.13 Other Verilog Features

This section covers some of the more advanced Verilog features. System tasks and functions are
defined as part of the IEEE Verilog standard [Verilog LRM14].

11.13.1 Display Tasks

The following code illustrates the display system tasks[Verilog LRM 14.1]:

nodul e test _display; // display systemtasks:
initial begin $display ("string, variables, or expression");
/* format specifications work like printf in C
%=deci mal %b=bi nary %s=string %=hex % =octa
% =char act er %mhi erarchical name %=strength % =tinme format
Y%e=scientific % =deci mal %g=short est
exanpl es: %l uses default wi dth %9d uses m ni mum w dth
%.3g uses 7 spaces with 3 digits after decimal point */
/1 $displ ayb, $displayh, $displayo print in b, h, o formats
/1l $wite, $strobe, $nonitor also have b, h, o versions
$wite("wite"); // as $display, but without newine at end of Iine
$strobe("strobe"); // as $display, values at end of sinulation cycle
$monitor(v); // disp. @hange of v (except v= $tine, $stinme, $realtine)
$noni toron; $nonitoroff; // toggle nmonitor node on/ of f
end endnodul e

11.13.2 Filel/O Tasks

The following exampleillustrates the file I /O system tasks[Verilog LRM 14.2]:

nmodul e file_1; integer f1, ch; initial begin f1 = $fopen("fl.out");
i f(f1==0) $stop(2); if(fl==2)%display("fl open");

ch = f1]1; $fdisplay(ch,"Hello"); $fclose(fl); end endnodul e
>vlog file 1.v

>vsim-c file_1

Loading work.file_1

VSIM 1> run 10

f1 open

Hello

VSIM 2> q

> nore f1.out

Hell o

>

The $f open system task returns a 32-bit unsigned integer called a multichannel descriptor (f 1 inthis
example) unique to each file. The multichannel descriptor contains 32 flags, one for each of 32 possible
channels or files (subject to limitations of the operating system). Channel 0 is the standard output
(normally the screen), which is always open. Thefirst call to $f open opens channel 1 and sets bit 1 of
the multichannel descriptor. Subsequent calls set higher bits. The file I/O system tasks: $f di spl ay
$fwrite, $f nonitor ,and$fstrobe ; correspond to their display counterparts. The first parameter for
the file system tasks is a multichannel descriptor that may have multiple bits set. Thus, the preceding
example writesthe string " Hel | 0" to the screenandtofil el. out . Thetask $fclose closes afile and
allows the channel to be reused.

Thefile I/O tasks $r eadmenb and $r eadmenh read atext file into amemory. The file may contain only
spaces, new lines, tabs, form feeds, comments, addresses, and binary (for $r eadnenb) or hex (for
$r eadmenh) numbers, as in the following example:

mem dat
@ 1010_1111 @ 0101_1111 1010_1111 // @ddress in hex
x1x1_zzzz 1111 0000 /* x or z is OK */

nodul e load; reg [7:0] nenf0:7]; integer i; initial begin
$readnenb("memdat", nem 1, 6); // start_address=1, end_address=6
for (i=0; i<8; i=i+1) $display("nmenf%d] %", i, nenfi]);

end endnodul e
> vsim-c | oad

Loadi ng work. | oad
VSIM 1> run 10
** Warni ng: $readmem (nenory nmen) file memdat |ine 2:
More patterns than i ndex range (hex 1:6)
Tine: O ns Iteration: O |Instance:/
menf 0] XXXXXXXX
menf 1] XXXXXXXX
menf 2] 10101111
meni 3] XXXXXXXX
meni 4] 01011111
men{ 5] 10101111
meni{ 6] x1x1zzzz
menf 7] XXXXXXXX
SIM 2>

VS<HEHHHFHHFEHHFHFHH

11.13.3 Timescale, Simulation, and Timing-Check Tasks

There are two timescale tasks, $pri ntti mescal e and $t i mef or mat [Verilog LRM 14.3]. The
$ti mef or mat specifiesthe % format specification for the display and file 1/O system tasks as well as
the time unit for delays entered interactively and from files. Here are examples of the timescal e tasks:

/1 tinmescal e tasks:

modul e a; initial $printtinmescal e(b.cl); endnodul e

modul e b; ¢ cl1 (); endnodul e

‘tinescale 10 ns / 1 fs

nodul e ¢c_dat; endnodul e

‘timescale 1 ms / 1 ns

nodule Ttine; initial $timeformat(-9, 5, " ns", 10); endnodul e
[* $timeformat [(n, p, suffix , mn_field width)] ;

units = 1 second ** (-n), n = 0->15, e.g. for n =9, units = ns
p =digits after decimal point for % e.g. p = 5 gives 0.00000
suffix for % (despite tinmescale directive)

mn_field width is nunber of character positions for % */

The simulation control tasks are $stop and $finis h [Verilog LRM 14.4]:

nmodul e test_simul ation_control; // simulation control systemtasks:
initial begin $stop; // enter interactive node (default paraneter 1)
$finish(2); // graceful exit with optional paraneter as foll ows:

/1 0 =nothing 1 = tine and location 2 = tinme, |location, and statistics
end endnodul e

Thetiming-check tasks[Verilog LRM 14.5] are used in specify blocks. The following code and
comments illustrate the definitions and use of timing-check system tasks. The argumentsto the tasks are
defined and explained in Table 11.11.

TABLE 11.11 Timing-check system task parameters.

Timing task argument Description of argument Type of argument
ref erence event module input or inout
- to establish reference time
(scalar or vector net)
data event module input or inout
- signal to check against reference_event
(scalar or vector net)
Limt constant expression
time limit to detect timing violation on data_event
Or specparam
t hr eshol d constant expression
largest pulse width ignored by timing check $width
or specparam
flags atiming violation (before -> after):
notifier .
x->0, 0->1, 1->0, z->z register

nodul e timng_checks (data, clock, clock 1,clock 2);
i nput data, clock,clock _1,clock 2; reg tSUtH tH GH tP,tSK tR,
specify // timng check systemtasks:
/* $setup (data_event, reference_event, limt [, notifier]);
violation = (T_reference_event)-(T_data event) < limt */
$set up(data, posedge cl ock, tSU)
/* $hold (reference_event, data event, limt [, notifier]);
violation =
(time_of data_event)-(tinme_of reference event) < Ilimt */
$hol d(posedge cl ock, data, tH);
/* $setuphold (reference_event, data_event, setup_limt,
hold Iimt [, notifier]);
paranmeter _restriction = setup_limt + hold limt > 0 */
$set uphol d(posedge cl ock, data, tSU, tH);
/* $width (reference_event, limt, threshold [, notifier]);
violation =
threshold < (T_data _event) - (T_reference_event) < limt
ref erence_event = edge
dat a_event = opposite_edge_of reference_event */
$wi dt h(posedge cl ock, tH GH);
/* $period (reference_event, limt [, notifier]);
violation = (T _data_event) - (T_reference_event) < limt
ref erence_event = edge
dat a_event = sane_edge of reference event */
$peri od(posedge cl ock, tP)
/* $skew (reference_event, data_event, limt [, notifier]);
violation = (T_data_event) - (T_reference_event) > limt */
$skew posedge cl ock_1, posedge cl ock_2, tSK)
/* $recovery (reference_event, data_event, limt, [, notifier]);
violation = (T _data_event) - (T_reference_event) < limt */
$recovery(posedge cl ock, posedge clock 2, tR)
/* $nochange (reference_event, data_event, start_edge_offset,
end_edge offset [, notifier]);
ref erence_event = posedge | negedge

violation = change while reference high (posedge)/l ow (negedge)
+ve start_edge offset nobves start of wi ndow | ater

+ve end_edge_of fset nmoves end of w ndow | ater */

$nochange (posedge cl ock, data, 0, 0);

endspeci fy endnodul e

Y ou can use edge specifier s as parameters for the timing-check events (except for the reference event in
$nochange):

edge_control _specifier ::= edge [edge _descriptor {, edge _descriptor}]
edge_descriptor ::=01] Ox | 10| 1x | x0O | x1

For example, " edge [01, Ox, x1] clock’ isequivalentto’ posedge cl ock’ . Edgetransitionswith
'z’ aretreated the same as transitionswith’ x’ .

HereisaD flip-flop model that uses timing checks and anotifier register. The register, notifier, is
changed when atiming-check task detects a violation and the last entry in the table then sets the flip-flop
output to unknown.

primtive dff _udp(q, clock, data, notifier);
output q; reg q; input clock, data, notifier
table // clock data notifier:state: (g

r 0 ? : ? 0 ;
r 1 ? ? 0 1;
n ? ? ? -
? * ? ? -
? ? * ? X ; endtable // notifier

endprimtive

‘“tinmescale 100 fs / 1 fs

nodul e dff(qg, clock, data); output qg; input clock, data; reg notifier

df f _udp(qgl, clock, data, notifier); buf(g, ql);

speci fy
specparamtSU =5, tH=1, tPW= 20, tPLH = 4:5:6, tPHL = 4:5:6;

(clock *> q) = (tPLH, tPHL);

$set up(data, posedge clock, tSU, notifier); // setup: data to clock
$hol d(posedge cl ock, data, tH, notifier); // hold: clock to data
$peri od(posedge clock, tPW notifier); // clock: period

endspeci fy

endnodul e

11.13.4 PLA Tasks

The PLA modeling tasks model two-level logic [Verilog LRM 14.6]. As an example, the following
eqnt ot t logic equations can be implemented using a PLA:

bl = al & a2; b2 = a3 & a4 & a5 ; b3 = ab & a6 & a7;

The following module loads a PLA model for the equations above (in AND logic) using the array
format (the array format allowsonly’ 1° or’ 0’ inthe PLA memory, or personality array). Thefile
array. dat issimilar to the espr esso input plane format.

array. dat
1100000
0011100
0000111

nodul e pla_1 (al, a2, a3, a4, a5, a6, a7, bl, b2, b3);
i nput al, a2, a3, a4, a5, a6, a7 ; output bl, b2, b3;
reg [1:7] men{1:3]; reg bl, b2, b3;
initial begin
$readnmenb("array. dat", nenj;
#1; bl=1; b2=1; b3=1
$async$and$array(nmem {al, a2, a3, a4, a5, a6, a7}, {bl, b2, b3});
end
initial $nonitor("%ig", $tinme,,bl,, b2,,b3);
endnodul e

The next example illustrates the use of the plane format, which alows’ 1’ ,’ 0’ ,aswell as’ ?’ or’ z’
(either may be used for don’t care) in the personality array.

bl = al &'!'a2; b2 = a3; b3 ='tlal &'a3; b4 = 1;

nmodule pla_2; reg [1:3] a, menf1:4]; reg [1:4] b;

initial begin
$async$and$pl ane(nmem {a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]});
menif 1] = 3'b10?; men{2] = 3" b??1; nmen{3] = 3'b0?0; nmeni4] = 3’ b???;
#10 a = 3'b11ll; #10 $displayb(a, " -> ", :
#10 a = 3' b000; #10 $displayb(a, " -> ", b);
#10 a 3’ bxxx; #10 $di splayb(a, " -> ", b);
#10 a = 3'b101; #10 $displayb(a, " -> ", b);

end endnodul e

111 -> 0101

000 -> 0011

XXX -> xxx1

101 -> 1101

11.13.5 Stochastic Analysis Tasks

The stochastic analysistasks model queues [Verilog LRM 14.7]. Each of the tasks return a status as
shown in Table 11.12.

TABLE 11.12 Statusvaluesfor the stochastic analysistasks.
Statusvalue M eaning

OK

gueue full, cannot add

undefined q_i d

queue empty, cannot remove

unsupported g_t ype , cannot create queue

max_| engt h <= 0, cannot create queue

duplicateg_i d , cannot create queue

Njioffo||h|wWwN|[FR]O

not enough memory, cannot create queue

The following module illustrates the interface and parameters for these tasks:

nodul e stochastic; initial begin // stochastic analysis systemtasks:
/* $q_initialize (qg_id, q_type, max_|l ength, status)

g idis an integer that uniquely identifies the queue

g_type 1=FIFO 2=LI FO

max_l ength is an integer defining the maxi mum nunber of entries */
$qg_initialize (qg_id, q_type, max_|l ength, status) ;

/* $q_add (g_id, job_id, informid, status) ;

job_id = integer input

informid = user-defined integer input for queue entry */

$q_add (qg_id, job_id, informid, status) ;

/* $q_renove (g_id, job_id, informid, status) ; */

$q_renove (g_id, job_id, informid, status) ;

/* $q_full (q_id, status) ;

status = 0 = queue is not full, status = 1 = queue full */

$g_full (g_id, status) ;

/* $q_exam (q_id, g_stat_code, g_stat_value, status) ;

g_stat_code is input request as foll ows:

l=current queue length 2=nmean inter-arrival tinme 3=max. queue |ength
4=shortest wait tine ever

5=l ongest wait tine for jobs still in queue 6=ave. wait time in queue
g_stat_value is output containing requested val ue */

$q_exam (q_id, g_stat_code, qg_stat_value, status) ;

end endnodul e

11.13.6 Simulation Time Functions

The ssimulation time functions return the time as follows [Verilog LRM 14.8]:

nodul e test _time; initial begin // simulation time system functions:
$tinme ;

/1 returns 64-bit integer scaled to timescale unit of invoking nmodul e
$stine ;

/1 returns 32-bit integer scaled to timescale unit of invoking nodul e
$realtime ;

/1 returns real scaled to tinmescale unit of invoking nodul e

end endnodul e

11.13.7 Conversion Functions

The conversion functionsfor reals handle real numbers[Verilog LRM 14.9]:

nodul e test _convert; // conversion functions for reals:

integer i; real r; reg [63:0] bits;

initial begin #1 r=256;#1 i = $rtoi(r);

#1, r = $itor(2 * i) ; #1 bits = $realtobits(2.0 * r)

#1; r = $bitstoreal (bits) ; end

initial $nonitor("9df", $tine,,i,,r,,bits); /*

$rtoi converts reals to integers wtruncation e.g. 123.45 -> 123
$itor converts integers to reals e.g. 123 -> 123.0

$realtobits converts reals to 64-bit vector

$bitstoreal converts bit pattern to rea

Real nunbers in these functions conformto |EEE Std 754. Conversion rounds to the ne

endnodul e

0. 000000 x 0 X

1.000000 X 256 X

2.000000 256 256 X

3. 000000 256 512 X

4.000000 256 512 4652218415073722368

5. 000000 256 1024 4652218415073722368

Here is an example using the conversion functions in port connections.

nodul e test real;wire [63:0]a; driver d (a); receiver r (a);
initial $monitor("%38g",$tinme,,a,,d.rl,,r.r2); endnodul e
nodul e driver (real _net);

output real _net; real rl; wire [64:1] real _net = $realtobits(rl);
initial #1 rl1 = 123.456; endnodul e

nodul e recei ver (real net);

input real _net; wire [64:1] real _net; real r2;

initial assign r2 = $bitstoreal (real _net);

endnodul e

#0 000

1 4638387860618067575 123. 456 123. 456

11.13.8 Probability Distribution Functions

The probability distribution functions are as follows [Verilog LRM 14.10]:

nodul e probability; // probability distribution functions:
/* $random|[(seed)] returns random 32-bit signed integer
seed = register, integer, or tinme */

reg [23:0] rl1,r2; integer r3,r4,r57r6,r7,r8,r9

i nteger seed, start, \end , nean, standard_deviation

i nteger degree_of _freedom k_stage;

initial begin seed=1; start=0; \end =6; nean=5;

st andard_devi ati on=2; degree_of freedom2; k_stage=1; #1,

rl = $random % 60; // random-59 to 59

r2 = {$randon} % 60; // positive value 0-59

r3=%$di st _uni form (seed, start, \end) ;

r4=%$di st _nornal (seed, nean, standard_devi ation) ;
r5=%di st _exponential (seed, nean)

r6=%$di st _poi sson (seed, nean) ;

r 7=%$di st _chi _square (seed, degree_of freedom ;

r8=%$di st t (seed, degree_of freedom ;

r9=%di st _erlang (seed, k_stage, nean) ; end

initial #2 $display ("98f",$tine,,rl,,r2,,r3,,r4,,rb)
initial begin #3; $display ("9f",$tinme,,r6,,r7,,r8,,r9); end
/* Al paraneters are integer val ues.

Each function returns a pseudo-random numnber

e.g. $dist_uniformreturns uniformy distributed random nunbers
nean, degree_of freedom Kk_stage

(exponential, poisson, chi-square, t, erlang) > 0.

seed = inout integer initialized by user, updated by function
start, end ($dist_uniform = integer bounding return values */
endnodul e

2. 000000 8 57 0 4 9
3. 000000 7 3 0 2

11.13.9 Programming Language I nterface

The C language Programming L anguage I nterface (PL1) allows you to access the internal Verilog
data structure [Verilog LRM17-23, A-E]. For example, you can use the PLI to implement the following
extensionsto a Verilog simulator:

® C language delay calculator for acell library
® C language interface to a Verilog-based or other logic or fault ssmulator

® Graphical waveform display and debugging
® C |language simulation models
® Hardware interfaces

There are three generations of PLI routines (see Appendix B for an example):

® Task/function (TF) routines (or utility routines), the first generation of the PLI, start with " tf _’

® Access (ACC) routines, the second generation of the PLI, start with the characters’ acc_’' and
access delay and logic values. There is some overlap between the ACC routines and TF routines.

® Verilog Procedural Interface (VPI) routines, the third generation of the PLI, start with the
characters’ vpi _’' and are a superset of the TF and ACC routines.

Chapter start

Previous page

Previous page

Next page

11.14 Summary

Table 11.13 lists the key features of Verilog HDL. The most important concepts covered in this chapter

are:

TABLE 11.13 Verilog on one page.

Verilog feature

Example

Comments

a =0; // coment ends with newine
/* This is a nmultiline or block
conmmrent */

Constants: string and numeric

use BW
use ' G _BUS

paraneter BW= 32 // |ocal,
‘define G BUS 32 // gl obal,
4' b2 1 bx

Names (case-sensitive, start with letter or *)

_12nane A nane $BAD Not Same notsane

Two basic types of logic signals: wire and reg

wire nyWre; reg nyReg;

Use a continuous assignment statement with wire

assign nyWre = 1;

Use a procedural assignment statement with reg

al ways nmyReg = nmyWre;

Buses and vectors use square brackets reg [31:0] DBus; DBus[12] = 1'bx;
We can perform arithmetic on bit vectors reg [31:0] DBus; DBus = DBus + 2
reg [2200 R R=7+1; // nowR =0

Arithmetic is performed modulo 2"

Operators. asin C (but not ++ or - -)

Fixed logic-value system

1, 0, x (unknown), z (high-inpedance)

Basic unit of code is the module

nodul e bake (chips, dough, cookies);
i nput chi ps, dough; output cooki es;
assi gn cooki es = chi ps & dough;
endnodul e

Ports

input or input/output ports are wire

output ports are wire or reg

Procedures model things that happen at the same
time

and may be sensitive to an edge, posedge,
negedge,

or to alevel.

al ways @ain sing; always @ain dance;
al ways @ posedge clock) D=Q // flop
always @a or b) ¢ = a &b; // and gate

Sequential blocks model repeating things:

always:. executes forever

initial born;
al ways @l arm cl ock begin : a_day
met r o=commut e; bul ot =wor k; dodo=sl eep;

end
initial: executes once only at start of simulation
. function ... endfunction
Functions and tasks task ... endtask

Output

$di splay("a=% ", a) ; $dunpvar s; $noni t or (a)

Control simulation

$stop; $finish // sudden or gentle halt

Compiler directives

‘timescale 1ns/1ps// units/resolution

Delay

#1 a=Db; // delay then sampleb

a=#1Db; // sample b then delay

@ Concurrent processes and sequential execution

® Difference between areg and awi r e , and between a scalar and a vector

® Arithmetic operationsonreg andwi re
® Datadlip
® Delays and events

Main page

Previous page

Previous page

Next page

11.15 Problems

* = Difficult, ** = Very difficult, *** = Extremely difficult

11.1 (Counter, 30 min.) Download the VeriWell simulator fromht t p: / / www. wel | spri ng. comand
simulate the counter from Section 11.1 (exclude the comments to save typing). Include the complete
input and output listings in your report.

11.2 (Simulator, 30 min.) Build a"chesat sheet" for your simulator, listing the commands for running the
simulator and using it in interactive mode.

11.3 (Verilog examples, 10 min.) The Cadence Verilog-XL simulator comes with a directory exanpl es .
Make alist of the examples from the READVE filesin the various directories.

11.4 (Gotchas, 60 min.) Build a"most common Verilog mistakes' file. Start with:

Extraor missing semicolon’;’

Forgetting to declare ar eg

Using ar eg instead of awi r e for ani nput ori nout port

Bad declarations: reg bus[0: 31] instead of reg [31: 0] bus

Mixing vector declarations: wi re [31: 0] BusA, [15:0] BusB

The case-sensitivity of Verilog

No delay in an al ways statement (simulator loops forever)

Mixing up‘ (accent grave) for * defi ne and’ (tick or apostrophe) for 1’ b1 with~ (accent acute)
or * (open single quote) or * (close single quote)

® Mixing" (double quote) with" (open quotes) or " (close quotes)

11.5 (Sensitivity, 10 min.) Explore and explain what happensif you write this:
always @a or b or c) e = (a|b)&(c|d);

11.6 (Verilogi f statement, 10 min.) Build test code to simulate the following Verilog fragment. Explain
what iswrong and fix the problem.

if (i >0
if (i <2) $display ("i is 1");

el se $display ("i is less than 0");

11.7 (Effect of delay, 30 min.). Write code to test the four different code fragments shown in
Table 11.14 and print the value of * a’ at time = 0 and time = 1 for each case. Explain the differencesin

your simulation results.

TABLE 11.14 Code fragments for Problem 11.7.

€) (b) () (d)
reg a; reg a; reg a; reg a;
initial initial initial initial
begin begin begi n begin

Code fragmentja = 0; #0 a = 0; a <= 0; #1 a = 0;
a=-a+l|#0a=a + 1l j|la<=a+ 1 ||#1l a=a + 1
end end end end

11.8 (Verilog events, 10 min.). Simulate the following and explain the results:

event event_1, event_2;

al wvays @event_1 -> event_2;
initial @vent_2 $stop
initial -> event 1,

11.9 (Blocking and nonblocking assignment statements, 30 min.). Write code to test the different code
fragments shown in Table 11.15 and print the value of * out p’ at time = 0 and time = 10 for each case.
Explain the difference in simulation results.

TABLE 11.15 Code fragments for Problem 11.9.

(a) (b) (c) (d)

reg outp; reg outp; reg outp; reg outp;
al ways al ways al ways al ways
begi n begin begi n begi n

Code fragment||#10 outp = O; |outp <= #10 1; |#10 outp = 0; [#10 outp <= 0
#10 outp 1; [loutp <= #10 O; |#10 outp <= 1; |#10 outp =1
end end end end

11.10 (Verilog UDPs, 20 min.). Use this primitive to build a half adder:

primtive Adder(Sum 1InA, InB); output Sum input Ina, InB
table 00 : 0; 01 : 1; 10 : 1; 11 : O; endtable
endprimtive

Apply unknowns to the inputs. What is the output?
11.11 (Verilog UDPs, 30 min.). Use the following primitive model for aD latch:
primtive DLatch(Q dock, Data); output QG reg Q input C ock, Data,;

table 12 0: ?2: 0; 11: ?: 1; 01 : ?: -; endtable
endprimtive

Check to see what happens when you apply unknown inputs (including clock transitions to unknown).
What happens if you apply high-impedance values to the inputs (again including transitions)?

11.12 (Propagation of unknownsin primitives, 45 min.) Use the following primitive model for aD
flip-flop:

primtive DFF(Q Cock, Data); output Q reg Q input dock, Data;
tabl e

r 0: ?:0
r 1:?:1
(0Ox) 0: 0: O
(0x) 1: 1: 1
(?0) ?: ?:
?2(??) ?:
endt abl e

endprimtive

Check to see what happens when you apply unknown inputs (including a clock transition to an unknown
value). What happensif you apply high-impedance values to the inputs (again including transitions)?

11.13 (D flip-flop UDP, 60 min.) Table 11.16 shows a UDP for a D flip-flop with QN output and
asynchronous reset and set.

TABLE 11.16 D flip-flop UDP for Problem 11.13.
primtive DFlipFlop2(Q\, Data, C ock, Res, Set);
output Q\; reg QV, input Data, O ock, Res, Set;
tabl e
11 Dat a Cl ock Res Set :state :next state

1 (01) 0 O :? :0; [// line 1l
1 (01) 0 x :? :0;

? ? 0 x :0 :0;

0O (01) 0o O :? :1;

0 (01) x 0 :? :1;

? ? x 0 :1 :1;

1 (x1) 0 0 :0 :0

0 (x1) 0 O 1 :1

1 (0x) 0 0 :0 :0

0 (0x) 0 O 1 :1

? 0?2 1 2?2 7?7 1,

? 0?2 0 1 :? :0;

? n 0O O :?2 :-;

2 07?2 7?2 1?7 -

? ? (?200 ? :? -

? 0?2 2?2 (?200 7 -

? 0?2 7?2 7?2 :? x; Il line 17
endt abl e

endprimtive

a. Explain the purpose of each line in the truth table.
b. Write amodule to test each line of the UDP.

c. Can you find any errors, omissions, or other problemsin this UDP?

11.14 (XK flip-flop, 30 min.) Test the following model for a KK flip-flop:

modul e JKFF (Q J, K dk, Rst);

parameter width = 1, reset_value = 0;

input [width-1:0] J, K output [width-1:0] Q reg [width-1:0] Q
input Ak, Rst; initial Q= {wdth{l bx}};

al ways @ (posedge C k or negedge Rst)

if (Rst==0) Q <= #1 reset_val ue;

else Q<= #1 (J &~K) | (J &K &~Q | (-J & K& Q;

endnodul e

11.15 (Overriding Verilog parameters, 20 min.) The following module has a parameter specification that
allows you to change the number of AND gates that it models (the cardinality or width):

nodul e Vector AND(Z, A, B);
paranmeter card = 2; input [card-1:0] A B; output [card-1:0] Z
wire [card-1:0] Z = A & B;

endnodul e

The next module changes the parameter value by specifying an overriding value in the module
instantiation:

nodul e Four AND Gat es(Qut Bus, |nBusA, |nBusB);
i nput [3:0] InBusA, [InBusB; output [3:0] QutBus;
Vect or _AND #(4) My_AND(QutBus, |nBusA, |nBusB);
endnodul e

These next two modules change the parameter value by using adef par amstatement, which overrides
the declared parameter value:

nodul e X AND Gat es(Qut Bus, | nBusA, |nBusB);
parameter X = 2;input [X-1:0] InBusA [|nBusB;output [X-1:0] QutBus;
Vect or _AND #(X) My_AND(Qut Bus, | nBusA, |nBusB);

endnodul e

nodul e si ze; defparam X AND Gates. X = 4; endnodul e

a. Check that the two alternative methods of specifying parameters are equivalent by instantiating the
modules Four _AND_Gat es and X_AND_Gat es in another module and simulating.

b. List and comment on the advantages and disadvantages of both methods.

11.16 (Default Verilog delays, 10 min.). Demonstrate, using simulation, that the following NAND gates
have the delays you expect:

nand (strong0, strongl) #1
Nand_1(n001, n004, n005),
Nand_2(n003, n001, n005, n002);

nand (n006, n005, n002);

11.17 (Arrays of modules, 30 min.) Newer versions of Verilog allow the instantiating of arrays of
modules (in this book we usually call this avector since we are only allowed one row). Y ou specify the
number in the array by using arange after the instance name as follows:

nand #2 nand_array[0: 7] (zn, a, b);

Create and test amodel for an 8-bit register using an array of flip-flops.

11.18 (Assigning Verilog real to integer datatypes, 10 min.). What isthe value of | m nt eger inthe
following code?

real ImReal; integer |mnteger
initial begin InReal = -1.5; Imnteger = InReal ; end

11.19 (BNF syntax, 10 min.) Use the BNF syntax definitionsin Appendix B to answer the following
guestions. In each case explain how you arrive at the answer:

a. What is the highest-level construct?

b. What is the lowest-level construct?

c. Can you nest begi n and end statements?

d. Whereisalega placefor acase statement?

e. Isthefollowing codelegal: reg [31: 0] rega, [32:1] regb;

f. Whereisit legal to include sequential statements?

11.20 (Old syntax definitions, 10 min.) Prior to the IEEE LRM, Verilog BNF was expressed using a
different notation. For example, an event expression was defined as follows:

<event _expressi on> :: = <expression>
or <<posedge or negedge> <SCALAR EVENT_ EXPRESSI ON>>
or <<event_expressi on> or <event_expressi on>>

Noticethat weareusing’ or’ as part of the BNF to mean "alternatively" and also’ or ' asaVerilog
keyword. The keyword’ or ' isin bold--the differenceisfairly obvious. Hereis an aternative
definition for an event expression:

= posedge <SCALAR EVENT EXPRESS| O\>
negedge <SCALAR EVENT EXPRESSI ON>

<event _expressi on> :: = <expression>
| | = <event _expressi on> <or <event _expressi on>>*

Are these definitions equivalent (given, of course, that we replaced | | = with or in the ssmplified
syntax)? Explain carefully how you would attempt to prove that they are the same.

11.21 (Operators, 20 min.) Explain Table 11.17 (see next page).

TABLE 11.17 Unary operators (Problem 11.21).

endnodul e

initial u=!"b011z;
Code |initial $display("o%",u); initial $display(" %", u);

assign u=!"b01l1z;

endnodul e

(@) (b) (©)
nodul e unary; nodul e unary; nodul e unary;
reg [4:0] u; wire u; wire u;

assign u=!"b011z;
initial #1 $display("%
endnodul e

Output] 220

11.22 (Unary reduction, 10 min.) Complete Table 11.18 (see next page).

TABLE 11.18 Unary reduction (Problem 11.22).

Operand &

~&

-...l N ~N

4’ 0000

4’ b1111

4’ b01x0

4’ bz000

11.23 (Coerced ports, 20 min.) Perform some experiments to test the behavior of your Verilog simulator
in the following situation: "NOTE--A port that is declared as input (output) but used as an output (input)
or inout may be coerced to inout. If not coerced to inout, awarning must be issued" [Verilog LRM

12.3.6].

11.24 (*Difficult delay code, 20 min.) Perform some experiments to explain what this difficult to

interpret statement does:

#2 a <= repeat(2) @posedge cl k) d;

11.25 (Fork-join, 20 min.) Write some test code to compare the behavior of the code fragments shown in

Table 11.19.

TABLE 11.19 Fork-and-join examples for Problem 11.25.

(@ (b) (©) (d)

fork fork fork fork

a=m"hb;lla<=Dhb;||#1 a =Db; la =#1 b
Codefragment [b = a; [b <= a; [#1 b = a; |[b = #1 a

join join join join

11.26 (Blocking and nonblocking assignments, 20 min.) Simulate the following code and explain the

results:

nodul e nonbl ocking; r

eg y;

al ways begin Y <= #10 1;Y <= #20 0; #10; end

al ways begin $display($tine,,"Y=",Y); #10; end
initial #100 $finish;
endnodul e

11.27 (*Flip-flop code, 10 min.) Explain why this flip-flop does not work:

nodul e Dff _Res_Bad(D, Q d ock, Reset);

output @ input D Cock,Reset; reg Q wire D

al ways @ posedge Cock) if (Reset '==1) Q= D, always if (Reset == 1) Q = 0;
end endnodul e

11.28 (D flip-flop, 10 min.) Test the following D flip-flop model:

nodule DFF (D, Q dKk, Rst);

parameter width = 1, reset_value = 0;

input [width-1:0] D, output [width-1:0] Q reg [width-1:0] Q
i nput dk, Rst;

initial Q= {wdth{1 bx}};

al ways @ (posedge O k or negedge Rst)

if (Rst == 0) Q<= #1 reset_value; else Q<= #1 D
endnodul e

11.29 (D flip-flop with scan, 10 min.) Explain the following model:

nodul e DFFSCAN (D, Q dk, Rst, ScEn, Scln, ScCut);
parameter width = 1, reset_value = 0;

input [width-1:0] D, output [width-1:0] Q reg [width-1:0] Q
i nput d k, Rst, ScEn, Scl n; output ScQut;

initial Q= {wdth{l bx}};

al ways @ (posedge C k or negedge Rst) begin

if (Rst ==) Q <= #1 reset _val ue;
el se if (ScEn) Q <= #1 {Q Scl n};
el se Q<= #1 D

end

assign ScQut=Q wi dth-1];

endnodul e

11.30 (Pads, 30 min.) Test the following model for abidirectional 1/0 pad:

nodul e PadBidir (C, Pad, |, Cen); // active |ow enable
paraneter w dth=1, pinNunbers="", \strength =1, [|evel="CMOS",
pul | =" none", external Vdd=5;

output [width-1:0] C inout [width-1:0] Pad; input [width-1:0] I;
i nput Qen;

assign #1 Pad = Cen ? {width{1 bz}} : I;

assign #1 C = Pad;

endnodul e

Construct and test amodel for a three-state pad from the above.

11.31 (Loops, 15 min.) Explain and correct the problem in the following code:

nodul e Loop Bad; reg [3:0] i; reg [31:0] DBus;
initial DBus = O;
initial begin #1; for (i=0; i<=15; i=i+1) DBus[i]=1; end

initial begin
$di spl ay("DBus = %", DBus); #2; $display("DBus = %", DBus); $stop;
end endnodul e

11.32 (Arithmetic, 10 min.) Explain the following:

i nteger IntA;
IntA=-12/ 3; // result is -4
IntA=-"d 12/ 3; // result is 1431655761

Determine and explain the values of i nt A and r egA after each assignment statement in the following
code:

integer intA; reg [15:0] regA
intA=-4d12; regA = intA3; regA = -4"d12;
intA=regA'3; intA=-4d12/3; regA = -12/3;

11.33 (Arithmetic overflow, 30 min.) Consider the following:
reg [7:0] a, b, sum sum= (a + b) >> 1;

Theintent isto add a and b , which may cause an overflow, and then shift sumto keep the carry bit.
However, because all operandsin the expression are of an 8-bit width, the expression (a + b) isonly
8 bitswide, and we lose the carry bit before the shift. One solution forces the expression (a + b) to use
at least 9 bits. For example, adding an integer value of 0 to the expression will cause the evaluation to be
performed using the bit size of integers[LRM 4.4.2]. Check to seeif the following alternatives produce
the intended result:

sum= (a + b + 0) >> 1,
sum = {0,a} + {0,b} >> 1;

11.34 (*Datadlip, 60 min.) Table 11.20 shows several different waysto model the connection of a 2-bit
shift register. Determine which of these models suffer from data slip. In each case show your simulation
results.

TABLE 11.20 Datadip (Problem 11.34).

Alternative Datadlip?
1 al ways @ posedge A k) begin @ = Ql; 4 D1; end

2 al ways @ posedge A k) begin QL = D1; @

QL; end

3 al ways @ posedge G k) begin QL <= #1 D1; @ <= #1 Ql; end

al ways @ posedge C k) QL = D1; always @ posedge k) Q@ = Q1;

5 al ways @ posedge d k) QL #1 D1; always @posedge C k) @@ = #1 Qi;

6 al ways @ posedge C k) #1 QL = D1; always @ posedge C k) #1 @ = Qi;

al ways @ posedge A k) QL <= D1; always @posedge C k) @ <= Q;

module FF 1 (Ck, D1, Ql); always @posedge C k) QL
8|module FF 2 (A k, Ql, @); always @ posedge d k)

D1; endnodul e
QL; endnodul e

02
module FF_ 1 (Ck, D1, Ql); always @posedge C k) QL <= D1; endnodul e
Olmodul e FF_ 2 (A k, Ql, @); always @posedge k) @ <= Ql; endnodul e

11.35 (** Timing, 30 min.) What does a simulator display for the following?
assign p = q; initial begin g =0; #1 q = 1; $display(p); end
What is the problem here? Conduct some experimentsto illustrate your answer.

11.36 (Port connections, 10 min.) Explain the following declaration:
nodul e test (.a(c), .b(c));

11.37 (**Functions and tasks, 30 min.) Experiment to determine whether invocation of afunction (or
task) behaves as a blocking or nonblocking assignment.

11.38 (Nonblocking assignments, 10 min.) Predict the output of the following model:

nodul e el; reg a, b, c;

initial beg|n a=0, b=1; ¢c =0; end

al ways ¢ = #5 ~c; almays @ posedge c) begin a <= hb; b <= a; end
enanduIe

11.39 (Assignment timing, 20 min.) Predict the output of the following module and explain the timing
of the assignments:

nodul e e2; reg a, b, ¢, d, e, f;

initial begin a = #10 1; b = #2 0; ¢ = #4 1; end
initial begin d <= #10 1; e <= #2 0; f <= #4 1; end
endnodul e

11.40 (Swap, 10 min.) Explain carefully what happens in the following code:

nodul e e3; reg a, b;
initial begin a = 0;
endnodul e

b =1, a<=Db b<=a;, end

11.41 (*Overwriting, 30 min.) Explain the problem in the following code, determine what happens, and
conduct some experiments to explore the problem further:

nodul e ml; reg a;

initial a = 1;

initial begin a <= #4 0; a <= #4 1; end
endnodul e

11.42 (*Multiple assignments, 30 min.) Explain what happens in the following:

nodule n2; reg rl; reg [2:0] i;

initial begin

ri =0; for (i =0; i <=5; i =i+1) rl1 <= # (i*10) i[0]; end
endnodul e

11.43 (Timing, 30 min) Write amodel to mimic the behavior of atraffic light signal. The clock input is
1 MHz. You areto drive the lights as follows (times that the lights are on are shown in parentheses):
green (60 s), yellow (1 s), red (60).

11.44 (Port declarations, 30 min.) The rules for port declarations are as follows: "The port expression in
the port definition can be one of the following:

® asimpleidentifier

® abit-select of avector declared within the module
® apart-select of avector declared within the module
@ aconcatenation of any of the above

Each port listed in the module definition’ s list of ports shall be declared in the body of the module as an
input, output, or inout (bidirectional). Thisisin addition to any other declaration for a particular
port--for example, areg, or wire. A port can be declared in both a port declaration and a net or register
declaration. If a port is declared as a vector, the range specification between the two declarations of a
port shall beidentical" [Verilog LRM 12.3.2].

Compile the following and comment (you may be surprised at the results):

nmodul e stop (); initial #1 $finish; endnodul e
nodule Quts_ 1 (a); output [3:0] a; reg [3:0] a;
initial a <= 4'bl0xz; endnodul e

nmodule Quts_2 (a); output [2:0] a; reg [3:0] a;
initial a <= 4'bl0xz; endnodul e

nodule Quts_3 (a); output [3:0] a; reg [2:0] a;
initial a <= 4'bl0xz; endnodul e

nmodule Quts_4 (a); output [2:0] a; reg [2:0] a;
initial a <= 4'bl0xz; endnodul e

nodule Quts 5 (a); output a; reg [3:0] a;
initial a <= 4'bl0xz; endnodul e

nmodul e Quts_6 (a[2:0]); output [3:0] a; reg [3:0] a;
initial a <= 4'bl0xz; endnodul e

modul e Quts_7 (a[1]); output [3:0] a; reg [3:0] a;
initial a <= 4" bl0xz; endnodul e

modul e Quts_8 (a[1]); output a; reg [3:0] a;

al ways a <= 4’ bl0xz; endnodul e

11.45 (Specify blocks, 30 min.)

a. Describe the pin-to-pin timing of the following module. Build a testbench to demonstrate your
explanation.

nodul e XOR spec (a, b, z); input a, b: output z; xor x1 (z, a, b);
speci fy
specparamtnr =
if (a)(b => 2)
if (~a)(b=>12z) = (
endspeci fy
endnodul e

1, tnf = 2 specparamtir = 3, tif = 4;
= (tir, tif); if (b)y(a=>2z) = (tir, tif);
tnr,

r, tnf); if (~b)(a=>2z) = (tnr, tnf);

b. Write and test amodule for a2:1 MUX with inputs A0 , A1 , and sel ; output z ; and the following
delays: A0 to z: 0.3 ns (rise) and 0.4 ns (fall); AL to z : 0.2 ns (rise) and 0.3 ns (fall); sel toz=0.5ns.

11.46 (Design contest, **60 min.) In 1995 John Cooley organized a contest between VHDL and Verilog
for ASIC designers. The goal wasto design the fastest 9-bit counter in under one hour using Synopsys
synthesistools and an LS| Logic vendor technology library. The Verilog interfaceis as follows:

nodul e counter (data_in, up, down, clock
count _out, carry_out, borrow out, parity_ out);
output [8:0] count_out;
out put carry_out, borrow out, parity_out;
input [8:0] data_in; input clock, up, down;

reg [8:0] <count_out; reg carry_out, borrow out, parity_out;
/1 Insert your design here.
endnodul e

The counter is positive-edge triggered, counts up with up="1' and down with down="1" . The
contestants had the advantage of a predefined testbench with a set of test vectors; you do not. Design a
model for the counter and a testbench.

11.47 (Timing checks, ***60 min.+) Flip-flops with preset and clear require more complex
timing-check constructs than those described in Section 11.13.3. The following BNF defines a
controlled timing-check event:

controlled timng_check _event ::= timng _check event control specify tern nal _descri
tim ng_check_condition ::=
scal ar _expression | ~scal ar_expression
| scal ar_expression == scal ar_const ant
| scal ar_expression === scal ar _const ant
| scal ar_expression ! = scal ar_const ant
| scal ar_expression ! == scal ar _const ant

The scalar expression that forms the conditioning signal must be a scalar net, or else the least significant
bit of a vector net or amultibit expression value is used. The comparisons in the timing check condition
may be deterministic (using ===, ! ==, 5 or no operator) or nondeterministic (using==or! =). For
deterministic comparisons, an’ x’ result disables the timing check. For nondeterministic comparisons,

an’ x’ result enables the timing check.

As an example the following unconditioned timing check,
$setup(data, posedge clock, 10);

performs a setup timing check on every positive edge of cl ock , aswas explained in Section 11.13.3.
The following controlled timing check is enabled only when ci ear ishigh, whichiswhat isrequired in
aflip-flop model, for example.

$setup(data, posedge clock &&& clear, 10);

The next example shows two alternative ways to enable a timing check only when cl ear islow. The
second method uses a nondeterministic operator.

$set up(dat a, posedge cl ock &&&(~clear),10); // clear=x di sabl es check
$set up(dat a, posedge cl ock &&&(cl ear==0),10); // clear=x enabl es check

To perform the setup check only when cl ear and preset signalsare high, you can add a gate outside
the specify block, as follows:

and gl(clear_and_preset, clear, set);
A controlled timing check event can then use thiscl ear _and_pr eset signal:
$set up(data, posedge clock &R& clear_and preset, 10);

Use the preceding techniques to expand the D flip-flop model, dff _udp, from Section 11.13.3 to include
asynchronous active-low preset and clear signals as well as an output, gbar . Use the following module
interface:

nodul e dff(qg, gbar, clock, data, preset, clear);

11.48 (Verilog BNF, 30 min.) Hereisthe "old" BNF definition of a sequential block (used in the Verilog
reference manuals and the OVI LRM). Are there any differences from the "new" version?

<sequential _bl ock> ::=
begi n <st at erment >* end
or
begi n: <bl ock_| DENTI FI ER> <bl ock_decl ar ati on>*
<st at enent >*
end
<bl ock_decl aration> ::= paraneter <list_of param assi gnment >;
or reg <range>? <attribute_decl >*
<list_of_register_variabl e>;
or integer <attribute_decl>* <list_of _register_variabl e>;
or real <attribute_decl>* <list_of variabl e | DENTI FI ER>;
or time <attribute_decl>* <list_of register_variabl e>;
or event <attribute_decl>* <|list_of_event_I| DENTI Fl ER>
<statenent> ::=
<bl ocki ng_assi gnment >;
or <non-bl ocki ng_assi gnnent >;
or if(<expression>) <statenment_or_null>
<el se <statenment_or_null> >?
or <case or casez or casex>

(<expression>) <case itenp+ endcase
or forever <statenent>
or repeat(<expression>) <statenent>
or whil e(<expression>) <statenent>
or for(<assignnent>;

<expressi on>; <assi gnnment>) <statenent>
or wait(<expression>) <statenent_or_null >
or di sabl e <task_ | DENTI FI ER>;
or di sabl e <bl ock_| DENTI FI ER>;
or force <assignnment>; or release <val ue>
or <timng_control > <statenent_or_null>
or -> <event | DENTI FI ER>;
or <sequential bl ock> or <parallel _block>
or <task _enabl e> or <systemtask enabl e>

11.49 (Conditional compiler directives, 30 min.) The conditional compiler directives: ‘ define , ‘i f def
,“else, endif ,and* undef ; work much asin C. Write and compile a module that models an AND
gateas’'z = a& b’ if the variable behavioral isdefined. If behavioral is not defined, then model the AND
gateas’and al (z, a, b)’.

11.50 (*Macros, 30 min.) According to the IEEE Verilog LRM [16.3.1] you can create a macr o with
parametersusing ‘ defi ne , asthe following exampleillustrates. Thisis a particularly difficult area of
compliance. Does your software allow the following? Y ou may have to experiment considerably to get
thisto work. Hint: Check to seeif your software is substituting for the macro text literally or if it doesin
fact substitute for parameters.

‘define M.MAX(a, b)((a) > (b) ? (a) : (b))

‘“define M ADD(a,b) (a+b)

nodul e nacr o;

reg mi, n2, nB, sO0, si1;

“define var_nand(del ay) nand #del ay

‘var_nand (2) g121 (g21, ni0, nll);

‘var_nand (3) g122 (922, ni0, nll);

initial begin s0=0; sl1l=1

m = ‘M MX (sO, sl); n2 = ‘MADD (s0,s1); nmB =s0 >sl1 ? s0 : sl
end

initial #1 $display(" m=",ml," n2=",n2," nB=", nB);
endnodul e

11.51 (**Verilog hazards, 30 min.) The MTI simulator, VSIM, is capable of detecting the following
kinds of Verilog hazards:

1. WRITE/WRITE: Two processes writing to the same variable at the same time.

2. READ/WRITE: One process reading a variable at the same time it is being written to by another
process. VSIM callsthisa READ/WRITE hazard if it executed the read first.

3. WRITE/READ: Same as a READ/WRITE hazard except that VSIM executed the write first.

For example, the following log shows how to simulate Verilog code in hazard mode for the examplein
Section 11.6.2:

> vlib work

> vlog -hazards data_slip_1l.v
> vsim-c -hazards data_slip_1
...(lines onitted)...

100 O 11 x

** Error: Wite/ Read hazard detected on QL (ALWAYS 3 foll owed by ALWAYS 4)
Tinme: 150 ns Iteration: 1 |nstance:/

150 1 11 1

...(lines onitted). ..

There are atotal of five hazardsin the module data dlip_1, four are on Q1, but there is another. If you
correct the code as suggested in Section 11.6.2 and run VSIM, you will find thisfifth hazard. If you do
not have accessto MTI’s simulator, can you spot this additional read/write hazard? Hint: It occurs at
time zero on Clk. Explain.

11.15.1 TheViterbi Decoder

11.52 (Understanding, 20 min.) Calculate the values shown in Table 11.8 if we use 4 bits for the
distance measures instead of 3.

11.53 (Testbenches)

a. (30 min.) Write atestbench for the encoder, viterbi_encode, in Section 11.12 and reproduce the results
of Table11.7.

b. (30 min.) Write atestbench for the receiver front-end viterbi_distances and reproduce the results of
Table 11.9 (you can write this stand-alone or use the answer to part ato generate the input). Hint: Y ou
will need amodel for a D flip-flop. The sequence of results is more important than the exact timing. If
you do have timing differences, explain them carefully.

11.54 (Things go wrong, 60 min.) Things do not always go as smoothly as the examples in this book
might indicate. Suppose you accidentally invert the sense of the reset for the D flip-flops in the encoder.
Simulate the output of the faulty encoder with an input sequence X =0, 1, 2, 3, ... (in other words run

the encoder with the flip-flops being reset continually). The output sequence |ooks reasonable (you
should find that itisY =0, 2,4, 6, ...). Explain this result using the state diagram of Figure 11.3. If you

had constructed a testbench for the entire decoder and did not check the intermediate signals against
expected values you would probably never find this error.

11.55 (Subset decoder) Table 11.21 shows the inputs and outputs from the first-stage of the Viterbi
decoder, the subset decoder. Calculate the expected output and then confirm your predictions using
simulation.

TABLE 11.21 Subset decoder (Problem 11.55).

input(inOfinl{in2{in3|ind|in5(in6|in7|s0|sl|s2|s3|soutO|soutl|sout2|sout3
5 6 |7 (6 [4 |1 [0 (1 (4 |10 (1 (4
4 7 16 (4 (1 |0 {1 (4 (6 [O]1 (4|1
1 1 (0 (1 (4 [6 |7 |6 (4 1|01 |4
0 0 |12 (4 [6 |7 |6 |4 |2 [O|1(4]21

Chapter start
Previous page
Main page
Previous page

Next page

11.16 Bibliography

The IEEE Verilog LRM [1995] islessintimidating than the IEEE VHDL LRM, becauseit is based on
the OVI LRM, which in turn was based on the Verilog-XL simulator reference manual. Thusit has more
of a"User's Guide" flavor and is required reading for serious Verilog users. It isthe only source for
detailed information on the PLI.

Phil Moorby was one of the original architects of the Verilog language. The Thomas and Moorby text is
agood introduction to Verilog [1991]. The code examples from this book can be obtained from the
World Wide Web. Palnitkar’ s book includes an example of the use of the PLI routines [1996].

Open Verilog International (OVI) has aWeb site maintained by Chronologic (

ht t p: / / www. chr onol ogi c. conf ovi) with membership information and addresses and an ftp site
maintained by META-Software (ftp://ftp. metasw. comin/pub/ ovi/). OVI sdllsreference
material, including proceedings from the International Verilog HDL Conference.

The newsgroup conp. | ang. veri | og (with aFAQ--frequently asked questions) is accessible from a
number of online sources. The FAQ includes alist of reference materials and book reviews. Cray
Research maintained an archive for conp. I ang. veri | og going back to 1993 but this was lost in January
1997 and is still currently unavailable. Cadence has a discussion group at t al kveri | og@adence. com.
Wellspring Solutions offers VeriWell, ano-cost, limited capability, Verilog simulator for UNIX, PC,
and Macintosh platforms.

Thereisafree, "copylefted" Verilog simulator, vbs , written by Jimen Ching and Lay Hoon Tho as part
of their Master’ s theses at the University of Hawaii, which is part of the conp. | ang. veri | og archive.
The package includes explanations of the mechanics of adigital event-driven simulator, including event
gueues and time wheels.

More technical references are included as part of Appendix B.

Main page

Previous page

11.17 References

|EEE Std 1364-95, Verilog LRM. 1995. The Institute of Electrical and Electronics Engineers. Available
from The Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street, New York, NY
10017 USA. [cited on p. 479]

Palnitkar, S. 1996. Verilog HDL: A Guideto Digital Design and Synthesis. Upper Saddle River, NJ:
Prentice-Hall, 396 p. ISBN 0-13-451675-3.

Thomas, D. E., and P. Moorby. 1991. The Verilog Hardware Description Language. 1st ed. Dordrecht,
Netherlands: Kluwer, 223 p. ISBN 0-7923-9126-8, TK7885.7.T48 (1st ed.). ISBN 0-7923-9523-9 (2nd
ed.).

Chapter start Previous page

