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CHAPTER 10
VERILOG HDL

In this chapter we look at the Verilog hardware description language. Gateway Design Automation
developed Verilog as a simulation language. The use of the Verilog-XL simulator is discussed in more
detail in Chapter 13. Cadence purchased Gateway in 1989 and, after some study, placed the Verilog
language in the public domain. Open Verilog International (OVI) was created to develop the Verilog
language as an IEEE standard. The definitive reference guide to the Verilog language is now the Verilog
LRM, IEEE Std 1364-1995 [1995]. 1 This does not mean that all Verilog simulators and tools adhere
strictly to the IEEE Standard--we must abide by the reference manual for the software we are using.
Verilog is a fairly simple language to learn, especially if you are familiar with the C programming
language. In this chapter we shall concentrate on the features of Verilog applied to high-level design
entry and synthesis for ASICs.
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11.1   A Counter
The following Verilog code models a "black box" that contains a 50 MHz clock (period 20 ns), counts
from 0 to 7, resets, and then begins counting at 0 again:

‘timescale 1ns/1ns // Set the units of time to be nanoseconds.
module counter; 
  reg clock; // Declare a reg data type for the clock.
  integer count; // Declare an integer data type for the count.
initial // Initialize things; this executes once at t=0.
  begin 
    clock = 0; count = 0; // Initialize signals.
    #340 $finish; // Finish after 340 time ticks.
  end 
/* An always statement to generate the clock; only one statement follows the always so we don’t need a begin and an end. */
always  #10 clock = ~ clock; // Delay (10ns) is set to half the clock cycle.
/* An always statement to do the counting; this executes at the same time (concurrently) as the preceding always statement. */
always   begin    // Wait here until the clock goes from 1 to 0.
    @ (negedge clock);
    // Now handle the counting.
    if (count == 7)
      count = 0;
    else      count = count + 1;
    $display("time = ",$time," count = ", count);
  end 
endmodule

Verilog keywords (reserved words that are part of the Verilog language) are shown in bold type in the
code listings (but not in the text). References in this chapter such as [Verilog LRM 1.1] refer you to the
IEEE Verilog LRM.

The following output is from the Cadence Verilog-XL simulator. This example includes the system
input so you can see how the tool is run and when it is finished. Some of the banner information is
omitted in the listing that follows to save space (we can use "quiet" mode using a ’-q’ flag, but then the
version and other useful information is also suppressed):

> verilog counter.v
VERILOG-XL 2.2.1   Apr 17, 1996  11:48:18



    ... Banner information omitted here...
Compiling source file "counter.v"
Highest level modules:
counter
time =                   20 count =           1
time =                   40 count =           2
(... 12 lines omitted...)
time =                  300 count =           7
time =                  320 count =           0
L10 "counter.v": $finish at simulation time 340
223 simulation events
CPU time: 0.6 secs to compile + 0.2 secs to link + 0.0 secs in simulation
End of VERILOG-XL 2.2.1   Apr 17, 1996  11:48:20
>

Here is the output of the VeriWell simulator from the console window (future examples do not show all
of the compiler output-- just the model output):

Veriwell -k VeriWell.key -l VeriWell.log -s :counter.v
... banner information omitted ....
Memory Available: 0
Entering Phase I...
Compiling source file : :counter.v
The size of this model is [1%, 1%] of the capacity of the free version
Entering Phase II...
Entering Phase III...
No errors in compilation
Top-level modules:
   counter
C1> .
time =                   20 count =           1
time =                   40 count =           2
(... 12 lines omitted...)
time =                  300 count =           7
time =                  320 count =           0
Exiting VeriWell for Macintosh at time 340
0 Errors, 0 Warnings, Memory Used: 29468
Compile time = 0.6, Load time = 0.7, Simulation time = 4.7
Normal exit
Thank you for using VeriWell for Macintosh
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11.2   Basics of the Verilog Language



A Verilog identifier [Verilog LRM2.7], including the names of variables, may contain any sequence of
letters, digits, a dollar sign ’$’ , and the underscore ’_’ symbol. The first character of an identifier must
be a letter or underscore; it cannot be a dollar sign ’$’ , for example. We cannot use characters such as
’-’ (hyphen), brackets, or ’#’ (for active-low signals) in Verilog names (escaped identifiers are an
exception). The following is a shorthand way of saying the same thing:

identifier ::= simple_identifier | escaped_identifier
simple_identifier ::= [a-zA-Z][a-zA-Z_$]
escaped_identifier ::=
  \ {Any_ASCII_character_except_white_space} white_space
white_space ::= space | tab | newline

If we think of ’::=’ as an equal sign, then the preceding "equation" defines the syntax of an identifier.
Usually we use the Backus-Naur form (BNF) to write these equations. We also use the BNF to describe
the syntax of VHDL. There is an explanation of the BNF in Appendix A. Verilog syntax definitions are
given in Appendix B. In Verilog all names, including keywords and identifiers, are case-sensitive.
Special commands for the simulator (a system task or a system function) begin with a dollar sign ’$’
[Verilog LRM 2.7]. Here are some examples of Verilog identifiers:

module identifiers;
/* Multiline comments in Verilog
  look like C comments and // is OK in here. */
// Single-line comment in Verilog.
reg legal_identifier,two__underscores;
reg _OK,OK_,OK_$,OK_123,CASE_SENSITIVE, case_sensitive;
reg \/clock ,\a*b ; // Add white_space after escaped identifier.
//reg $_BAD,123_BAD; // Bad names even if we declare them!
initial begin 
legal_identifier = 0; // Embedded underscores are OK,
two__underscores = 0; // even two underscores in a row.
_OK = 0; // Identifiers can start with underscore
OK_ = 0; // and end with underscore.
OK$ = 0; // $ sign is OK, but beware foreign keyboards.
OK_123 =0; // Embedded digits are OK.
CASE_SENSITIVE = 0; // Verilog is case-sensitive (unlike VHDL).
case_sensitive = 1;
\/clock = 0; // An escaped identifier with \ breaks rules,
\a*b = 0; // but be careful to watch the spaces!
$display("Variable CASE_SENSITIVE= %d",CASE_SENSITIVE);
$display("Variable case_sensitive= %d",case_sensitive);
$display("Variable \/clock = %d",\/clock );
$display("Variable \\a*b = %d",\a*b ); 
end endmodule

The following is the output from this model (future examples in this chapter list the simulator output
directly after the Verilog code).

Variable CASE_SENSITIVE= 0
Variable case_sensitive= 1
Variable /clock = 0
Variable \a*b = 0

11.2.1   Verilog Logic Values



Verilog has a predefined logic-value system or value set [Verilog LRM 3.1] that uses four logic values:
’0’ , ’1’ , ’x’ , and ’z’ (lowercase ’x’ and lowercase ’z’ ). The value ’x’ represents an uninitialized
or an unknown logic value--an unknown value is either ’1’ , ’0’ , ’z’ , or a value that is in a state of
change. The logic value ’z’ represents a high-impedance value, which is usually treated as an ’x’
value. Verilog uses a more complicated internal logic-value system in order to resolve conflicts between
different drivers on the same node. This hidden logic-value system is useful for switch-level simulation,
but for most ASIC simulation and synthesis purposes we do not need to worry about the internal
logic-value system.

11.2.2   Verilog Data Types

There are several data types in Verilog--all except one need to be declared before we can use them. The
two main data types are nets and registers [Verilog LRM 3.2]. Nets are further divided into several net
types. The most common and important net types are: wire and tri (which are identical); supply1 and
supply0 (which are equivalent to the positive and negative power supplies respectively). The wire data
type (which we shall refer to as just wire from now on) is analogous to a wire in an ASIC. A wire
cannot store or hold a value. A wire must be continuously driven by an assignment statement (see
Section 11.5). The default initial value for a wire is ’z’ [Verilog LRM3.6]. There are also integer,
time, event, and real data types.

module declarations_1;
wire pwr_good, pwr_on, pwr_stable; // Explicitly declare wires.
integer i; // 32-bit, signed (2’s complement).
time t; // 64-bit, unsigned, behaves like a 64-bit reg.
event e; // Declare an event data type.
real r; // Real data type of implementation defined size.
// An assign statement continuously drives a wire:
assign pwr_stable = 1’b1; assign pwr_on = 1; // 1 or 1’b1
assign pwr_good = pwr_on & pwr_stable;
initial begin 
i = 123.456; // There must be a digit on either side 
r = 123456e-3; // of the decimal point if it is present.
t = 123456e-3; // Time is rounded to 1 second by default.
$display("i=%0g",i," t=%6.2f",t," r=%f",r); 
#2 $display("TIME=%0d",$time," ON=",pwr_on,
  " STABLE=",pwr_stable," GOOD=",pwr_good);
$finish; end 
endmodule 
i=123 t=123.00 r=123.456000
TIME=2 ON=1 STABLE=1 GOOD=1

A register data type is declared using the keyword reg and is comparable to a variable in a programming
language. On the LHS of an assignment a register data type (which we shall refer to as just reg from
now on) is updated immediately and holds its value until changed again. The default initial value for a
reg is ’x’ . We can transfer information directly from a wire to a reg as shown in the following code:

module declarations_2;
reg Q, Clk; wire D;



// Drive the wire (D):
assign D = 1;
// At a +ve clock edge assign the value of wire D to the reg Q:
always @(posedge Clk) Q = D; 
initial Clk = 0; always #10 Clk = ~ Clk;
initial begin #50; $finish; end 
always begin 
$display("T=%2g", $time," D=",D," Clk=",Clk," Q=",Q); #10; end 
endmodule
T= 0 D=z Clk=0 Q=x
T=10 D=1 Clk=1 Q=x
T=20 D=1 Clk=0 Q=1
T=30 D=1 Clk=1 Q=1
T=40 D=1 Clk=0 Q=1

We shall discuss assignment statements in Section 11.5. For now, it is important to recognize that a reg
is not always equivalent to a hardware register, flip-flop, or latch. For example, the following code
describes purely combinational logic:

module declarations_3;
reg a,b,c,d,e;
initial begin 
  #10; a = 0;b = 0;c = 0;d = 0; #10; a = 0;b = 1;c = 1;d = 0;
  #10; a = 0;b = 0;c = 1;d = 1; #10; $stop;
end 
always begin 
  @(a or b or c or d) e = (a|b)&(c|d);
  $display("T=%0g",$time," e=",e);
end 
endmodule
T=10 e=0
T=20 e=1
T=30 e=0

A single-bit wire or reg is a scalar (the default). We may also declare a wire or reg as a vector with a
range of bits [Verilog LRM 3.3]. In some situations we may use implicit declaration for a scalar wire ;
it is the only data type we do not always need to declare. We must use explicit declaration for a vector
wire or any reg . We may access (or expand) the range of bits in a vector one at a time, using a
bit-select, or as a contiguous subgroup of bits (a continuous sequence of numbers--like a straight in
poker) using a part-select [Verilog LRM 4.2]. The following code shows some examples:

module declarations_4;
wire Data; // A scalar net of type wire.
wire [31:0] ABus, DBus; // Two 32-bit-wide vector wires:
// DBus[31] = leftmost = most-significant bit  = msb
// DBus[0] = rightmost = least-significant bit = lsb
// Notice the size declaration precedes the names.
// wire [31:0] TheBus, [15:0] BigBus; // This is illegal.
reg [3:0] vector; // A 4-bit vector register.
reg [4:7] nibble; // msb index < lsb index is OK.
integer i;
initial begin 
i = 1;



vector = ’b1010; // Vector without an index.
nibble = vector; // This is OK too.
#1; $display("T=%0g",$time," vector=", vector," nibble=", nibble);
#2; $display("T=%0g",$time," Bus=%b",DBus[15:0]);
end 
assign DBus [1] = 1; // This is a bit-select.
assign DBus [3:0] = ’b1111; // This is a part-select.
// assign DBus [0:3] = ’b1111; // Illegal : wrong direction.
endmodule 
T=1 vector=10 nibble=10
T=3 Bus=zzzzzzzzzzzz1111

There are no multidimensional arrays in Verilog, but we may declare a memory data type as an array
of registers [Verilog LRM 3.8]:

module declarations_5;
reg [31:0] VideoRam [7:0]; // An 8-word by 32-bit wide memory.
initial begin 
VideoRam[1] = ’bxz; // We must specify an index for a memory.
VideoRam[2] = 1; 
VideoRam[7] = VideoRam[VideoRam[2]]; // Need 2 clock cycles for this.
VideoRam[8] = 1; // Careful! the compiler won’t complain about this!
// Verify what we entered:
$display("VideoRam[0] is %b",VideoRam[0]);
$display("VideoRam[1] is %b",VideoRam[1]);
$display("VideoRam[2] is %b",VideoRam[2]);
$display("VideoRam[7] is %b",VideoRam[7]);
end 
endmodule 
VideoRam[0] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
VideoRam[1] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz
VideoRam[2] is 00000000000000000000000000000001
VideoRam[7] is xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxz

We may also declare an integer array or time array in the same way as an array of reg , but there are
no real arrays [Verilog LRM 3.9]:

module declarations_6;
integer Number [1:100]; // Notice that size follows name
time Time_Log [1:1000]; // - as in an array of reg.
// real Illegal [1:10]; // Illegal. There are no real arrays.
endmodule

11.2.3   Other Wire Types

There are the following other Verilog wire types (rarely used in ASIC design) [Verilog LRM 3.7]:

wand , wor , triand , and trior model wired logic. Wiring, or dotting, the outputs of two gates
generates a logic function (in emitter-coupled logic, ECL, or in an EPROM, for example). This is
one area in which the logic values ’z’ and ’x’ are treated differently. 
tri0 and tri1 model resistive connections to VSS or VDD. 



trireg is like a wire but associates some capacitance with the net, so it can model charge
storage. 

There are also other keywords that may appear in declarations:

scalared and vectored are properties of vectors [Verilog LRM 3.3]. 
small , medium , and large model the charge strength of trireg connections [Verilog LRM 7]. 

11.2.4   Numbers

Constant numbers are integer or real constants [Verilog LRM 2.5]. Integer constants are written as

width’radix value

where width and radix are optional. The radix (or base) indicates the type of number: decimal ( d or D
), hex ( h or H ), octal ( o or O ), or binary ( b or B ). A number may be sized or unsized. The length of
an unsized number is implementation dependent. We can use ’1’ and ’0’ as numbers since they cannot
be identifiers, but we must write 1’bx and 1’bz for ’x’ and ’z’ . A number may be declared as a
parameter [Verilog LRM 3.10]. A parameter assignment belongs inside a module declaration and has
local scope [Verilog LRM3.11]. Real constants are written using decimal (100.0) or scientific notation
(1e2) and follow IEEE Std 754-1985 for double-precision floating-point numbers. Reals are rounded to
the nearest integer, ties (numbers that end in .5) round away from zero [Verilog LRM 3.9], but not all
implementations follow this rule (the output from the following code is from VeriWell, which rounds
ties toward zero for negative integers).

module constants;
parameter H12_UNSIZED = ’h 12; // Unsized hex 12 = decimal 18.
parameter H12_SIZED = 6’h 12; // Sized hex 12 = decimal 18.
// Note: a space between base and value is OK.
// Note: ‘’ (single apostrophes) are not the same as the ’ character.
parameter D42 = 8’B0010_1010; // bin 101010 = dec 42
// OK to use underscores to increase readability.
parameter D123 = 123; // Unsized decimal (the default).
parameter D63 = 8’o 77; // Sized octal, decimal 63.
// parameter ILLEGAL = 1’o9; // No 9’s in octal numbers!
// A = ’hx and B = ’ox assume a 32 bit width. 
parameter A = ’h x, B = ’o x, C = 8’b x, D = ’h z, E = 16’h ????; 
// Note the use of ? instead of z, 16’h ???? is the same as 16’h zzzz.
// Also note the automatic extension to a width of 16 bits.
reg [3:0] B0011,Bxxx1,Bzzz1; real R1,R2,R3; integer I1,I3,I_3;
parameter BXZ = 8’b1x0x1z0z;
initial begin 
B0011 = 4’b11; Bxxx1 = 4’bx1; Bzzz1 = 4’bz1; // Left padded.
R1 = 0.1e1; R2 = 2.0; R3 = 30E-01; // Real numbers.
I1 = 1.1; I3 = 2.5; I_3 = -2.5; // IEEE rounds away from 0.
end initial begin #1;
$display
("H12_UNSIZED, H12_SIZED (hex) = %h, %h",H12_UNSIZED, H12_SIZED);
$display("D42 (bin) = %b",D42," (dec) = %d",D42);
$display("D123 (hex) = %h",D123," (dec) = %d",D123);
$display("D63 (oct) = %o",D63);
$display("A (hex) = %h",A," B (hex) = %h",B);



$display("C (hex) = %h",C," D (hex) = %h",D," E (hex) = %h",E);
$display("BXZ (bin) = %b",BXZ," (hex) = %h",BXZ);
$display("B0011, Bxxx1, Bzzz1 (bin) = %b, %b, %b",B0011,Bxxx1,Bzzz1);
$display("R1, R2, R3 (e, f, g) = %e, %f, %g", R1, R2, R3);
$display("I1, I3, I_3 (d) = %d, %d, %d", I1, I3, I_3);
end 
endmodule
H12_UNSIZED, H12_SIZED (hex) = 00000012, 12
D42 (bin) = 00101010 (dec) =  42
D123 (hex) = 0000007b (dec) =         123
D63 (oct) = 077
A (hex) = xxxxxxxx B (hex) = xxxxxxxx
C (hex) = xx D (hex) = zzzzzzzz E (hex) = zzzz
BXZ (bin) = 1x0x1z0z (hex) = XZ
B0011, Bxxx1, Bzzz1 (bin) = 0011, xxx1, zzz1
R1, R2, R3 (e, f, g) = 1.000000e+00, 2.000000, 3
I1, I3, I_3 (d) =           1,           3,          -2

11.2.5   Negative Numbers

Integer numbers are signed (two’s complement) or unsigned. The following example illustrates the
handling of negative constants [Verilog LRM 3.2 , 4.1]:

module negative_numbers;
parameter PA = -12, PB = -’d12, PC = -32’d12, PD = -4’d12; 
integer IA , IB , IC , ID ; reg [31:0] RA , RB , RC , RD ;
initial begin #1;
IA = -12; IB = -’d12; IC = -32’d12; ID = -4’d12; 
RA = -12; RB = -’d12; RC = -32’d12; RD = -4’d12; #1;
$display("     parameter    integer   reg[31:0]");
$display ("-12     =",PA,IA,,,RA);
$displayh("         ",,,,PA,,,,IA,,,,,RA);
$display ("-’d12   =",,PB,IB,,,RB);
$displayh("         ",,,,PB,,,,IB,,,,,RB);
$display ("-32’d12 =",,PC,IC,,,RC);
$displayh("         ",,,,PC,,,,IC,,,,,RC);
$display ("-4’d12  =",,,,,,,,,,PD,ID,,,RD);
$displayh("         ",,,,,,,,,,,PD,,,,ID,,,,,RD);
end 
endmodule
           parameter    integer   reg[31:0]
-12     =        -12        -12  4294967284
            fffffff4   fffffff4    fffffff4
-’d12   = 4294967284        -12  4294967284
            fffffff4   fffffff4    fffffff4
-32’d12 = 4294967284        -12  4294967284
            fffffff4   fffffff4    fffffff4
-4’d12  =          4        -12  4294967284
                   4   fffffff4    fffffff4

Verilog only "keeps track" of the sign of a negative constant if it is (1) assigned to an integer or (2)
assigned to a parameter without using a base (essentially the same thing). In other cases (even though
the bit representations may be identical to the signed number--hexadecimal fffffff4 in the previous
example), a negative constant is treated as an unsigned number. Once Verilog "loses" the sign, keeping
track of signed numbers becomes your responsibility (see also Section 11.3.1).



11.2.6   Strings

The code listings in this book use Courier font. The ISO/ANSI standard for the ASCII code defines the
characters, but not the appearance of the graphic symbol in any particular font. The confusing characters
are the quote and accent characters:

module characters; /*
" is ASCII 34 (hex 22), double quote.
’ is ASCII 39 (hex 27), tick or apostrophe.
/ is ASCII 47 (hex 2F), forward slash.
\ is ASCII 92 (hex 5C), back slash.
‘ is ASCII 96 (hex 60), accent grave.
| is ASCII 124 (hex 7C), vertical bar.
There are no standards for the graphic symbols for codes above 128.
´ is 171 (hex AB), accent acute in almost all fonts.
" is 210 (hex D2), open  double quote, like 66 (in some fonts).
" is 211 (hex D3), close double quote, like 99 (in some fonts).
‘ is 212 (hex D4), open  single quote, like  6 (in some fonts).
’ is 213 (hex D5), close single quote, like  9 (in some fonts).
*/ endmodule

Here is an example showing the use of string constants [Verilog LRM 2.6]:

module text;
parameter A_String = "abc"; // string constant, must be on one line
parameter Say = "Say \"Hey!\"";
// use escape quote \" for an embedded quote
parameter Tab = "\t"; // tab character
parameter NewLine = "\n"; // newline character
parameter BackSlash = "\\"; // back slash
parameter Tick = "\047"; // ASCII code for tick in octal
// parameter Illegal = "\500"; // illegal - no such ASCII code
initial begin$display("A_String(str) = %s ",A_String," (hex) = %h ",A_String);
$display("Say = %s ",Say," Say \"Hey!\"");
$display("NewLine(str) = %s ",NewLine," (hex) = %h ",NewLine);
$display("\\(str) = %s ",BackSlash," (hex) = %h ",BackSlash);
$display("Tab(str) = %s ",Tab," (hex) = %h ",Tab,"1 newline...");
$display("\n");
$display("Tick(str) = %s ",Tick," (hex) = %h ",Tick);
#1.23; $display("Time is %t", $time);
end 
endmodule
A_String(str) = abc  (hex) = 616263
Say = Say \"Hey!\"  Say "Hey!"
NewLine(str) = \n  (hex) = 0a
\(str) = \\  (hex) = 5c
Tab(str) = \t  (hex) = 09 1 newline...

Tick(str) = ’  (hex) = 27 
Time is                    1



Instead of parameters you may use a define directive that is a compiler directive, and not a statement
[Verilog LRM 16]. The define directive has global scope:

module define;
define G_BUSWIDTH 32 // Bus width parameter (G_ for global).
/* Note: there is no semicolon at end of a compiler directive. The character ‘ is ASCII 96 (hex 60), accent grave, it slopes down from left to right. It is not the tick or apostrophe character ’ (ASCII 39 or hex 27)*/
wire [‘G_BUSWIDTH:0]MyBus; // A 32-bit bus.
endmodule
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11.3   Operators
An expression uses any of the three types of operators: unary operators, binary operators, and a single
ternary operator [Verilog LRM 4.1]. The Verilog operators are similar to those in the C programming
language--except there is no autoincrement ( ++ ) or autodecrement ( -- ) in Verilog. Table 11.1 shows
the operators in their (increasing) order of precedence and Table 11.2 shows the unary operators. Here is
an example that illustrates the use of the Verilog operators:



TABLE 11.1    Verilog operators (in increasing order of precedence).

?: (conditional) [legal for real; associates right to left (others associate left to right)]

|| (logical or) [A smaller operand is zero-filled from its msb (0-fill); legal for real]

&& (logical and)[0-fill, legal for real]

| (bitwise or) ~| (bitwise nor) [0-fill]

^ (bitwise xor) ^~ ~^ (bitwise xnor, equivalence) [0-fill]

& (bitwise and) ~& (bitwise nand) [0-fill]

== (logical) != (logical) === (case) !== (case) [0-fill, logical versions are legal for real]

< (lt) <= (lt or equal) > (gt) >= (gt or equal) [0-fill, all arelegal for real]

<< (shift left) >> (shift right) [zero fill; no -ve shifts; shift by x or z results in unknown]

+ (addition) - (subtraction) [if any bit is x or z for + - * / % then entire result is unknown]

* (multiply) / (divide) % (modulus) [integer divide truncates fraction; + - * / legal for real]

Unary operators: ! ~ &  ~& | ~|  ^  ~^  ^~  +  - [see Table 11.2 for precedence]

TABLE 11.2    Verilog unary operators.

Operator Name Examples

! logical negation !123 is ’b0 [0, 1, or x for ambiguous; legal for real]

~ bitwise unary negation ~1’b10xz is 1’b01xx

& unary reduction and & 4’b1111 is 1’b1, & 2’bx1 is 1’bx, & 2’bz1 is 1’bx

~& unary reduction nand ~& 4’b1111 is 1’b0, ~& 2’bx1 is 1’bx

| unary reduction or  Note:

~| unary reduction nor  Reduction is performed left (first bit) to right

^ unary reduction xor  Beware of the non-associative reduction operators

~^  ^~ unary reduction xnor  z is treated as x for all unary operators

+ unary plus +2’bxz is +2’bxz [+m is the same as m; legal for real]

- unary minus -2’bxz is x [-m is unary minus m; legal for real]

module operators;
parameter A10xz = {1’b1,1’b0,1’bx,1’bz}; // Concatenation and
parameter A01010101 = {4{2’b01}}; // replication, illegal for real.
// Arithmetic operators: +, -, *, /, and modulus %
parameter A1 = (3+2) %2; // The sign of a % b is the same as sign of a.
// Logical shift operators: << (left), >> (right)
parameter A2 = 4 >> 1; parameter A4 = 1 << 2; // Note: zero fill.
// Relational operators: <, <=, >, >=
initial if (1 > 2) $stop;
// Logical operators: ! (negation), && (and), || (or)
parameter B0 = !12; parameter B1 = 1 && 2;
reg [2:0] A00x; initial begin A00x = ’b111; A00x = !2’bx1; end
parameter C1 = 1 || (1/0); /* This may or may not cause an
error: the short-circuit behavior of && and || is undefined. An



evaluation including && or || may stop when an expression is known
to be true or false. */
// == (logical equality), != (logical inequality)
parameter Ax = (1==1’bx); parameter Bx = (1’bx!=1’bz);
parameter D0 = (1==0); parameter D1 = (1==1);
// === case equality, !== (case inequality) 
// The case operators only return true (1) or false (0).
parameter E0 = (1===1’bx); parameter E1 = 4’b01xz === 4’b01xz;
parameter F1 = (4’bxxxx === 4’bxxxx);
// Bitwise logical operators:
// ~ (negation), & (and), | (inclusive or),
// ^ (exclusive or), ~^ or ^~ (equivalence)
parameter A00 = 2’b01 & 2’b10;
// Unary logical reduction operators:
// & (and), ~& (nand), | (or), ~| (nor),
// ^ (xor), ~^ or ^~ (xnor)
parameter G1= & 4’b1111;
// Conditional expression f = a ? b : c [if (a) then f=b else f=c]
// if a=(x or z), then (bitwise) f=0 if b=c=0, f=1 if b=c=1, else f=x
reg H0, a, b, c; initial begin a=1; b=0; c=1; H0=a?b:c; end
reg[2:0] J01x, Jxxx, J01z, J011;
initial begin Jxxx = 3’bxxx; J01z = 3’b01z; J011 = 3’b011;
J01x = Jxxx ? J01z : J011; end // A bitwise result.
initial begin #1;
$display("A10xz=%b",A10xz,"  A01010101=%b",A01010101);
$display("A1=%0d",A1,"  A2=%0d",A2,"  A4=%0d",A4);
$display("B1=%b",B1,"  B0=%b",B0,"  A00x=%b",A00x);
$display("C1=%b",C1,"  Ax=%b",Ax,"  Bx=%b",Bx);
$display("D0=%b",D0,"  D1=%b",D1);
$display("E0=%b",E0,"  E1=%b",E1,"  F1=%b",F1);
$display("A00=%b",A00,"  G1=%b",G1,"  H0=%b",H0);
$display("J01x=%b",J01x); end 
endmodule 
A10xz=10xz  A01010101=01010101
A1=1  A2=2  A4=4
B1=1  B0=0  A00x=00x
C1=1  Ax=x  Bx=x
D0=0  D1=1
E0=0  E1=1  F1=1
A00=00  G1=1  H0=0
J01x=01x

11.3.1   Arithmetic

Arithmetic operations on n-bit objects are performed modulo 2n in Verilog,

module modulo; reg [2:0] Seven;
initial begin 
#1 Seven = 7; #1 $display("Before=", Seven);
#1 Seven = Seven + 1; #1 $display("After =", Seven);
end 
endmodule 
Before=7
After =0

Arithmetic operations in Verilog (addition, subtraction, comparison, and so on) on vectors ( reg or
wire ) are predefined (Tables 11.1 and 11.2 show which operators are legal for real ). This is a very
important difference for ASIC designers from the situation in VHDL. However, there are some



subtleties with Verilog arithmetic and negative numbers that are illustrated by the following example
(based on an example in the LRM [Verilog LRM4.1]):

module LRM_arithmetic; 
integer IA, IB, IC, ID, IE; reg [15:0] RA, RB, RC;
initial begin 
IA = -4’d12;     RA =  IA / 3; // reg is treated as unsigned.
RB = -4’d12;     IB =  RB / 3; //
IC = -4’d12 / 3; RC = -12 / 3; // real is treated as signed
ID =    -12 / 3; IE =  IA / 3; // (two’s complement).
end 
initial begin #1;
$display("                       hex    default");
$display("IA = -4’d12     = %h%d",IA,IA);
$display("RA = IA / 3     =     %h      %d",RA,RA);
$display("RB = -4’d12     =     %h      %d",RB,RB);
$display("IB = RB / 3     = %h%d",IB,IB);
$display("IC = -4’d12 / 3 = %h%d",IC,IC);
$display("RC = -12 / 3    =     %h      %d",RC,RC);
$display("ID = -12 / 3    = %h%d",ID,ID);
$display("IE =  IA / 3    = %h%d",IE,IE);
end 
endmodule
                       hex    default
IA = -4’d12     = fffffff4        -12
RA = IA / 3     =     fffc      65532
RB = -4’d12     =     fff4      65524
IB = RB / 3     = 00005551      21841
IC = -4’d12 / 3 = 55555551 1431655761
RC = -12 / 3    =     fffc      65532
ID = -12 / 3    = fffffffc         -4
IE =  IA / 3    = fffffffc         -4

We might expect the results of all these divisions to be - 4 = -12/3. For integer assignments, the results
are correctly signed ( ID and IE ). Hex fffc (decimal 65532) is the 16-bit two’s complement of - 4, so
RA and RC are also correct if we keep track of the signs ourselves. The integer result IB is incorrect
because Verilog treats RB as an unsigned number. Verilog also treats -4’d12 as an unsigned number in
the calculation of IC . Once Verilog "loses" a sign, it cannot get it back (see also Section 11.2.5).
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11.4   Hierarchy



The module is the basic unit of code in the Verilog language [Verilog LRM 12.1],

module holiday_1(sat, sun, weekend);
  input sat, sun; output weekend;
  assign weekend = sat | sun;
endmodule

We do not have to explicitly declare the scalar wires: saturday , sunday , weekend because, since
these wires appear in the module interface, they must be declared in an input , output , or inout
statement and are thus implicitly declared. The module interface provides the means to interconnect
two Verilog modules using ports [Verilog LRM 12.3]. Each port must be explicitly declared as one of
input, output, or inout. Table 11.3 shows the characteristics of ports. Notice that a reg cannot be an
input port or an inout port. This is to stop us trying to connect a reg to another reg that may hold a
different value.

TABLE 11.3    Verilog ports.

Verilog port input output inout

Characteristics wire (or other net)
reg or wire (or other net)

We can read an output port inside a module
wire (or other net)

Within a module we may instantiate other modules, but we cannot declare other modules. Ports are
linked using named association or positional association,

‘timescale 100s/1s // Units are 100 seconds with precision of 1s.
module life; wire [3:0] n; integer days;
  wire wake_7am, wake_8am; // Wake at 7 on weekdays else at 8.
  assign n = 1 + (days % 7); // n is day of the week (1-7)
always@(wake_8am or wake_7am)
  $display("Day=",n," hours=%0d ",($time/36)%24,"  8am = ",
    wake_8am,"  7am = ",wake_7am,"  m2.weekday = ", m2.weekday);
  initial days = 0;
  initial begin #(24*36*10);$finish; end // Run for 10 days.
  always #(24*36) days = days + 1; // Bump day every 24hrs.
  rest m1(n, wake_8am); // Module instantiation.
// Creates a copy of module rest with instance name m1,
// ports are linked using positional notation.
  work m2(.weekday(wake_7am), .day(n));
// Creates a copy of module work with instance name m2,
// Ports are linked using named association.
endmodule 
module rest(day, weekend); // Module definition.
// Notice the port names are different from the parent.
  input [3:0] day; output weekend; reg weekend;
  always begin #36 weekend = day > 5; end // Need a delay here.
endmodule 
module work(day, weekday);
  input [3:0] day; output weekday; reg weekday;
  always begin #36 weekday = day < 6; end // Need a delay here.
endmodule 
Day= 1 hours=0   8am = 0  7am = 0  m2.weekday = 0
Day= 1 hours=1   8am = 0  7am = 1  m2.weekday = 1
Day= 6 hours=1   8am = 1  7am = 0  m2.weekday = 0
Day= 1 hours=1   8am = 0  7am = 1  m2.weekday = 1



The port names in a module definition and the port names in the parent module may be different. We
can associate (link or map) ports using the same order in the instantiating statement as we use in the
module definition--such as instance m1 in module life . Alternatively we can associate the ports by
naming them--such as instance m2 in module life (using a period ’.’ before the port name that we
declared in the module definition). Identifiers in a module have local scope. If we want to refer to an
identifier outside a module, we use a hierarchical name [Verilog LRM12.4] such as m1.weekend or
m2.weekday (as in module life ), for example. The compiler will first search downward (or inward)
then upward (outward) to resolve a hierarchical name [Verilog LRM 12.4-12.5].
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11.5   Procedures and Assignments
A Verilog procedure [Verilog LRM 9.9] is an always or initial statement, a task , or a function .
The statements within a sequential block (statements that appear between a begin and an end ) that is
part of a procedure execute sequentially in the order in which they appear, but the procedure executes
concurrently with other procedures. This is a fundamental difference from computer programming
languages. Think of each procedure as a microprocessor running on its own and at the same time as all
the other microprocessors (procedures). Before I discuss procedures in more detail, I shall discuss the
two different types of assignment statements:

continuous assignments that appear outside procedures 
procedural assignments that appear inside procedures 

To illustrate the difference between these two types of assignments, consider again the example used in
Section 11.4:

module holiday_1(sat, sun, weekend);
  input sat, sun; output weekend;
  assign weekend = sat | sun; // Assignment outside a procedure.
endmodule

We can change weekend to a reg instead of a wire , but then we must declare weekend and use a
procedural assignment (inside a procedure--an always statement, for example) instead of a continuous
assignment. We also need to add some delay (one time tick in the example that follows); otherwise the
computer will never be able to get out of the always procedure to execute any other procedures:

module holiday_2(sat, sun, weekend);



  input sat, sun; output weekend; reg weekend;
  always #1 weekend = sat | sun; // Assignment inside a procedure.
endmodule

We shall cover the continuous assignment statement in the next section, which is followed by an
explanation of sequential blocks and procedural assignment statements. Here is some skeleton code that
illustrates where we may use these assignment statements:

module assignments
//... Continuous assignments go here.
always // beginning of a procedure
  begin // beginning of sequential block
  //... Procedural assignments go here.
  end
endmodule

Table 11.4 at the end of Section 11.6 summarizes assignment statements, including two more forms of
assignment--you may want to look at this table now.

11.5.1   Continuous Assignment Statement

A continuous assignment statement [Verilog LRM 6.1] assigns a value to a wire in a similar way
that a real logic gate drives a real wire,

module assignment_1();
wire pwr_good, pwr_on, pwr_stable; reg Ok, Fire;
assign pwr_stable = Ok & (!Fire);
assign pwr_on = 1;  
assign pwr_good = pwr_on & pwr_stable;
initial begin Ok = 0; Fire = 0; #1 Ok = 1; #5 Fire = 1; end
initial begin $monitor("TIME=%0d",$time," ON=",pwr_on, " STABLE=",
    pwr_stable," OK=",Ok," FIRE=",Fire," GOOD=",pwr_good);
  #10 $finish; end 
endmodule 
TIME=0 ON=1 STABLE=0 OK=0 FIRE=0 GOOD=0
TIME=1 ON=1 STABLE=1 OK=1 FIRE=0 GOOD=1
TIME=6 ON=1 STABLE=0 OK=1 FIRE=1 GOOD=0

The assignment statement in this next example models a three-state bus:

module assignment_2; reg Enable; wire [31:0] Data;
/* The following single statement is equivalent to a declaration and continuous assignment. */
wire [31:0] DataBus = Enable ? Data : 32’bz;
assign Data = 32’b10101101101011101111000010100001;
  initial begin
    $monitor("Enable=%b DataBus=%b ", Enable, DataBus);
    Enable = 0; #1; Enable = 1; #1; end 
endmodule 
Enable = 0 DataBus =zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Enable = 1 DataBus =10101101101011101111000010100001

11.5.2   Sequential Block

A sequential block [Verilog LRM 9.8] is a group of statements between a begin and an end. We may
declare new variables within a sequential block, but then we must name the block. A sequential block is



considered a statement, so that we may nest sequential blocks.

A sequential block may appear in an always statement [Verilog LRM9.9.2], in which case the block
executes repeatedly. In contrast, an initial statement [Verilog LRM9.9.1] executes only once, so a
sequential block within an initial statement only executes once--at the beginning of a simulation. It
does not matter where the initial statement appears--it still executes first. Here is an example:

module always_1; reg Y, Clk;
always // Statements in an always statement execute repeatedly:
begin: my_block // Start of sequential block.
  @(posedge Clk) #5 Y = 1; // At +ve edge set Y=1,
  @(posedge Clk) #5 Y = 0; // at the NEXT +ve edge set Y=0.
end // End of sequential block.
always #10 Clk = ~ Clk; // We need a clock.
initial Y = 0; // These initial statements execute 
initial Clk = 0; // only once, but first. 
initial $monitor("T=%2g",$time,"  Clk=",Clk,"  Y=",Y);
initial #70 $finish;
endmodule
T= 0  Clk=0  Y=0
T=10  Clk=1  Y=0
T=15  Clk=1  Y=1
T=20  Clk=0  Y=1
T=30  Clk=1  Y=1
T=35  Clk=1  Y=0
T=40  Clk=0  Y=0
T=50  Clk=1  Y=0
T=55  Clk=1  Y=1
T=60  Clk=0  Y=1

11.5.3   Procedural Assignments

A procedural assignment [Verilog LRM 9.2] is similar to an assignment statement in a computer
programming language such as C. In Verilog the value of an expression on the RHS of an assignment
within a procedure (a procedural assignment) updates a reg (or memory element) on the LHS. In the
absence of any timing controls (see Section 11.6), the reg is updated immediately when the statement
executes. The reg holds its value until changed by another procedural assignment. Here is the BNF
definition:

blocking_assignment ::= reg-lvalue = [delay_or_event_control] expression

(Notice this BNF definition is for a blocking assignment--a type of procedural assignment--see
Section 11.6.4.) Here is an example of a procedural assignment (notice that a wire can only appear on
the RHS of a procedural assignment):

module procedural_assign; reg Y, A;
always @(A) 
  Y = A; // Procedural assignment.
initial begin A=0; #5; A=1; #5; A=0; #5; $finish; end 
initial $monitor("T=%2g",$time,,"A=",A,,,"Y=",Y);
endmodule 
T= 0 A=0  Y=0
T= 5 A=1  Y=1
T=10 A=0  Y=0
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11.6   Timing Controls and Delay
The statements within a sequential block are executed in order, but, in the absence of any delay, they all
execute at the same simulation time--the current time step. In reality there are delays that are modeled
using a timing control.

11.6.1   Timing Control

A timing control is either a delay control or an event control [Verilog LRM 9.7]. A delay control
delays an assignment by a specified amount of time. A timescale compiler directive is used to specify
the units of time followed by the precision used to calculate time expressions,

‘timescale 1ns/10ps // Units of time are ns. Round times to 10 ps.

Time units may only be s , ns , ps , or fs and the multiplier must be 1, 10, or 100. We can delay an
assignment in two different ways:

Sample the RHS immediately and then delay the assignment to the LHS. 
Wait for a specified time and then assign the value of the LHS to the RHS. 

Here is an example of the first alternative (an intra-assignment delay):

x = #1 y; // intra-assignment delay

The second alternative is delayed assignment:

#1 x = y; // delayed assignment

These two alternatives are not the same. The intra-assignment delay is equivalent to the following code:

begin // Equivalent to intra-assignment delay.
hold = y; // Sample and hold y immediately.
#1; // Delay.
x = hold; // Assignment to x. Overall same as x = #1 y.
end 

In contrast, the delayed assignment is equivalent to a delay followed by an assignment as follows:



begin // Equivalent to delayed assignment.
#1; // Delay.
x = y; // Assign y to x. Overall same as #1 x = y.
end 

The other type of timing control, an event control, delays an assignment until a specified event occurs.
Here is the formal definition:

event_control ::= @ event_identifier | @ (event_expression)
event_expression ::= expression | event_identifier
  | posedge expression | negedge expression
  | event_expression or event_expression

(Notice there are two different uses of ’or’ in this simplified BNF definition--the last one, in bold, is
part of the Verilog language, a keyword.) A positive edge (denoted by the keyword posedge ) is a
transition from ’0’ to ’1’ or ’x’ , or a transition from ’x’ to ’1 ’. A negative edge ( negedge ) is a
transition from ’1’ to ’0’ or ’x’ , or a transition from ’x’ to ’0’. Transitions to or from ’z’ do not
count. Here are examples of event controls:

module delay_controls; reg X, Y, Clk, Dummy;
always #1 Dummy=!Dummy; // Dummy clock, just for graphics.
// Examples of delay controls:
always begin #25 X=1;#10 X=0;#5; end
// An event control:
always @(posedge Clk) Y=X; // Wait for +ve clock edge.
always #10 Clk = !Clk; // The real clock.
initial begin Clk = 0;
  $display("T   Clk X Y");
  $monitor("%2g",$time,,,Clk,,,,X,,Y);
  $dumpvars;#100 $finish; end
endmodule
T   Clk X Y
 0  0   x x
10  1   x x
20  0   x x
25  0   1 x
30  1   1 1
35  1   0 1
40  0   0 1
50  1   0 0
60  0   0 0
65  0   1 0
70  1   1 1
75  1   0 1
80  0   0 1
90  1   0 0

The dummy clock in delay_controls helps in the graphical waveform display of the results (it provides a
one-time-tick timing grid when we zoom in, for example). Figure 11.1 shows the graphical output from
the Waves viewer in VeriWell (white is used to represent the initial unknown values). The assignment
statements to ’X’ in the always statement repeat (every 25 + 10 + 5 = 40 time ticks).



FIGURE 11.1  Output from the module
delay_controls .

  

Events can be declared (as named events), triggered, and detected as follows:

module show_event;
reg clock;
event event_1, event_2; // Declare two named events.
always @(posedge clock) -> event_1; // Trigger event_1.
always @ event_1 
begin $display("Strike 1!!"); -> event_2; end // Trigger event_2.
always @ event_2 begin $display("Strike 2!!");
$finish; end // Stop on detection of event_2.
always #10 clock = ~ clock; // We need a clock.
initial clock = 0;
endmodule 
Strike 1!!
Strike 2!!

11.6.2   Data Slip

Consider this model for a shift register and the simulation output that follows:

module data_slip_1 (); reg Clk, D, Q1, Q2;
/************* bad sequential logic below ***************/
always @(posedge Clk)  Q1 = D;
always @(posedge Clk)  Q2 = Q1; // Data slips here!
/************* bad sequential logic above ***************/
initial begin Clk = 0; D = 1; end always #50 Clk = ~Clk;
initial begin $display("t   Clk D Q1 Q2");
$monitor("%3g",$time,,Clk,,,,D,,Q1,,,Q2); end
initial #400 $finish; // Run for 8 cycles.
initial $dumpvars;
endmodule 
t   Clk D Q1 Q2
  0 0   1 x  x
 50 1   1 1  1
100 0   1 1  1
150 1   1 1  1
200 0   1 1  1
250 1   1 1  1
300 0   1 1  1
350 1   1 1  1

The first clock edge at t = 50 causes Q1 to be updated to the value of D at the clock edge (a ’1’ ), and at
the same time Q2 is updated to this new value of Q1 . The data, D , has passed through both always
statements. We call this problem data slip.

If we include delays in the always statements (labeled 3 and 4) in the preceding example, like this--

always @(posedge Clk)  Q1 = #1 D;  // The delays in the assignments
always @(posedge Clk)  Q2 = #1 Q1; // fix the data slip.



--we obtain the correct output:

t   Clk D Q1 Q2
  0 0   1 x  x
 50 1   1 x  x
 51 1   1 1  x
100 0   1 1  x
150 1   1 1  x
151 1   1 1  1
200 0   1 1  1
250 1   1 1  1
300 0   1 1  1
350 1   1 1  1

11.6.3   Wait Statement

The wait statement [Verilog LRM9.7.5] suspends a procedure until a condition becomes true. There
must be another concurrent procedure that alters the condition (in this case the variable Done --in general
the condition is an expression) in the following wait statement; otherwise we are placed on "infinite
hold":

wait (Done) $stop; // Wait until Done = 1 then stop.

Notice that the Verilog wait statement does not look for an event or a change in the condition; instead it
is level-sensitive--it only cares that the condition is true.

module test_dff_wait;
reg D, Clock, Reset; dff_wait u1(D, Q, Clock, Reset);
initial begin D=1; Clock=0;Reset=1’b1; #15 Reset=1’b0; #20 D=0; end
always #10 Clock = !Clock; 
initial begin $display("T  Clk D Q Reset");
  $monitor("%2g",$time,,Clock,,,,D,,Q,,Reset); #50 $finish; end
endmodule 
module dff_wait(D, Q, Clock, Reset);
output Q; input D, Clock, Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D;
always begin wait (Reset == 1) Q = 0; wait (Reset !== 1); end 
endmodule
T  Clk D Q Reset
 0 0   1 0 1
10 1   1 0 1
15 1   1 0 0
20 0   1 0 0
30 1   1 1 0
35 1   0 1 0
40 0   0 1 0

We must include wait statements in module dff_wait above to wait for both Reset==1 and Reset==0 .
If we were to omit the wait statement for Reset==0 , as in the following code:

module dff_wait(D,Q,Clock,Reset);
output Q; input D,Clock,Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D;
// We need another wait statement here or we shall spin forever.
always begin wait (Reset == 1) Q = 0; end 
endmodule



the simulator would cycle endlessly, and we would need to press the ’Stop’ button or ’CTRL-C’ to halt
the simulator. Here is the console window in VeriWell:

C1> .
T  Clk D Q Reset                   <- at this point nothing happens, so press CTRL-C
Interrupt at time 0
C1>

11.6.4   Blocking and Nonblocking Assignments

If a procedural assignment in a sequential block contains a timing control, then the execution of the
following statement is delayed or blocked. For this reason a procedural assignment statement is also
known as a blocking procedural assignment statement [Verilog LRM 9.2]. We covered this type of
statement in Section 11.5.3. The nonblocking procedural assignment statement allows execution in a
sequential block to continue and registers are all updated together at the end of the current time step.
Both types of procedural assignment may contain timing controls. Here is an artificially complicated
example that illustrates the different types of assignment:

module delay;
reg a,b,c,d,e,f,g,bds,bsd;
initial begin 
a = 1; b = 0; // No delay control.
#1 b = 1;     // Delayed assignment.
c = #1 1;     // Intra-assignment delay.
#1;           // Delay control.
d = 1;        //
e <= #1 1;    // Intra-assignment delay, nonblocking assignment
#1 f <= 1;    // Delayed nonblocking assignment.
g <= 1;       // Nonblocking assignment.
end 
initial begin #1 bds = b; end // Delay then sample (ds).
initial begin bsd = #1 b; end // Sample then delay (sd).
initial begin $display("t a b c d e f g bds bsd");
$monitor("%g",$time,,a,,b,,c,,d,,e,,f,,g,,bds,,,,bsd); end
endmodule 
t a b c d e f g bds bsd
0 1 0 x x x x x x   x
1 1 1 x x x x x 1   0
2 1 1 1 x x x x 1   0
3 1 1 1 1 x x x 1   0
4 1 1 1 1 1 1 1 1   0

Many synthesis tools will not allow us to use blocking and nonblocking procedural assignments to the
same reg within the same sequential block.

11.6.5   Procedural Continuous Assignment

A procedural continuous assignment statement [Verilog LRM 9.3] (sometimes called a
quasicontinuous assignment statement) is a special form of the assign statement that we use within a
sequential block. For example, the following flip-flop model assigns to q depending on the clear, clr_,
and preset, pre_, inputs (in general it is considered very bad form to use a trailing underscore to signify
active-low signals as I have done to save space; you might use " _n " instead).



module dff_procedural_assign;
reg d,clr_,pre_,clk; wire q; dff_clr_pre dff_1(q,d,clr_,pre_,clk);
always #10 clk = ~clk;
initial begin clk = 0; clr_ = 1; pre_ = 1; d = 1;
  #20; d = 0; #20; pre_ = 0; #20; pre_ = 1; #20; clr_ = 0;
  #20; clr_ = 1; #20; d = 1; #20; $finish; end 
initial begin 
  $display("T  CLK PRE_ CLR_ D Q");
  $monitor("%3g",$time,,,clk,,,,pre_,,,,clr_,,,,d,,q); end 
endmodule 
module dff_clr_pre(q,d,clear_,preset_,clock);
output q; input d,clear_,preset_,clock; reg q;
always @(clear_ or preset_)
  if (!clear_) assign q = 0; // active-low clear
  else if(!preset_) assign q = 1; // active-low preset
  else deassign q;
always @(posedge clock) q = d;
endmodule 
T  CLK PRE_ CLR_ D Q
  0  0   1   1   1 x
 10  1   1   1   1 1
 20  0   1   1   0 1
 30  1   1   1   0 0
 40  0   0   1   0 1
 50  1   0   1   0 1
 60  0   1   1   0 1
 70  1   1   1   0 0
 80  0   1   0   0 0
 90  1   1   0   0 0
100  0   1   1   0 0
110  1   1   1   0 0
120  0   1   1   1 0
130  1   1   1   1 1

We have now seen all of the different forms of Verilog assignment statements. The following skeleton
code shows where each type of statement belongs:

module all_assignments
//... continuous assignments.
always // beginning of procedure
  begin // beginning of sequential block
  //... blocking procedural assignments.
  //... nonblocking procedural assignments.
  //... procedural continuous assignments.
  end
endmodule

Table 11.4 summarizes the different types of assignments.



TABLE 11.4    Verilog assignment statements.

Type of
Verilog
assignment

Continuous assignment
statement

Procedural
assignment
statement

Nonblocking
procedural
assignment
statement

Procedural
continuous
assignment
statement

Where it can
occur

outside an always or
initial statement, task, or
function

inside an always
or initial
statement, task, or
function

inside an always or
initial statement,
task, or function

always or initial
statement, task, or
function

Example

wire [31:0] DataBus;
assign DataBus =
 Enable ? Data :
 32’bz

reg Y;
always
@(posedge
clock) Y = 1;

reg Y;
always Y <= 1;

always
@(Enable)
if(Enable)
assign Q = D;
else deassign
Q;

Valid LHS of
assignment

net register or
memory element

register or memory
element

net

Valid RHS of
assignment

<expression>

net, reg or memory
element

<expression>

net, reg or
memory element

<expression>

net, reg or memory
element

<expression>

net, reg or
memory element

Book 11.5.1 11.5.3 11.6.4 11.6.5

Verilog LRM 6.1 9.2 9.2.2 9.3
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11.7   Tasks and Functions
A task [Verilog LRM 10.2] is a type of procedure, called from another procedure. A task has both
inputs and outputs but does not return a value. A task may call other tasks and functions. A function
[Verilog LRM 10.3] is a procedure used in any expression, has at least one input, no outputs, and returns
a single value. A function may not call a task. In Section 11.5 we covered all of the different Verilog
procedures except for tasks and functions. Now that we have covered timing controls, we can explain
the difference between tasks and functions: Tasks may contain timing controls but functions may not.
The following two statements help illustrate the difference between a function and a task:



Call_A_Task_And_Wait (Input1, Input2, Output);
Result_Immediate = Call_A_Function (All_Inputs);

Functions are useful to model combinational logic (rather like a subroutine):

module F_subset_decode; reg [2:0]A, B, C, D, E, F;
initial begin A = 1; B = 0; D = 2; E = 3;
  C = subset_decode(A, B); F = subset_decode(D,E);
  $display("A B C D E F"); $display(A,,B,,C,,D,,E,,F); end
function [2:0] subset_decode; input [2:0] a, b;
  begin if (a <= b) subset_decode = a; else subset_decode = b; end
endfunction 
endmodule
A B C D E F
1 0 0 2 3 2
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11.8   Control Statements
In this section we shall discuss the Verilog if , case , loop , disable , fork , and join statements that
control the flow of code execution.

11.8.1   Case and If Statement

An if statement [Verilog LRM 9.4] represents a two-way branch. In the following example, switch
has to be true to execute ’Y = 1’ ; otherwise ’Y = 0’ is executed:

if(switch) Y = 1; else Y = 0;

The case statement [Verilog LRM 9.5] represents a multiway branch. A controlling expression is
matched with case expressions in each of the case items (or arms) to determine a match,

module test_mux; reg a, b, select; wire out;
mux mux_1(a, b, out, select);
initial begin #2; select = 0; a = 0; b = 1;
  #2; select = 1’bx; #2; select = 1’bz; #2; select = 1; end 
initial $monitor("T=%2g",$time,"  Select=",select,"  Out=",out);
initial #10 $finish;
endmodule 
module mux(a, b, mux_output, mux_select); input a, b, mux_select;



output mux_output; reg mux_output;
always begin 
case(mux_select)
  0: mux_output = a;
  1: mux_output = b;
  default mux_output = 1’bx; // If select = x or z set output to x.
endcase 
#1; // Need some delay, otherwise we’ll spin forever.
end 
endmodule
T= 0  Select=x  Out=x
T= 2  Select=0  Out=x
T= 3  Select=0  Out=0
T= 4  Select=x  Out=0
T= 5  Select=x  Out=x
T= 6  Select=z  Out=x
T= 8  Select=1  Out=x
T= 9  Select=1  Out=1

Notice that the case statement must be inside a sequential block (inside an always statement). Because
the case statement is inside an always statement, it needs some delay; otherwise the simulation runs
forever without advancing simulation time. The casex statement handles both ’z’ and ’x’ as don’t care
(so that they match any bit value), the casez statement handles ’z’ bits, and only ’z’ bits, as don’t
care. Bits in case expressions may be set to ’?’ representing don’t care values, as follows:

casex (instruction_register[31:29])
  3b’??1 : add;
  3b’?1? : subtract;
  3b’1?? : branch;
endcase

11.8.2   Loop Statement

A loop statement [Verilog LRM 9.6] is a for, while, repeat, or forever statement. Here are four
examples, one for each different type of loop statement, each of which performs the same function. The
comments with each type of loop statement illustrate how the controls work:

module loop_1;
integer i; reg [31:0] DataBus; initial DataBus = 0;
initial begin 
/************** Insert loop code after here. ******************/
/* for(Execute this assignment once before starting loop; exit loop if this expression is false; execute this assignment at end of loop before the check for end of loop.) */
for(i = 0; i <= 15; i = i+1) DataBus[i] = 1;
/*************** Insert loop code before here. ****************/
end 
initial begin
$display("DataBus = %b",DataBus);
#2; $display("DataBus = %b",DataBus); $finish;
end 
endmodule

Here is the while statement code (to replace line 4 in module loop_1 ):

i = 0;
/* while(Execute next statement while this expression is true.) */
while(i <= 15) begin DataBus[i] = 1; i = i+1; end



Here is the repeat statement code (to replace line 4 in module loop_1 ):

i = 0;
/* repeat(Execute next statement the number of times corresponding to the evaluation of this expression at the beginning of the loop.) */
repeat(16) begin DataBus[i] = 1; i = i+1; end 

Here is the forever statement code (to replace line 4 in module loop_1 ):

i = 0;
/* A forever statement loops continuously. */
forever begin : my_loop
  DataBus[i] = 1;
  if (i == 15) #1 disable my_loop; // Need to let time advance to exit.
  i = i+1; 
end

The output for all four forms of looping statement is the same:

DataBus = 00000000000000000000000000000000
DataBus = 00000000000000001111111111111111

11.8.3   Disable

The disable statement [Verilog LRM 11] stops the execution of a labeled sequential block and skips to
the end of the block:

forever
begin: microprocessor_block // Labeled sequential block.
  @(posedge clock)
  if (reset) disable microprocessor_block; // Skip to end of block.
  else Execute_code;
end

Use the disable statement with caution in ASIC design. It is difficult to implement directly in
hardware.

11.8.4   Fork and Join

The fork statement and join statement [Verilog LRM 9.8.2] allows the execution of two or more
parallel threads in a parallel block:

module fork_1
event eat_breakfast, read_paper;
initial begin
  fork 
  @eat_breakfast; @read_paper;
  join 
end 
endmodule

This is another Verilog language feature that should be used with care in ASIC design, because it is
difficult to implement in hardware.
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11.9   Logic-Gate Modeling
Verilog has a set of built-in logic models and you may also define your own models.

11.9.1   Built-in Logic Models

Verilog’s built-in logic models are the following primitives [Verilog LRM7]:

and, nand, nor, or, xor, xnor 

You may use these primitives as you use modules. For example:

module primitive;
nand (strong0, strong1) #2.2
  Nand_1(n001, n004, n005),
  Nand_2(n003, n001, n005, n002);
nand (n006, n005, n002);
endmodule

This module models three NAND gates (Figure 11.2). The first gate (line 3) is a two-input gate named
Nand_1 ; the second gate (line 4) is a three-input gate named Nand_2 ; the third gate (line 5) is unnamed.
The first two gates have strong drive strengths [Verilog LRM3.4] (these are the defaults anyway) and
2.2 ns delay; the third gate takes the default values for drive strength (strong) and delay (zero). The first
port of a primitive gate is always the output port. The remaining ports for a primitive gate (any number
of them) are the input ports.

  

FIGURE 11.2  An example schematic (drawn with Capilano’s DesignWorks) to illustrate the use of
Verilog primitive gates.



Table 11.5 shows the definition of the and gate primitive (I use lowercase ’and’ as the name of the
Verilog primitive, rather than ’AND’ , since Verilog is case-sensitive). Notice that if one input to the
primitive ’and’ gate is zero, the output is zero, no matter what the other input is.

TABLE 11.5    Definition of the Verilog primitive ’and’ gate.

’and’ 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

11.9.2   User-Defined Primitives

We can define primitive gates (a user-defined primitive or UDP) using a truth-table specification
[Verilog LRM8]. The first port of a UDP must be an output  port, and this must be the only o utput
port (we may not use vector or inout ports):

primitive Adder(Sum, InA, InB);
output Sum; input Ina, InB;
table 
// inputs : output
00 : 0;
01 : 1;
10 : 1;
11 : 0;
endtable 
endprimitive

We may only specify the values ’0’ , ’1’ , and ’x’ as inputs in a UDP truth table. Any ’z’ input is
treated as an ’x’ . If there is no entry in a UDP truth table that exactly matches a set of inputs, the output
is ’x’ (unknown).

We can construct a UDP model for sequential logic by including a state in the UDP truth-table
definition. The state goes between an input and an output in the table and the output then represents the
next state. The following sequential UDP model also illustrates the use of shorthand notation in a UDP
truth table:

primitive DLatch(Q, Clock, Data);
output Q; reg Q; input Clock, Data;
table 
//inputs : present state : output (next state)
1 0 : ? : 0; // ? represents 0,1, or x (input or present state).
1 1 : b : 1; // b represents 0 or 1 (input or present state).
1 1 : x : 1; // Could have combined this with previous line.
0 ? : ? : -; // - represents no change in an output.
endtable 
endprimitive

Be careful not to confuse the ’?’ in a UDP table (shorthand for ’0’ , ’1’ , or ’x’ ) with the ’?’ in a



constant that represents an extension to ’z’ (Section 11.2.4) or the ’?’ in a case statement that
represents don’t care values (Section 11.8.1).

For sequential UDP models that need to detect edge transitions on inputs, there is another special
truth-table notation (ab) that represents a change in logic value from a to b . For example, (01)
represents a rising edge. There are also shorthand notations for various edges:

* is (??) 
r is (01) 
f is (10) 
p is (01), (0x), or (x1) 
n is (10), (1x), or (x0) 

primitive DFlipFlop(Q, Clock, Data);
output Q; reg Q; input Clock, Data;
table 
//inputs : present state : output (next state)
r    0 : ? : 0 ; // rising edge, next state = output = 0
r    1 : ? : 1 ; // rising edge, next state = output = 1
(0x) 0 : 0 : 0 ; // rising edge, next state = output = 0
(0x) 1 : 1 : 1 ; // rising edge, next state = output = 1
(?0) ? : ? : - ; // falling edge, no change in output
? (??) : ? : - ; // no clock edge, no change in output
endtable 
endprimitive
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11.10   Modeling Delay
Verilog has a set of built-in methods to define delays. This is very important in ASIC physical design.
Before we start layout, we can use ASIC cell library models written in Verilog that include logic delays
as a function of fanout and estimated wiring loads. After we have completed layout, we can extract the
wiring capacitance, allowing us to calculate the exact delay values. Using the techniques described in
this section, we can then back-annotate our Verilog netlist with postlayout delays and complete a
postlayout simulation.

We can complete this back-annotation process in a standard fashion since delay specification is part of
the Verilog language. This makes working with an ASIC cell library and the ASIC foundry that will
fabricate our ASIC much easier. Typically an ASIC library company might sell us a cell library



complete with Verilog models that include all the minimum, typical, and maximum delays as well as the
different values for rising and falling transitions. The ASIC foundry will provide us with a delay
calculator that calculates the net delays (this is usually proprietary technology) from the layout. These
delays are held in a separate file (the Standard Delay Format, SDF, is widely used) and then mapped
to parameters in the Verilog models. If we complete back-annotation and a postlayout simulation using
an approved cell library, the ASIC foundry will "sign off" on our design. This is basically a guarantee
that our chip will work according to the simulation. This ability to design sign-off quality ASIC cell
libraries is very important in the ASIC design process.

11.10.1   Net and Gate Delay

We saw how to specify a delay control for any statement in Section 11.6. In fact, Verilog allows us to
specify minimum, typical, and maximum values for the delay as follows [Verilog LRM7.15]:

#(1.1:1.3:1.7) assign delay_a = a; // min:typ:max

We can also specify the delay properties of a wire in a similar fashion:

wire #(1.1:1.3:1.7) a_delay; // min:typ:max

We can specify delay in a wire declaration together with a continuous assignment as in the following
example:

wire #(1.1:1.3:1.7) a_delay = a; // min:typ:max

but in this case the delay is associated with the driver and not with the wire .

In Section 11.9.1 we explained that we can specify a delay for a logic primitive. We can also specify
minimum, typical, and maximum delays as well as separate delays for rising and falling transitions for
primitives as follows [Verilog LRM4.3]:

nand #3.0 nd01(c, a, b);
nand #(2.6:3.0:3.4) nd02(d, a, b); // min:typ:max
nand #(2.8:3.2:3.4, 2.6:2.8:2.9) nd03(e, a, b);
// #(rising, falling) delay

The first NAND gate, nd01 , has a delay of 3 ns (assuming we specified nanoseconds as the timescale)
for both rising and falling delays. The NAND gate nd02 has a triplet for the delay; this corresponds to a
minimum (2.6 ns), typical (3.0 ns), and a maximum delay (3.4 ns). The NAND gate nd03 has two
triplets for the delay: The first triplet specifies the min/typ/max rising delay ( ’0’ or ’x’ or ’z’ to ’1’
), and the second triplet specifies the min/typ/max falling delay ( ’1’ or ’x’ or ’z’ to ’0’ ).

Some primitives can produce a high-impedance output, ’z’ . In this case we can specify a triplet of
delay values corresponding to rising transition, falling transition, and the delay to transition to ’z’ (from
’0’ or ’1’ to ’z’ --this is usually the delay for a three-state driver to turn off or float). We can do the
same thing for net types,

wire #(0.5,0.6,0.7) a_z = a; // rise/fall/float delays

11.10.2   Pin-to-Pin Delay



The specify block [Verilog LRM 13] is a special construct in Verilog that allows the definition of
pin-to-pin delays across a module. The use of a specify block can include the use of built-in system
functions to check setup and hold times, for example. The following example illustrates how to specify
pin-to-pin timing for a D flip-flop. We declare the timing parameters first followed by the paths. This
example uses the UDP from Section 11.9.2, which does not include preset and clear (so only part of the
flip-flop function is modeled), but includes the timing for preset and clear for illustration purposes.

module DFF_Spec; reg D, clk;
DFF_Part DFF1 (Q, clk, D, pre, clr);
initial begin D = 0; clk = 0; #1; clk = 1; end
initial $monitor("T=%2g", $time," clk=", clk," Q=", Q);
endmodule 
module DFF_Part(Q, clk, D, pre, clr);
  input clk, D, pre, clr; output Q; 
  DFlipFlop(Q, clk, D); // No preset or clear in this UDP.
  specify 
    specparam 
    tPLH_clk_Q = 3, tPHL_clk_Q = 2.9,
    tPLH_set_Q = 1.2, tPHL_set_Q = 1.1;
  (clk => Q) = (tPLH_clk_Q, tPHL_clk_Q);
  (pre, clr *> Q) = (tPLH_set_Q, tPHL_set_Q);
  endspecify
endmodule
T= 0 clk=0 Q=x
T= 1 clk=1 Q=x
T= 4 clk=1 Q=0

There are the following two ways to specify paths (module DFF_part above uses both) [Verilog
LRM13.3]:

x => y specifies a parallel connection (or parallel path) between x and y ( x and y must have the
same number of bits). 
x *> y specifies a full connection (or full path) between x and y (every bit in x is connected to y)
. In this case x and y may be different sizes. 

The delay of some logic cells depends on the state of the inputs. This can be modeled using a
state-dependent path delay. Here is an example:

‘timescale 1 ns / 100 fs
module M_Spec; reg A1, A2, B; M M1 (Z, A1, A2, B);
initial begin A1=0;A2=1;B=1;#5;B=0;#5;A1=1;A2=0;B=1;#5;B=0; end
initial 
  $monitor("T=%4g",$realtime," A1=",A1," A2=",A2," B=",B," Z=",Z);
endmodule 
‘timescale 100 ps / 10 fs
module M(Z, A1, A2, B); input A1, A2, B; output Z; 
or (Z1, A1, A2); nand (Z, Z1, B); // OAI21
/*A1 A2 B Z  Delay=10*100 ps unless indicated in the table below.
  0  0  0 1 
  0  0  1 1
  0  1  0 1  B:0->1 Z:1->0 delay=t2
  0  1  1 0  B:1->0 Z:0->1 delay=t1
  1  0  0 1  B:0->1 Z:1->0 delay=t4
  1  0  1 0  B:1->0 Z:0->1 delay=t3
  1  1  0 1 



  1  1  1 0 */
specify specparam t1 = 11, t2 = 12; specparam t3 = 13, t4 = 14; 
  (A1 => Z) = 10; (A2 => Z) = 10;
  if (~A1) (B => Z) = (t1, t2); if (A1) (B => Z) = (t3, t4);
endspecify 
endmodule
T=   0 A1=0 A2=1 B=1 Z=x
T=   1 A1=0 A2=1 B=1 Z=0
T=   5 A1=0 A2=1 B=0 Z=0
T= 6.1 A1=0 A2=1 B=0 Z=1
T=  10 A1=1 A2=0 B=1 Z=1
T=  11 A1=1 A2=0 B=1 Z=0
T=  15 A1=1 A2=0 B=0 Z=0
T=16.3 A1=1 A2=0 B=0 Z=1
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11.11   Altering Parameters
Here is an example of a module that uses a parameter [Verilog LRM3.10, 12.2]:

module Vector_And(Z, A, B);
  parameter CARDINALITY = 1;
  input [CARDINALITY-1:0] A, B;
  output [CARDINALITY-1:0] Z;
  wire [CARDINALITY-1:0] Z = A & B;
endmodule

We can override this parameter when we instantiate the module as follows:

module Four_And_Gates(OutBus, InBusA, InBusB);
  input [3:0] InBusA, InBusB; output [3:0] OutBus;
  Vector_And #(4) My_AND(OutBus, InBusA, InBusB); // 4 AND gates
endmodule

The parameters of a module have local scope, but we may override them using a defparam statement
and a hierarchical name, as in the following example:

module And_Gates(OutBus, InBusA, InBusB);
  parameter WIDTH = 1;
  input [WIDTH-1:0] InBusA, InBusB; output [WIDTH-1:0] OutBus;
  Vector_And #(WIDTH) My_And(OutBus, InBusA, InBusB);
endmodule 
module Super_Size; defparam And_Gates.WIDTH = 4; endmodule
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11.12   A Viterbi Decoder
This section describes an ASIC design for a Viterbi decoder using Verilog. Christeen Gray completed
the original design as her MS thesis at the University of Hawaii (UH) working with VLSI Technology,
using the Compass ASIC Synthesizer and a VLSI Technology cell library. The design was mapped from
VLSI Technology design rules to Hewlett-Packard design rules; prototypes were fabricated by
Hewlett-Packard (through Mosis) and tested at UH.

11.12.1   Viterbi Encoder

Viterbi encoding is widely used for satellite and other noisy communications channels. There are two
important components of a channel using Viterbi encoding: the Viterbi encoder (at the transmitter) and
the Viterbi decoder (at the receiver). A Viterbi encoder includes extra information in the transmitted
signal to reduce the probability of errors in the received signal that may be corrupted by noise.

I shall describe an encoder in which every two bits of a data stream are encoded into three bits for
transmission. The ratio of input to output information in an encoder is the rate of the encoder; this is a
rate 2/3 encoder. The following equations relate the three encoder output bits (Yn

2 , Yn
1 , and Yn

0 ) to

the two encoder input bits (Xn
2 and Xn

1 ) at a time nT:

Yn
2 = Xn

2

Yn
1 = Xn

1 xor Xn-2
1

Yn
0 = Xn-1

1 

We can write the input bits as a single number. Thus, for example, if Xn
2 = 1 and Xn

2 = 0 , we can write

Xn = 2 . Equation 11.1 defines a state machine with two memory elements for the two last input values

for Xn
1 : Xn-1

1 and Xn-2
1 . These two state variables define four states: {Xn-1

1, Xn-2
1 } , with S0 = {

0, 0}, S1 = {1, 0}, S2 = {0, 1}, and S3 = {1, 1}. The 3-bit output Yn is a function of the state and current

2-bit input X  .



2-bit input Xn .

The following Verilog code describes the rate 2/3 encoder. This model uses two D flip-flops as the state
register. When reset (using active-high input signal res ) the encoder starts in state S0 . In Verilog I

represent Yn
2 by Y2N , for example.

/******************************************************/
/* module viterbi_encode                              */
/******************************************************/
/* This is the encoder. X2N (msb) and X1N form the 2-bit input
message, XN. Example: if X2N=1, X1N=0, then XN=2. Y2N (msb), Y1N, and
Y0N form the 3-bit encoded signal, YN (for a total constellation of 8
PSK signals that will be transmitted). The encoder uses a state
machine with four states to generate the 3-bit output, YN, from the
2-bit input, XN. Example: the repeated input sequence XN = (X2N, X1N)
= 0, 1, 2, 3 produces the repeated output sequence YN = (Y2N, Y1N,
Y0N) = 1, 0, 5, 4. */
module viterbi_encode(X2N,X1N,Y2N,Y1N,Y0N,clk,res);
input X2N,X1N,clk,res; output Y2N,Y1N,Y0N;
wire X1N_1,X1N_2,Y2N,Y1N,Y0N;
dff dff_1(X1N,X1N_1,clk,res); dff dff_2(X1N_1,X1N_2,clk,res);
assign Y2N=X2N; assign Y1N=X1N ^ X1N_2; assign Y0N=X1N_1; 
endmodule 

Figure 11.3 shows the state diagram for this encoder. The first four rows of Table 11.6 show the four
different transitions that can be made from state S0 . For example, if we reset the encoder and the input

is Xn = 3 (Xn
2 = 1 and Xn

1 = 1), then the output will be Yn = 6  (Yn
2 = 1 ,  Yn

1 = 1 , Yn
0 = 0 ) and the

next state will be S1 .

 

FIGURE 11.3  A state diagram for a rate 2/3 Viterbi encoder. The inputs and outputs are shown in
binary as Xn

2 Xn
1 / Yn

2Yn
1Yn

0 , and in decimal as Xn/ Yn .



TABLE 11.6    State table for the rate 2/3 Viterbi encoder.

Present state

    Outputs  

 Inputs  State variables Yn
2  Yn

1  Yn
0  Next state

 Xn
2 Xn

1   Xn-1
1  Xn-2

1  Xn
2  = Xn

1 xor Xn-2
1  = Xn-1

1  {Xn-1
1, Xn-2

1}  

S0  0 0  0 0 0 0 0 00 S0

S0  0 1  0 0 0 1 0 10 S1

S0  1 0  0 0 1 0 0 00 S0

S0  1 1  0 0 1 1 0 10 S1

S1  0 0  1 0 0 0 1 01 S2

S1  0 1  1 0 0 1 1 11 S3

S1  1 0  1 0 1 0 1 01 S2

S1  1 1  1 0 1 1 1 11 S3

S2  0 0  0 1 0 1 0 00 S0

S2  0 1  0 1 0 0 0 10 S1

S2  1 0  0 1 1 1 0 00 S0

S2  1 1  0 1 1 0 0 10 S1

S3  0 0  1 1 0 1 1 01 S2

S3  0 1  1 1 0 0 1 11 S3

S3  1 0  1 1 1 1 1 01 S2

S3  1 1  1 1 1 0 1 11 S3

As an example, the repeated encoder input sequence Xn = 0, 1, 2, 3, ... produces the encoder output

sequence Yn = 1, 0, 5, 4, ... repeated. Table 11.7 shows the state transitions for this sequence, including

the initialization steps.

FIGURE 11.4  The signal constellation for an 8 PSK (phase-shift keyed)
code.

 



TABLE 11.7    A sequence of transmitted signals for the rate 2/3 Viterbi encoder

Time

ns

Inputs  State variables  Outputs  
Present state Next state

Xn
2  Xn

1   Xn-1
1 Xn-2

1   Yn
2  Yn

1  Yn
0   

0 1 1  x x  1 x x  S? S?

10 1 1  0 0  1 1 0  S0 S1

50 0 0  1 0  0 0 1  S1 S2

150 0 1  0 1  0 0 0  S2 S1

250 1 0  1 0  1 0 1  S1 S2

350 1 1  0 1  1 0 0  S2 S1

450 0 0  1 0  0 0 1  S1 S2

550 0 1  0 1  0 0 0  S2 S1

650 1 0  1 0  1 0 1  S1 S2

750 1 1  0 1  1 0 0  S2 S1

850 0 0  1 0  0 0 1  S1 S2

950 0 1  0 1  0 0 0  S2 S1

Next we transmit the eight possible encoder outputs (Yn = 0-7 ) as signals over our noisy

communications channel (perhaps a microwave signal to a satellite) using the signal constellation
shown in Figure 11.4. Typically this is done using phase-shift keying ( PSK) with each signal position
corresponding to a different phase shift in the transmitted carrier signal.

11.12.2   The Received Signal

The noisy signal enters the receiver. It is now our task to discover which of the eight possible signals
were transmitted at each time step. First we calculate the distance of each received signal from each of
the known eight positions in the signal constellation. Table 11.8 shows the distances between signals in
the 8PSK constellation. We are going to assume that there is no noise in the channel to illustrate the
operation of the Viterbi decoder, so that the distances in Table 11.8 represent the possible distance
measures of our received signal from the 8PSK signals.

The distances, X, in the first column of Table 11.8 are the geometric or algebraic distances. We measure
the Euclidean distance, E = X2 shown as B (the binary quantized value of E) in Table 11.8. The
rounding errors that result from conversion to fixed-width binary are quantization errors and are
important in any practical implementation of the Viterbi decoder. The effect of the quantization error is
to add a form of noise to the received signal.



The following code models the receiver section that digitizes the noisy analog received signal and
computes the binary distance measures. Eight binary-distance measures, in0-in7 , are generated each
time a signal is received. Since each of the distance measures is 3 bits wide, there are a total of 24 bits (8
¥ 3) that form the digital inputs to the Viterbi decoder.

TABLE 11.8    Distance measures for Viterbi encoding (8PSK).

Signal
Algebraic
distance from
signal 0

X = Distance
from signal 0

Euclidean
distance

E = X2

B = binary
quantized value
of E

D = decimal
value of B

Quantization
error

Q = D - 1.75 E

0 2 sin (0 &pi; /
8)  

0.00 0.00 000 0 0  

1 2 sin (1 &pi; /
8)  

0.77 0.59 001 1 -0.0325  

2 2 sin (2 &pi; /
8)  

1.41 2.00 100 4 0.5  

3 2 sin (3 &pi; /
8)  

1.85 3.41 110 6 0.0325  

4 2 sin (4 &pi; /
8)  

2.00 4.00 111 7 0  

5 2 sin (5 &pi; /
8)  

1.85 3.41 110 6 0.0325  

6 2 sin (6 &pi; /
8)  

1.41 2.00 100 4 0.5  

7 2 sin (7 &pi; /
8)  

0.77 0.59 001 1 -0.0325  

/******************************************************/
/* module viterbi_distances                           */
/******************************************************/
/* This module simulates the front end of a receiver. Normally the
received analog signal (with noise) is converted into a series of
distance measures from the known eight possible transmitted PSK
signals: s0,...,s7. We are not simulating the analog part or noise in
this version, so we just take the digitally encoded 3-bit signal, Y,
from the encoder and convert it directly to the distance measures.
d[N] is the distance from signal = N to signal = 0
d[N] = (2*sin(N*PI/8))**2 in 3-bit binary (on the scale 2=100)
Example: d[3] = 1.85**2 = 3.41 = 110
inN is the distance from signal = N to encoder signal.
Example: in3 is the distance from signal = 3 to encoder signal.
d[N] is the distance from signal = N to encoder signal = 0.
If encoder signal = J, shift the distances by 8-J positions.
Example: if signal = 2, in0 is d[6], in1 is D[7], in2 is D[0], etc. */
module viterbi_distances
  (Y2N,Y1N,Y0N,clk,res,in0,in1,in2,in3,in4,in5,in6,in7);
input clk,res,Y2N,Y1N,Y0N; output in0,in1,in2,in3,in4,in5,in6,in7;
reg [2:0] J,in0,in1,in2,in3,in4,in5,in6,in7; reg [2:0] d [7:0];



initial begin d[0]=’b000;d[1]=’b001;d[2]=’b100;d[3]=’b110;
d[4]=’b111;d[5]=’b110;d[6]=’b100;d[7]=’b001; end
always @(Y2N or Y1N or Y0N) begin
J[0]=Y0N;J[1]=Y1N;J[2]=Y2N;
J=8-J;in0=d[J];J=J+1;in1=d[J];J=J+1;in2=d[J];J=J+1;in3=d[J];
J=J+1;in4=d[J];J=J+1;in5=d[J];J=J+1;in6=d[J];J=J+1;in7=d[J];
end endmodule

As an example, Table 11.9 shows the distance measures for the transmitted encoder output sequence Yn
= 1, 0, 5, 4, ... (repeated) corresponding to an encoder input of Xn = 0, 1, 2, 3, ... (repeated).

TABLE 11.9    Receiver distance measures for an example transmission sequence.

Time

ns

Input 

Xn
Output Yn Present state Next state in0 in1 in2 in3 in4 in5 in6 in7

0 3 x S? S? x x x x x x x x

10 3 6 S0 S1 4 6 7 6 4 1 0 1

50 0 1 S1 S2 1 0 1 4 6 7 6 4

150 1 0 S2 S1 0 1 4 6 7 6 4 1

250 2 5 S1 S2 6 7 6 4 1 0 1 4

350 3 4 S2 S1 7 6 4 1 0 1 4 6

450 0 1 S1 S2 1 0 1 4 6 7 6 4

550 1 0 S2 S1 0 1 4 6 7 6 4 1

650 2 5 S1 S2 6 7 6 4 1 0 1 4

750 3 4 S2 S1 7 6 4 1 0 1 4 6

850 0 1 S1 S2 1 0 1 4 6 7 6 4

950 1 0 S2 S1 0 1 4 6 7 6 4 1

11.12.3   Testing the System

Here is a testbench for the entire system: encoder, receiver front end, and decoder:

/*****************************************************/
/* module viterbi_test_CDD                           */
/*****************************************************/
/* This is the top-level module, viterbi_test_CDD, that models the
communications link. It contains three modules: viterbi_encode,
viterbi_distances, and viterbi. There is no analog and no noise in
this version. The 2-bit message, X, is encoded to a 3-bit signal, Y.
In this module the message X is generated using a simple counter.
The digital 3-bit signal Y is transmitted, received with noise as an



analog signal (not modeled here), and converted to a set of eight
3-bit distance measures, in0, ..., in7. The distance measures form
the input to the Viterbi decoder that reconstructs the transmitted
signal Y, with an error signal if the measures are inconsistent.
CDD = counter input, digital transmission, digital reception */
module viterbi_test_CDD;
wire Error;        // decoder out
wire [2:0] Y, Out; // encoder out, decoder out
reg [1:0] X;       // encoder inputs
reg Clk, Res;      // clock and reset
wire [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
always #500 $display("t    Clk X Y Out Error");
initial $monitor("%4g",$time,,Clk,,,,X,,Y,,Out,,,,Error);
initial $dumpvars; initial #3000 $finish;
always #50 Clk = ~Clk; initial begin Clk = 0;
X = 3; // No special reason to start at 3.
#60 Res = 1;#10 Res = 0; end // Hit reset after inputs are stable.
always @(posedge Clk) #1 X = X + 1; // Drive the input with a counter.
viterbi_encode v_1
  (X[1],X[0],Y[2],Y[1],Y[0],Clk,Res);
viterbi_distances v_2
  (Y[2],Y[1],Y[0],Clk,Res,in0,in1,in2,in3,in4,in5,in6,in7);
viterbi v_3
  (in0,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error);
endmodule

The Viterbi decoder takes the distance measures and calculates the most likely transmitted signal. It does
this by keeping a running history of the previously received signals in a path memory. The path-memory
length of this decoder is 12. By keeping a history of possible sequences and using the knowledge that
the signals were generated by a state machine, it is possible to select the most likely sequences.

TABLE 11.10    Output from the Viterbi testbench
t    Clk X Y Out Error
  0  0   3 x x   0
 50  1   3 x x   0
 51  1   0 x x   0
 60  1   0 0 0   0
100  0   0 0 0   0
150  1   0 0 0   0
151  1   1 2 0   0

t    Clk X Y Out Error
1351 1   1 0 0   0
1400 0   1 0 0   0
1450 1   1 0 0   0
1451 1   2 5 2   0
1500 0   2 5 2   0
1550 1   2 5 2   0
1551 1   3 4 5   0

Table 11.10 shows part of the simulation results from the testbench, viterbi_test_CDD, in tabular form.
Figure 11.5 shows the Verilog simulator output from the testbench (displayed using VeriWell from
Wellspring).



  

 

FIGURE 11.5  Viterbi encoder testbench simulation results. (Top) Initialization and the start of the
encoder output sequence 2, 5, 4, 1, 0, ... on Y[2:0] at t = 151. (Bottom) The appearance of the same
encoder output sequence at the output of the decoder, Out[2:0], at t = 1451, 1300 time units (13
positive clock edges) later.

The system input or message, X[1:0] , is driven by a counter that repeats the sequence 0, 1, 2, 3, ...
incrementing by 1 at each positive clock edge (with a delay of one time unit), starting with X equal to 3
at t = 0. The active-high reset signal, Res , is asserted at t = 60 for 10 time units. The encoder output,
Y[2:0] , changes at t = 151, which is one time unit (the positive-edge-triggered D flip-flop model
contains a one-time-unit delay) after the first positive clock edge (at t = 150) following the deassertion
of the reset at t = 70. The encoder output sequence beginning at t = 151 is 2, 5, 4, 1, 0, ... and then the
sequence 5, 4, 1, 0, ... repeats. This encoder output sequence is then imagined to be transmitted and
received. The receiver module calculates the distance measures and passes them to the decoder. After 13
positive clock-edges (1300 time ticks) the transmitted sequence appears at the output, Out[2:0] ,
beginning at t = 1451 with 2, 5, 4, 1, 0, ..., exactly the same as the encoder output.

11.12.4   Verilog Decoder Model

The Viterbi decoder model presented in this section is written for both simulation and synthesis. The
Viterbi decoder makes extensive use of vector D flip-flops (registers). Early versions of Verilog-XL did
not support vector instantiations of modules. In addition the inputs of UDPs may not be vectors and
there are no primitive D flip-flops in Verilog. This makes instantiation of a register difficult other than
by writing a separate module instance for each flip-flop.

The first solution to this problem is to use flip-flop models supplied with the synthesis tool such as the
following:

asDff #(3) subout0(in0, sub0, clk, reset);

The asDff is a model in the Compass ASIC Synthesizer standard component library. This statement
triggers the synthesis of three D flip-flops, with an input vector ina (with a range of three) connected to



the D inputs, an output vector sub0 (also with a range of three) connected to the Q flip-flop outputs, a
common scalar clock signal, clk , and a common scalar reset signal. The disadvantage of this approach
is that the names, functional behavior, and interfaces of the standard components are different for every
software system.

The second solution, in new versions of Verilog-XL and other tools that support the IEEE standard, is to
use vector instantiation as follows [LRM 7.5.1, 12.1.2]:

myDff subout0[0:2] (in0, sub0, clk, reset);

This instantiates three copies of a user-defined module or UDP called my Dff . The disadvantage of this
approach is that not all simulators and synthesizers support vector instantiation.

The third solution (which is used in the Viterbi decoder model) is to write a model that supports vector
inputs and outputs. Here is an example D flip-flop model:

/******************************************************/
/*       module dff                                   */
/******************************************************/
/* A D flip-flop module. */
module dff(D,Q,Clock,Reset); // N.B. reset is active-low.
output Q; input D,Clock,Reset;
parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q;
wire [CARDINALITY-1:0] D;
always @(posedge Clock) if (Reset !== 0) #1 Q = D;
always begin wait (Reset == 0); Q = 0; wait (Reset == 1); end 
endmodule

We use this model by defining a parameter that specifies the bus width as follows:

dff #(3) subout0(in0, sub0, clk, reset);

The code that models the entire Viterbi decoder is listed below (Figure 12.6 on page 578 shows the
block digram). Notice the following:

Comments explain the function of each module. 
Each module is about a page or less of code. 
Each module can be tested by itself. 
The code is as simple as possible avoiding clever coding techniques. 

The code is not flexible, because bit widths are fixed rather than using parameters. A model with
parameters for rate, signal constellation, distance measure resolution, and path memory length is
considerably more complex. We shall use this Viterbi decoder design again when we discuss logic
synthesis in Chapter 12, test in Chapter 14, floorplanning and placement in Chapter 16, and routing in
Chapter 17.

/* Verilog code for a Viterbi decoder. The decoder assumes a rate
2/3 encoder, 8 PSK modulation, and trellis coding. The viterbi module
contains eight submodules: subset_decode, metric, compute_metric,
compare_select, reduce, pathin, path_memory, and output_decision.
  The decoder accepts eight 3-bit measures of ||r-si||**2 and, after
an initial delay of thirteen clock cycles, the output is the best
estimate of the signal transmitted. The distance measures are the



Euclidean distances between the received signal r (with noise) and
each of the (in this case eight) possible transmitted signals s0 to s7.
  Original by Christeen Gray, University of Hawaii. Heavily modified
by MJSS; any errors are mine. Use freely. */
/******************************************************/
/*   module viterbi                                   */
/******************************************************/
/* This is the top level of the Viterbi decoder. The eight input
signals {in0,...,in7} represent the distance measures, ||r-si||**2.
The other input signals are clk and reset. The output signals are
out and error. */
module viterbi
    (in0,in1,in2,in3,in4,in5,in6,in7,
    out,clk,reset,error);
input [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
output [2:0] out; input clk,reset; output error;
wire sout0,sout1,sout2,sout3;
wire [2:0] s0,s1,s2,s3;
wire [4:0] m_in0,m_in1,m_in2,m_in3;
wire [4:0] m_out0,m_out1,m_out2,m_out3;
wire [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
wire ACS0,ACS1,ACS2,ACS3;
wire [4:0] out0,out1,out2,out3;
wire [1:0] control;
wire [2:0] p0,p1,p2,p3;
wire [11:0] path0;
  subset_decode u1(in0,in1,in2,in3,in4,in5,in6,in7,
    s0,s1,s2,s3,sout0,sout1,sout2,sout3,clk,reset);
  metric u2(m_in0,m_in1,m_in2,m_in3,m_out0,
    m_out1,m_out2,m_out3,clk,reset);
  compute_metric u3(m_out0,m_out1,m_out2,m_out3,s0,s1,s2,s3,
    p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,error);
  compare_select u4(p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
    out0,out1,out2,out3,ACS0,ACS1,ACS2,ACS3);
  reduce u5(out0,out1,out2,out3,
    m_in0,m_in1,m_in2,m_in3,control);
  pathin u6(sout0,sout1,sout2,sout3,
    ACS0,ACS1,ACS2,ACS3,path0,clk,reset);
  path_memory u7(p0,p1,p2,p3,path0,clk,reset,
    ACS0,ACS1,ACS2,ACS3);
  output_decision u8(p0,p1,p2,p3,control,out);
endmodule
/******************************************************/
/* module subset_decode                               */
/******************************************************/
/* This module chooses the signal corresponding to the smallest of
each set {||r-s0||**2,||r-s4||**2}, {||r-s1||**2, ||r-s5||**2},
{||r-s2||**2,||r-s6||**2}, {||r-s3||**2,||r-s7||**2}. Therefore
there are eight input signals and four output signals for the
distance measures. The signals sout0, ..., sout3 are used to control
the path memory. The statement dff #(3) instantiates a vector array
of 3 D flip-flops. */
module subset_decode
    (in0,in1,in2,in3,in4,in5,in6,in7,
    s0,s1,s2,s3,
    sout0,sout1,sout2,sout3,
    clk,reset);
input [2:0] in0,in1,in2,in3,in4,in5,in6,in7;
output [2:0] s0,s1,s2,s3;
output sout0,sout1,sout2,sout3;
input clk,reset;



wire [2:0] sub0,sub1,sub2,sub3,sub4,sub5,sub6,sub7;
  dff #(3) subout0(in0, sub0, clk, reset);
  dff #(3) subout1(in1, sub1, clk, reset);
  dff #(3) subout2(in2, sub2, clk, reset);
  dff #(3) subout3(in3, sub3, clk, reset);
  dff #(3) subout4(in4, sub4, clk, reset);
  dff #(3) subout5(in5, sub5, clk, reset);
  dff #(3) subout6(in6, sub6, clk, reset);
  dff #(3) subout7(in7, sub7, clk, reset);
  function [2:0] subset_decode; input [2:0] a,b;
    begin
      subset_decode = 0;
      if (a<=b) subset_decode = a; else subset_decode = b;
    end
  endfunction
  function set_control; input [2:0] a,b;
    begin
      if (a<=b) set_control = 0; else set_control = 1;
    end
  endfunction
assign s0 = subset_decode (sub0,sub4);
assign s1 = subset_decode (sub1,sub5);
assign s2 = subset_decode (sub2,sub6);
assign s3 = subset_decode (sub3,sub7);
assign sout0 = set_control(sub0,sub4);
assign sout1 = set_control(sub1,sub5);
assign sout2 = set_control(sub2,sub6);
assign sout3 = set_control(sub3,sub7);
endmodule
/******************************************************/
/*   module compute_metric                            */
/******************************************************/
/* This module computes the sum of path memory and the distance for
each path entering a state of the trellis. For the four states,
there are two paths entering it; therefore eight sums are computed
in this module. The path metrics and output sums are 5 bits wide.
The output sum is bounded and should never be greater than 5 bits
for a valid input signal. The overflow from the sum is the error
output and indicates an invalid input signal.*/
module compute_metric
    (m_out0,m_out1,m_out2,m_out3,
    s0,s1,s2,s3,p0_0,p2_0,
    p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
    error);
  input [4:0] m_out0,m_out1,m_out2,m_out3;
  input [2:0] s0,s1,s2,s3;
  output [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
  output error;
  assign
    p0_0 = m_out0 + s0,
    p2_0 = m_out2 + s2,
    p0_1 = m_out0 + s2,
    p2_1 = m_out2 + s0,
    p1_2 = m_out1 + s1,
    p3_2 = m_out3 + s3,
    p1_3 = m_out1 + s3,
    p3_3 = m_out3 + s1;
  function is_error; input x1,x2,x3,x4,x5,x6,x7,x8;
  begin
    if (x1||x2||x3||x4||x5||x6||x7||x8) is_error = 1;
    else is_error = 0;



  end
  endfunction
  assign error = is_error(p0_0[4],p2_0[4],p0_1[4],p2_1[4],
    p1_2[4],p3_2[4],p1_3[4],p3_3[4]);
endmodule
/******************************************************/
/*   module compare_select                            */
/******************************************************/
/* This module compares the summations from the compute_metric
module and selects the metric and path with the lowest value. The
output of this module is saved as the new path metric for each
state. The ACS output signals are used to control the path memory of
the decoder. */
module compare_select
    (p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3,
    out0,out1,out2,out3,
    ACS0,ACS1,ACS2,ACS3);
  input [4:0] p0_0,p2_0,p0_1,p2_1,p1_2,p3_2,p1_3,p3_3;
  output [4:0] out0,out1,out2,out3;
  output ACS0,ACS1,ACS2,ACS3;
  function [4:0] find_min_metric; input [4:0] a,b;
    begin
      if (a <= b) find_min_metric = a; else find_min_metric = b;
    end
  endfunction
  function set_control; input [4:0] a,b;
    begin
      if (a <= b) set_control = 0; else set_control = 1;
    end
  endfunction
assign out0 = find_min_metric(p0_0,p2_0);
assign out1 = find_min_metric(p0_1,p2_1);
assign out2 = find_min_metric(p1_2,p3_2);
assign out3 = find_min_metric(p1_3,p3_3);
assign ACS0 = set_control (p0_0,p2_0);
assign ACS1 = set_control (p0_1,p2_1);
assign ACS2 = set_control (p1_2,p3_2);
assign ACS3 = set_control (p1_3,p3_3);
endmodule
/******************************************************/
/*   module path                                      */
/******************************************************/
/* This is the basic unit for the path memory of the Viterbi
decoder. It consists of four 3-bit D flip-flops in parallel. There
is a 2:1 mux at each D flip-flop input. The statement dff #(12)
instantiates a vector array of 12 flip-flops. */
module path(in,out,clk,reset,ACS0,ACS1,ACS2,ACS3);
input [11:0] in; output [11:0] out;
input clk,reset,ACS0,ACS1,ACS2,ACS3; wire [11:0] p_in;
dff #(12) path0(p_in,out,clk,reset);
  function [2:0] shift_path; input [2:0] a,b; input control;
    begin
      if (control == 0) shift_path = a; else shift_path = b;
    end
  endfunction
assign p_in[11:9] = shift_path(in[11:9],in[5:3],ACS0);
assign p_in[ 8:6] = shift_path(in[11:9],in[5:3],ACS1);
assign p_in[ 5:3] = shift_path(in[8: 6],in[2:0],ACS2);
assign p_in[ 2:0] = shift_path(in[8: 6],in[2:0],ACS3);
endmodule
/******************************************************/



/*   module path_memory                               */
/******************************************************/
/* This module consists of an array of memory elements (D
flip-flops) that store and shift the path memory as new signals are
added to the four paths (or four most likely sequences of signals).
This module instantiates 11 instances of the path module. */
module path_memory
    (p0,p1,p2,p3,
    path0,clk,reset,
    ACS0,ACS1,ACS2,ACS3);
output [2:0] p0,p1,p2,p3; input [11:0] path0;
input clk,reset,ACS0,ACS1,ACS2,ACS3;
wire [11:0]out1,out2,out3,out4,out5,out6,out7,out8,out9,out10,out11;
    path x1 (path0,out1 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x2 (out1, out2 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x3 (out2, out3 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x4 (out3, out4 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x5 (out4, out5 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x6 (out5, out6 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x7 (out6, out7 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x8 (out7, out8 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x9 (out8, out9 ,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x10(out9, out10,clk,reset,ACS0,ACS1,ACS2,ACS3),
         x11(out10,out11,clk,reset,ACS0,ACS1,ACS2,ACS3);
assign p0 = out11[11:9];
assign p1 = out11[ 8:6];
assign p2 = out11[ 5:3];
assign p3 = out11[ 2:0];
endmodule
/******************************************************/
/*   module pathin                                    */
/******************************************************/
/* This module determines the input signal to the path for each of
the four paths. Control signals from the subset decoder and compare
select modules are used to store the correct signal. The statement
dff #(12) instantiates a vector array of 12 flip-flops. */
module pathin
    (sout0,sout1,sout2,sout3,
    ACS0,ACS1,ACS2,ACS3,
    path0,clk,reset);
  input sout0,sout1,sout2,sout3,ACS0,ACS1,ACS2,ACS3;
  input clk,reset; output [11:0] path0;
  wire [2:0] sig0,sig1,sig2,sig3; wire [11:0] path_in;
  dff #(12) firstpath(path_in,path0,clk,reset);
  function [2:0] subset0; input sout0;
    begin
      if(sout0 == 0) subset0 = 0; else subset0 = 4;
    end
  endfunction
  function [2:0] subset1; input sout1;
    begin
      if(sout1 == 0) subset1 = 1; else subset1 = 5;
    end
  endfunction
  function [2:0] subset2; input sout2;
    begin
      if(sout2 == 0) subset2 = 2; else subset2 = 6;
    end
  endfunction
  function [2:0] subset3; input sout3;
    begin



      if(sout3 == 0) subset3 = 3; else subset3 = 7;
    end
  endfunction
  function [2:0] find_path; input [2:0] a,b; input control;
    begin
      if(control==0) find_path = a; else find_path = b;
    end
  endfunction
assign sig0 = subset0(sout0);
assign sig1 = subset1(sout1);
assign sig2 = subset2(sout2);
assign sig3 = subset3(sout3);
assign path_in[11:9] = find_path(sig0,sig2,ACS0);
assign path_in[ 8:6] = find_path(sig2,sig0,ACS1);
assign path_in[ 5:3] = find_path(sig1,sig3,ACS2);
assign path_in[ 2:0] = find_path(sig3,sig1,ACS3);
endmodule
/******************************************************/
/*   module metric                                    */
/******************************************************/
/* The registers created in this module (using D flip-flops) store
the four path metrics. Each register is 5 bits wide. The statement
dff #(5) instantiates a vector array of 5 flip-flops. */
module metric
    (m_in0,m_in1,m_in2,m_in3,
    m_out0,m_out1,m_out2,m_out3,
    clk,reset);
input [4:0] m_in0,m_in1,m_in2,m_in3;
output [4:0] m_out0,m_out1,m_out2,m_out3;
input clk,reset;
  dff #(5) metric3(m_in3, m_out3, clk, reset);
  dff #(5) metric2(m_in2, m_out2, clk, reset);
  dff #(5) metric1(m_in1, m_out1, clk, reset);
  dff #(5) metric0(m_in0, m_out0, clk, reset);
endmodule
/******************************************************/
/*   module output_decision                           */
/******************************************************/
/* This module decides the output signal based on the path that
corresponds to the smallest metric. The control signal comes from
the reduce module. */
module output_decision(p0,p1,p2,p3,control,out);
  input [2:0] p0,p1,p2,p3; input [1:0] control; output [2:0] out;
  function [2:0] decide;
  input [2:0] p0,p1,p2,p3; input [1:0] control;
  begin
    if(control == 0) decide = p0;
    else if(control == 1) decide = p1;
    else if(control == 2) decide = p2;
    else decide = p3;
    end 
  endfunction
assign out = decide(p0,p1,p2,p3,control);
endmodule
/******************************************************/
/*   module reduce                                    */
/******************************************************/
/* This module reduces the metrics after the addition and compare
operations. This algorithm selects the smallest metric and subtracts
it from all the other metrics. */
module reduce



    (in0,in1,in2,in3,
    m_in0,m_in1,m_in2,m_in3,
    control);
  input [4:0] in0,in1,in2,in3;
  output [4:0] m_in0,m_in1,m_in2,m_in3;
  output [1:0] control; wire [4:0] smallest;
  function [4:0] find_smallest;
    input [4:0] in0,in1,in2,in3; reg [4:0] a,b;
      begin
        if(in0 <= in1) a = in0; else a = in1;
        if(in2 <= in3) b = in2; else b = in3;
        if(a <= b) find_smallest = a;
        else find_smallest = b;
      end
  endfunction
  function [1:0] smallest_no;
  input [4:0] in0,in1,in2,in3,smallest;
    begin
      if(smallest == in0) smallest_no = 0;
      else if (smallest == in1) smallest_no = 1;
      else if (smallest == in2) smallest_no = 2;
      else smallest_no = 3;
    end
  endfunction
assign smallest = find_smallest(in0,in1,in2,in3);
assign m_in0 = in0 - smallest;
assign m_in1 = in1 - smallest;
assign m_in2 = in2 - smallest;
assign m_in3 = in3 - smallest;
assign control = smallest_no(in0,in1,in2,in3,smallest);
endmodule

Chapter start

Previous page

Previous page

Next page

11.13   Other Verilog Features
This section covers some of the more advanced Verilog features. System tasks and functions are
defined as part of the IEEE Verilog standard [Verilog LRM14].

11.13.1   Display Tasks

The following code illustrates the display system tasks [Verilog LRM 14.1]:



module test_display; // display system tasks:
initial begin $display ("string, variables, or expression");
/* format specifications work like printf in C:
        %d=decimal %b=binary %s=string %h=hex %o=octal
        %c=character %m=hierarchical name %v=strength %t=time format
        %e=scientific %f=decimal %g=shortest
examples: %d uses default width %0d uses minimum width
        %7.3g uses 7 spaces with 3 digits after decimal point */
// $displayb, $displayh, $displayo print in b, h, o formats
// $write, $strobe, $monitor also have b, h, o versions
$write("write"); // as $display, but without newline at end of line
$strobe("strobe"); // as $display, values at end of simulation cycle
$monitor(v); // disp. @change of v (except v= $time,$stime,$realtime)
$monitoron; $monitoroff; // toggle monitor mode on/off
end endmodule

11.13.2   File I/O Tasks

The following example illustrates the file I/O system tasks [Verilog LRM 14.2]:

module file_1; integer f1, ch; initial begin f1 = $fopen("f1.out");
if(f1==0) $stop(2); if(f1==2)$display("f1 open"); 
ch = f1|1; $fdisplay(ch,"Hello"); $fclose(f1); end endmodule
> vlog file_1.v
> vsim -c file_1
# Loading work.file_1
VSIM 1> run 10
# f1 open
# Hello
VSIM 2> q
> more f1.out
Hello
>

The $fopen system task returns a 32-bit unsigned integer called a multichannel descriptor ( f1 in this
example) unique to each file. The multichannel descriptor contains 32 flags, one for each of 32 possible
channels or files (subject to limitations of the operating system). Channel 0 is the standard output
(normally the screen), which is always open. The first call to $fopen opens channel 1 and sets bit 1 of
the multichannel descriptor. Subsequent calls set higher bits. The file I/O system tasks: $fdisplay ,
$fwrite , $fmonitor , and $fstrobe ; correspond to their display counterparts. The first parameter for
the file system tasks is a multichannel descriptor that may have multiple bits set. Thus, the preceding
example writes the string "Hello" to the screen and to file1.out . The task $fclose closes a file and
allows the channel to be reused.

The file I/O tasks $readmemb and $readmemh read a text file into a memory. The file may contain only
spaces, new lines, tabs, form feeds, comments, addresses, and binary (for $readmemb ) or hex (for
$readmemh ) numbers, as in the following example:

mem.dat
@2 1010_1111 @4 0101_1111 1010_1111 // @address in hex
x1x1_zzzz 1111_0000 /* x or z is OK */
module load; reg [7:0] mem[0:7]; integer i; initial begin
$readmemb("mem.dat", mem, 1, 6); // start_address=1, end_address=6
for (i= 0; i<8; i=i+1) $display("mem[%0d] %b", i, mem[i]);
end endmodule
> vsim -c load



# Loading work.load
VSIM 1> run 10
# ** Warning: $readmem (memory mem) file mem.dat line 2:
#    More patterns than index range (hex 1:6)
#    Time: 0 ns  Iteration: 0  Instance:/
# mem[0] xxxxxxxx
# mem[1] xxxxxxxx
# mem[2] 10101111
# mem[3] xxxxxxxx
# mem[4] 01011111
# mem[5] 10101111
# mem[6] x1x1zzzz
# mem[7] xxxxxxxx
VSIM 2> q
>

11.13.3   Timescale, Simulation, and Timing-Check Tasks

There are two timescale tasks, $printtimescale and $timeformat [Verilog LRM 14.3]. The
$timeformat specifies the %t format specification for the display and file I/O system tasks as well as
the time unit for delays entered interactively and from files. Here are examples of the timescale tasks:

// timescale tasks:
module a; initial $printtimescale(b.c1); endmodule
module b; c c1 (); endmodule
‘timescale 10 ns / 1 fs
module c_dat; endmodule
‘timescale 1 ms / 1 ns
module Ttime; initial $timeformat(-9, 5, " ns", 10); endmodule
/* $timeformat [ ( n, p, suffix , min_field_width ) ] ;
units = 1 second ** (-n), n = 0->15, e.g. for n = 9, units = ns
p = digits after decimal point for %t e.g. p = 5 gives 0.00000
suffix for %t (despite timescale directive)
min_field_width is number of character positions for %t */

The simulation control tasks are $stop and $finis h [Verilog LRM 14.4]:

module test_simulation_control; // simulation control system tasks:
initial begin $stop; // enter interactive mode (default parameter 1)
$finish(2); // graceful exit with optional parameter as follows:
// 0 = nothing 1 = time and location 2 = time, location, and statistics 
end endmodule

The timing-check tasks [Verilog LRM 14.5] are used in specify blocks. The following code and
comments illustrate the definitions and use of timing-check system tasks. The arguments to the tasks are
defined and explained in Table 11.11.



TABLE 11.11    Timing-check system task parameters.

Timing task argument   Description of argument Type of argument

reference_event to establish reference time
module input or inout

(scalar or vector net)

data_event signal to check against reference_event
module input or inout

(scalar or vector net)

limit time limit to detect timing violation on data_event
constant expression

or specparam

threshold largest pulse width ignored by timing check $width
constant expression

or specparam

notifier
flags a timing violation (before -> after):

x->0, 0->1, 1->0, z->z
register

module timing_checks (data, clock, clock_1,clock_2); 
input data,clock,clock_1,clock_2; reg tSU,tH,tHIGH,tP,tSK,tR;
specify // timing check system tasks:
/* $setup (data_event, reference_event, limit [, notifier]);
violation = (T_reference_event)-(T_data_event) < limit */
$setup(data, posedge clock, tSU);
/* $hold (reference_event, data_event, limit [, notifier]);
violation = 
  (time_of_data_event)-(time_of_reference_event) < limit */
$hold(posedge clock, data, tH);
/* $setuphold (reference_event, data_event, setup_limit,
    hold_limit [, notifier]);
parameter_restriction = setup_limit + hold_limit > 0 */
$setuphold(posedge clock, data, tSU, tH);
/* $width (reference_event, limit, threshold [, notifier]);
violation = 
  threshold < (T_data_event) - (T_reference_event) < limit
reference_event = edge
data_event = opposite_edge_of_reference_event */
$width(posedge clock, tHIGH);
/* $period (reference_event, limit [, notifier]);
violation = (T_data_event) - (T_reference_event) < limit
reference_event = edge
data_event = same_edge_of_reference event */
$period(posedge clock, tP);
/* $skew (reference_event, data_event, limit [, notifier]);
violation = (T_data_event) - (T_reference_event) > limit */
$skew(posedge clock_1, posedge clock_2, tSK);
/* $recovery (reference_event, data_event, limit, [, notifier]);
violation = (T_data_event) - (T_reference_event) < limit */
$recovery(posedge clock, posedge clock_2, tR);
/* $nochange (reference_event, data_event, start_edge_offset,
  end_edge_offset [, notifier]);
reference_event = posedge | negedge



violation = change while reference high (posedge)/low (negedge)
+ve start_edge_offset moves start of window later
+ve end_edge_offset moves end of window later */
$nochange (posedge clock, data, 0, 0);
endspecify endmodule 

You can use edge specifiers as parameters for the timing-check events (except for the reference event in
$nochange):

edge_control_specifier ::= edge [edge_descriptor {, edge_descriptor}]
edge_descriptor ::= 01 | 0x | 10 | 1x | x0 | x1

For example, ’edge [01, 0x, x1] clock’ is equivalent to ’posedge clock’ . Edge transitions with
’z’ are treated the same as transitions with ’x’ .

Here is a D flip-flop model that uses timing checks and a notifier register. The register, notifier, is
changed when a timing-check task detects a violation and the last entry in the table then sets the flip-flop
output to unknown.

primitive dff_udp(q, clock, data, notifier);
output q; reg q; input clock, data, notifier;
table //   clock data  notifier:state:  q
           r     0     ?      :  ?  :  0 ;
           r     1     ?      :  ?  :  1 ;
           n     ?     ?      :  ?  :  - ;
           ?     *     ?      :  ?  :  - ;
           ?     ?     *      :  ?  :  x ; endtable // notifier
endprimitive 
‘timescale 100 fs / 1 fs
module dff(q, clock, data); output q; input clock, data; reg notifier;
dff_udp(q1, clock, data, notifier); buf(q, q1);
specify
  specparam tSU = 5, tH = 1, tPW = 20, tPLH = 4:5:6, tPHL = 4:5:6;
     (clock *> q) = (tPLH, tPHL);
  $setup(data, posedge clock, tSU, notifier); // setup: data to clock
  $hold(posedge clock, data, tH, notifier); // hold: clock to data
  $period(posedge clock, tPW, notifier); // clock: period
endspecify 
endmodule

11.13.4   PLA Tasks

The PLA modeling tasks model two-level logic [Verilog LRM 14.6]. As an example, the following
eqntott logic equations can be implemented using a PLA:

b1 = a1 & a2; b2 = a3 & a4 & a5 ; b3 = a5 & a6 & a7;

The following module loads a PLA model for the equations above (in AND logic) using the array
format (the array format allows only ’1’ or ’0’ in the PLA memory, or personality array). The file
array.dat is similar to the espresso input plane format.

array.dat
1100000
0011100
0000111



module pla_1 (a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input a1, a2, a3, a4, a5, a6, a7 ; output b1, b2, b3;
reg [1:7] mem[1:3]; reg b1, b2, b3;
initial begin
  $readmemb("array.dat", mem);
  #1; b1=1; b2=1; b3=1;
  $async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
end
initial $monitor("%4g",$time,,b1,,b2,,b3);
endmodule

The next example illustrates the use of the plane format, which allows ’1’ , ’0’ , as well as ’?’ or ’z’
(either may be used for don’t care) in the personality array.

b1 = a1 & !a2; b2 = a3; b3 = !a1 & !a3; b4 = 1;
module pla_2; reg [1:3] a, mem[1:4]; reg [1:4] b;
initial begin
  $async$and$plane(mem,{a[1],a[2],a[3]},{b[1],b[2],b[3],b[4]});
  mem[1] = 3’b10?; mem[2] = 3’b??1; mem[3] = 3’b0?0; mem[4] = 3’b???;
  #10 a = 3’b111; #10 $displayb(a, " -> ", b);
  #10 a = 3’b000; #10 $displayb(a, " -> ", b);
  #10 a = 3’bxxx; #10 $displayb(a, " -> ", b);
  #10 a = 3’b101; #10 $displayb(a, " -> ", b);
end endmodule 
111 -> 0101
000 -> 0011
xxx -> xxx1
101 -> 1101

11.13.5   Stochastic Analysis Tasks

The stochastic analysis tasks model queues [Verilog LRM 14.7]. Each of the tasks return a status as
shown in Table 11.12.

TABLE 11.12    Status values for the stochastic analysis tasks.

Status value Meaning

0 OK

1 queue full, cannot add

2 undefined q_id

3 queue empty, cannot remove

4 unsupported q_type , cannot create queue

5 max_length <= 0, cannot create queue

6 duplicate q_id , cannot create queue

7 not enough memory, cannot create queue

The following module illustrates the interface and parameters for these tasks:

module stochastic; initial begin // stochastic analysis system tasks:
/* $q_initialize (q_id, q_type, max_length, status) ;



q_id is an integer that uniquely identifies the queue
q_type 1=FIFO 2=LIFO
max_length is an integer defining the maximum number of entries */
$q_initialize (q_id, q_type, max_length, status) ;
/* $q_add (q_id, job_id, inform_id, status) ;
job_id = integer input
inform_id = user-defined integer input for queue entry */
$q_add (q_id, job_id, inform_id, status) ;
/* $q_remove (q_id, job_id, inform_id, status) ; */
$q_remove (q_id, job_id, inform_id, status) ;
/* $q_full (q_id, status) ;
status = 0 = queue is not full, status = 1 = queue full */
$q_full (q_id, status) ;
/* $q_exam (q_id, q_stat_code, q_stat_value, status) ;
q_stat_code is input request as follows:
1=current queue length 2=mean inter-arrival time 3=max. queue length
4=shortest wait time ever
5=longest wait time for jobs still in queue 6=ave. wait time in queue
q_stat_value is output containing requested value */
$q_exam (q_id, q_stat_code, q_stat_value, status) ;
end endmodule

11.13.6   Simulation Time Functions

The simulation time functions return the time as follows [Verilog LRM 14.8]:

module test_time; initial begin // simulation time system functions:
$time ;
// returns 64-bit integer scaled to timescale unit of invoking module 
$stime ;
// returns 32-bit integer scaled to timescale unit of invoking module 
$realtime ;
// returns real scaled to timescale unit of invoking module 
end endmodule

11.13.7    Conversion Functions

The conversion functions for reals handle real numbers [Verilog LRM 14.9]:

module test_convert; // conversion functions for reals:
integer i; real r; reg [63:0] bits;
initial begin #1 r=256;#1 i = $rtoi(r);
#1; r = $itor(2 * i) ; #1 bits = $realtobits(2.0 * r) ;
#1; r = $bitstoreal(bits) ; end
initial $monitor("%3f",$time,,i,,r,,bits); /*
$rtoi converts reals to integers w/truncation e.g. 123.45 -> 123
$itor converts integers to reals e.g. 123 -> 123.0
$realtobits converts reals to 64-bit vector
$bitstoreal converts bit pattern to real
Real numbers in these functions conform to IEEE Std 754. Conversion rounds to the nearest valid number. */
endmodule
# 0.000000           x 0                    x
# 1.000000           x 256                    x
# 2.000000         256 256                    x
# 3.000000         256 512                    x
# 4.000000         256 512  4652218415073722368
# 5.000000         256 1024  4652218415073722368



Here is an example using the conversion functions in port connections:

module test_real;wire [63:0]a; driver d (a); receiver r (a);
initial $monitor("%3g",$time,,a,,d.r1,,r.r2); endmodule
module driver (real_net);
output real_net; real r1; wire [64:1] real_net = $realtobits(r1); 
initial #1 r1 = 123.456; endmodule
module receiver (real_net);
input real_net; wire [64:1] real_net; real r2;
initial assign r2 = $bitstoreal(real_net);
endmodule
# 0                    0 0 0
# 1  4638387860618067575 123.456 123.456

11.13.8   Probability Distribution Functions

The probability distribution functions are as follows [Verilog LRM 14.10]:

module probability; // probability distribution functions:
/* $random [ ( seed ) ] returns random 32-bit signed integer 
seed = register, integer, or time */
reg [23:0] r1,r2; integer r3,r4,r5,r6,r7,r8,r9;
integer seed, start, \end , mean, standard_deviation;
integer degree_of_freedom, k_stage;
initial begin seed=1; start=0; \end =6; mean=5; 
standard_deviation=2; degree_of_freedom=2; k_stage=1; #1;
r1 = $random % 60; // random -59 to 59
r2 = {$random} % 60; // positive value 0-59 
r3=$dist_uniform (seed, start, \end ) ; 
r4=$dist_normal (seed, mean, standard_deviation) ;
r5=$dist_exponential (seed, mean) ;
r6=$dist_poisson (seed, mean) ;
r7=$dist_chi_square (seed, degree_of_freedom) ;
r8=$dist_t (seed, degree_of_freedom) ;
r9=$dist_erlang (seed, k_stage, mean) ; end 
initial #2 $display ("%3f",$time,,r1,,r2,,r3,,r4,,r5); 
initial begin #3; $display ("%3f",$time,,r6,,r7,,r8,,r9); end
/* All parameters are integer values. 
Each function returns a pseudo-random number 
e.g. $dist_uniform returns uniformly distributed random numbers 
mean, degree_of_freedom, k_stage 
(exponential, poisson, chi-square, t, erlang) > 0.
seed = inout integer initialized by user, updated by function 
start, end ($dist_uniform) = integer bounding return values */
endmodule
2.000000        8       57           0           4           9
3.000000           7           3           0           2

11.13.9   Programming Language Interface

The C language Programming Language Interface ( PLI) allows you to access the internal Verilog
data structure [Verilog LRM17-23, A-E]. For example, you can use the PLI to implement the following
extensions to a Verilog simulator:

C language delay calculator for a cell library 
C language interface to a Verilog-based or other logic or fault simulator 



Graphical waveform display and debugging 
C language simulation models 
Hardware interfaces 

There are three generations of PLI routines (see Appendix B for an example):

Task/function (TF) routines (or utility routines), the first generation of the PLI, start with ’tf_’ . 
Access (ACC) routines, the second generation of the PLI, start with the characters ’acc_’ and
access delay and logic values. There is some overlap between the ACC routines and TF routines. 
Verilog Procedural Interface (VPI) routines, the third generation of the PLI, start with the
characters ’vpi_’ and are a superset of the TF and ACC routines. 
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11.14   Summary
Table 11.13 lists the key features of Verilog HDL. The most important concepts covered in this chapter
are:

TABLE 11.13    Verilog on one page.

  Verilog feature Example

Comments

a = 0; // comment ends with newline
/* This is a multiline or block
comment */

Constants: string and numeric

parameter BW = 32 // local, use BW
‘define G_BUS 32 // global, use ‘G_BUS
4’b2  1’bx

Names (case-sensitive, start with letter or ’_’) _12name  A_name  $BAD  NotSame  notsame 

Two basic types of logic signals: wire and reg wire myWire; reg myReg;

Use a continuous assignment statement with wire assign myWire = 1;

Use a procedural assignment statement with reg always myReg = myWire;



Buses and vectors use square brackets reg [31:0] DBus; DBus[12] = 1’bx;

We can perform arithmetic on bit vectors reg [31:0] DBus; DBus = DBus + 2;

Arithmetic is performed modulo 2 n reg [2:0] R; R = 7 + 1; // now R = 0

Operators: as in C (but not ++ or - -)

Fixed logic-value system 1, 0, x (unknown), z (high-impedance)

Basic unit of code is the module

module bake (chips, dough, cookies);
input chips, dough; output cookies;
assign cookies = chips & dough;
endmodule

Ports
input or input/output ports are wire

output ports are wire or reg

Procedures model things that happen at the same
time

and may be sensitive to an edge, posedge, 
negedge,

or to a level.

always @rain sing; always @rain dance;
always @(posedge clock) D = Q; // flop
always @(a or b) c = a & b; // and gate

Sequential blocks model repeating things:

always: executes forever

initial: executes once only at start of simulation

initial born;
always @alarm_clock begin : a_day
metro=commute; bulot=work; dodo=sleep;
end

Functions and tasks
function ... endfunction
task ... endtask

Output $display("a=%f",a);$dumpvars;$monitor(a)

Control simulation $stop; $finish // sudden or gentle halt

Compiler directives ‘timescale 1ns/1ps // units/resolution

Delay
#1 a = b;  // delay then sample b

a = #1 b;  // sample b then delay

Concurrent processes and sequential execution 
Difference between a reg and a wire , and between a scalar and a vector 
Arithmetic operations on reg and wire 
Data slip 
Delays and events 
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11.15   Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

11.1 (Counter, 30 min.) Download the VeriWell simulator from http://www. wellspring.com and
simulate the counter from Section 11.1 (exclude the comments to save typing). Include the complete
input and output listings in your report.

11.2 (Simulator, 30 min.) Build a "cheat sheet" for your simulator, listing the commands for running the
simulator and using it in interactive mode.

11.3 (Verilog examples, 10 min.) The Cadence Verilog-XL simulator comes with a directory examples .
Make a list of the examples from the README files in the various directories.

11.4 (Gotchas, 60 min.) Build a "most common Verilog mistakes" file. Start with:

Extra or missing semicolon ’;’ 
Forgetting to declare a reg 
Using a reg instead of a wire for an input or inout port 
Bad declarations: reg bus[0:31] instead of reg [31:0]bus 
Mixing vector declarations: wire [31:0]BusA, [15:0]BusB 
The case-sensitivity of Verilog 
No delay in an always statement (simulator loops forever) 
Mixing up ‘ (accent grave) for ‘define and ’ (tick or apostrophe) for 1’b1 with ´ (accent acute)
or ‘ (open single quote) or ’ (close single quote) 
Mixing " ( double quote) with " (open quotes) or " (close quotes) 

11.5 (Sensitivity, 10 min.) Explore and explain what happens if you write this:

always @(a or b or c) e = (a|b)&(c|d);

11.6 (Verilog if statement, 10 min.) Build test code to simulate the following Verilog fragment. Explain
what is wrong and fix the problem.

if (i > 0)
  if (i < 2) $display ("i is 1");



else $display ("i is less than 0");

11.7 (Effect of delay, 30 min.). Write code to test the four different code fragments shown in
Table 11.14 and print the value of ’a’ at time = 0 and time = 1 for each case. Explain the differences in
your simulation results.

TABLE 11.14    Code fragments for Problem 11.7.

 (a) (b) (c) (d)

Code fragment

reg a;
initial
begin
a = 0;
a = a + 1;
end

reg a;
initial
begin
#0 a = 0;
#0 a = a + 1;
end

reg a;
initial
begin
a <= 0;
a <= a + 1;
end

reg a;
initial
begin
#1 a = 0;
#1 a = a + 1;
end

11.8 (Verilog events, 10 min.). Simulate the following and explain the results:

event event_1, event_2;
always @ event_1 -> event_2;
initial @event_2 $stop;
initial -> event_1;

11.9 (Blocking and nonblocking assignment statements, 30 min.). Write code to test the different code
fragments shown in Table 11.15 and print the value of ’outp’ at time = 0 and time = 10 for each case.
Explain the difference in simulation results.

TABLE 11.15    Code fragments for Problem 11.9.

 (a) (b) (c) (d)

Code fragment

reg outp;
always
begin
#10 outp = 0;
#10 outp = 1;
end

reg outp;
always
begin
outp <= #10 1;
outp <= #10 0;
end

reg outp;
always
begin
#10 outp = 0;
#10 outp <= 1;
end

reg outp;
always
begin
#10 outp <= 0;
#10 outp = 1;
end

11.10 (Verilog UDPs, 20 min.). Use this primitive to build a half adder:

primitive Adder(Sum, InA, InB); output Sum; input Ina, InB;
table 00 : 0; 01 : 1; 10 : 1; 11 : 0; endtable 
endprimitive

Apply unknowns to the inputs. What is the output?

11.11 (Verilog UDPs, 30 min.). Use the following primitive model for a D latch:

primitive DLatch(Q, Clock, Data); output Q; reg Q; input Clock, Data;
table 1 0 : ? : 0; 1 1 : ? : 1; 0 1 : ? : -; endtable 
endprimitive



Check to see what happens when you apply unknown inputs (including clock transitions to unknown).
What happens if you apply high-impedance values to the inputs (again including transitions)?

11.12 (Propagation of unknowns in primitives, 45 min.) Use the following primitive model for a D
flip-flop:

primitive DFF(Q, Clock, Data); output Q; reg Q; input Clock, Data;
table
r    0 : ? : 0 ;
r    1 : ? : 1 ;
(0x) 0 : 0 : 0 ;
(0x) 1 : 1 : 1 ;
(?0) ? : ? : - ;
? (??) : ? : - ;
endtable 
endprimitive

Check to see what happens when you apply unknown inputs (including a clock transition to an unknown
value). What happens if you apply high-impedance values to the inputs (again including transitions)?

11.13 (D flip-flop UDP, 60 min.) Table 11.16 shows a UDP for a D flip-flop with QN output and
asynchronous reset and set.

TABLE 11.16    D flip-flop UDP for Problem 11.13.
primitive DFlipFlop2(QN, Data, Clock, Res, Set);
output QN; reg QN; input Data, Clock, Res, Set;
table
//   Data   Clock   Res   Set   :state   :next state
  1  (01)  0  0  :?  :0;  // line 1
  1  (01)  0  x  :?  :0;
  ?  ?  0  x  :0  :0;
  0  (01)  0  0  :?  :1;
  0  (01)  x  0  :?  :1;
  ?  ?  x  0  :1  :1;
  1  (x1)  0  0  :0  :0;
  0  (x1)  0  0  :1  :1;
  1  (0x)  0  0  :0  :0;
  0  (0x)  0  0  :1  :1;
  ?  ?  1  ?  :?  :1;
  ?  ?  0  1  :?  :0;
  ?  n  0  0  :?  :-;
  *  ?  ?  ?  :?  :-;
  ?  ?  (?0)  ?  :?  :-;
  ?  ?  ?  (?0)  :?  :-;
  ?  ?  ?  ?  :?  :x;  // line 17
endtable 
endprimitive

a. Explain the purpose of each line in the truth table.

b. Write a module to test each line of the UDP.

c. Can you find any errors, omissions, or other problems in this UDP?



11.14 (JK flip-flop, 30 min.) Test the following model for a JK flip-flop:

module JKFF (Q, J, K, Clk, Rst);
parameter width = 1, reset_value = 0;
input [width-1:0] J, K; output [width-1:0] Q; reg [width-1:0] Q;
input Clk, Rst; initial Q = {width{1’bx}};
always @ (posedge Clk or negedge Rst )
if (Rst==0 ) Q <= #1 reset_value;
else Q <= #1 (J & ~K) | (J & K & ~Q) | (~J & ~K & Q);
endmodule

11.15 (Overriding Verilog parameters, 20 min.) The following module has a parameter specification that
allows you to change the number of AND gates that it models (the cardinality or width):

module Vector_AND(Z, A, B);
  parameter card = 2; input [card-1:0] A,B; output [card-1:0] Z;
  wire [card-1:0] Z = A & B;
endmodule

The next module changes the parameter value by specifying an overriding value in the module
instantiation:

module Four_AND_Gates(OutBus, InBusA, InBusB);
  input [3:0] InBusA, InBusB; output [3:0] OutBus;
  Vector_AND #(4) My_AND(OutBus, InBusA, InBusB);
endmodule

These next two modules change the parameter value by using a defparam statement, which overrides
the declared parameter value:

module X_AND_Gates(OutBus, InBusA, InBusB);
  parameter X = 2;input [X-1:0] InBusA, InBusB;output [X-1:0] OutBus;
  Vector_AND #(X) My_AND(OutBus, InBusA, InBusB);
endmodule 
module size; defparam X_AND_Gates.X = 4; endmodule

a. Check that the two alternative methods of specifying parameters are equivalent by instantiating the
modules Four_AND_Gates and X_AND_Gates in another module and simulating.

b. List and comment on the advantages and disadvantages of both methods.

11.16 (Default Verilog delays, 10 min.). Demonstrate, using simulation, that the following NAND gates
have the delays you expect:

nand (strong0, strong1) #1
  Nand_1(n001, n004, n005),
  Nand_2(n003, n001, n005, n002);
nand (n006, n005, n002);

11.17 (Arrays of modules, 30 min.) Newer versions of Verilog allow the instantiating of arrays of
modules (in this book we usually call this a vector since we are only allowed one row). You specify the
number in the array by using a range after the instance name as follows:

nand #2 nand_array[0:7](zn, a, b);



Create and test a model for an 8-bit register using an array of flip-flops.

11.18 (Assigning Verilog real to integer data types, 10 min.). What is the value of ImInteger in the
following code?

real ImReal; integer ImInteger;
initial begin ImReal = -1.5; ImInteger = ImReal; end

11.19 (BNF syntax, 10 min.) Use the BNF syntax definitions in Appendix B to answer the following
questions. In each case explain how you arrive at the answer:

a. What is the highest-level construct?

b. What is the lowest-level construct?

c. Can you nest begin and end statements?

d. Where is a legal place for a case statement?

e. Is the following code legal: reg [31:0] rega, [32:1] regb;

f. Where is it legal to include sequential statements?

11.20 (Old syntax definitions, 10 min.) Prior to the IEEE LRM, Verilog BNF was expressed using a
different notation. For example, an event expression was defined as follows:

<event_expression> ::= <expression>
  or <<posedge or negedge> <SCALAR_EVENT_EXPRESSION>>
  or <<event_expression> or <event_expression>>

Notice that we are using ’or’ as part of the BNF to mean "alternatively" and also ’ or ’ as a Verilog
keyword. The keyword ’ or ’ is in bold--the difference is fairly obvious. Here is an alternative
definition for an event expression:

<event_expression> ::= <expression>
||= posedge <SCALAR_EVENT_EXPRESSION>
||= negedge <SCALAR_EVENT_EXPRESSION>
||= <event_expression> <or <event_expression>>*

Are these definitions equivalent (given, of course, that we replaced ||= with or in the simplified
syntax)? Explain carefully how you would attempt to prove that they are the same.

11.21 (Operators, 20 min.) Explain Table 11.17 (see next page).



TABLE 11.17    Unary operators (Problem 11.21).

 (a) (b) (c)

Code

module unary;
reg [4:0] u;
initial u=!’b011z;
initial $display("%b",u);
endmodule

module unary;
wire u;
assign u=!’b011z;
initial  $display("%b",u);
endmodule

module unary;
wire u;
assign u=!’b011z;
initial  #1 $display("%b",u);
endmodule

Output 0000x z x

11.22 (Unary reduction, 10 min.) Complete Table 11.18 (see next page).

TABLE 11.18    Unary reduction (Problem 11.22).

Operand & ~& | ~| ^ ~^

4’b0000       

4’b1111       

4’b01x0       

4’bz000       

11.23 (Coerced ports, 20 min.) Perform some experiments to test the behavior of your Verilog simulator
in the following situation: "NOTE--A port that is declared as input (output) but used as an output (input)
or inout may be coerced to inout. If not coerced to inout, a warning must be issued" [Verilog LRM
12.3.6].

11.24 (*Difficult delay code, 20 min.) Perform some experiments to explain what this difficult to
interpret statement does:

#2 a <= repeat(2) @(posedge clk) d;

11.25 (Fork-join, 20 min.) Write some test code to compare the behavior of the code fragments shown in
Table 11.19.

TABLE 11.19    Fork-and-join examples for Problem 11.25.

 (a) (b) (c) (d)

Code fragment

fork 
a = b;
b = a;
join 

fork 
a <= b;
b <= a;
join 

fork 
#1 a = b;
#1 b = a;
join 

fork
a = #1 b;
b = #1 a;
join

11.26 (Blocking and nonblocking assignments, 20 min.) Simulate the following code and explain the
results:

module nonblocking; reg Y;
  always begin Y <= #10 1;Y <= #20 0;#10; end



  always begin $display($time,,"Y=",Y); #10; end
  initial #100 $finish;
endmodule

11.27 (*Flip-flop code, 10 min.) Explain why this flip-flop does not work:

module Dff_Res_Bad(D,Q,Clock,Reset);
output Q; input D,Clock,Reset; reg Q; wire D;
always @(posedge Clock) if (Reset !== 1) Q = D; always if (Reset == 1) Q = 0;
end endmodule

11.28 (D flip-flop, 10 min.) Test the following D flip-flop model:

module DFF (D, Q, Clk, Rst);
parameter width = 1,  reset_value = 0;
input [width-1:0] D; output [width-1:0] Q; reg [width-1:0] Q;
input Clk,Rst;
initial Q = {width{1’bx}};
always @ ( posedge Clk or negedge Rst )
if ( Rst == 0 ) Q <= #1 reset_value; else Q <= #1 D;
endmodule

11.29 (D flip-flop with scan, 10 min.) Explain the following model:

module DFFSCAN (D, Q, Clk, Rst, ScEn, ScIn, ScOut);
parameter width = 1,  reset_value = 0;
input [width-1:0] D; output [width-1:0] Q; reg [width-1:0] Q;
input Clk,Rst,ScEn,ScIn; output ScOut;
initial Q = {width{1’bx}};
always @ ( posedge Clk or negedge Rst ) begin
  if ( Rst == 0 )                 Q <= #1 reset_value;
  else if (ScEn)                 Q <= #1 {Q,ScIn};
  else                 Q <= #1 D;
end
assign ScOut=Q[width-1];
endmodule

11.30 (Pads, 30 min.) Test the following model for a bidirectional I/O pad:

module PadBidir (C, Pad, I, Oen); // active low enable
parameter width=1, pinNumbers="", \strength =1, level="CMOS",
pull="none", externalVdd=5;
output [width-1:0] C; inout  [width-1:0] Pad; input  [width-1:0] I;
input Oen;
assign #1 Pad = Oen ? {width{1’bz}} : I;
assign #1 C = Pad;
endmodule

Construct and test a model for a three-state pad from the above.

11.31 (Loops, 15 min.) Explain and correct the problem in the following code:

module Loop_Bad; reg [3:0] i; reg [31:0] DBus;
initial DBus = 0;
initial begin #1; for (i=0; i<=15; i=i+1) DBus[i]=1; end
initial begin
$display("DBus = %b",DBus); #2; $display("DBus = %b",DBus); $stop;
end endmodule



11.32 (Arithmetic, 10 min.) Explain the following:

integer IntA;
IntA = -12 / 3; // result is -4
IntA = -’d 12 / 3; // result is 1431655761

Determine and explain the values of intA and regA after each assignment statement in the following
code:

integer intA; reg [15:0] regA;
intA = -4’d12; regA = intA/3; regA = -4’d12; 
intA = regA/3; intA = -4’d12/3; regA = -12/3;

11.33 (Arithmetic overflow, 30 min.) Consider the following:

reg [7:0] a, b, sum; sum = (a + b) >> 1;

The intent is to add a and b , which may cause an overflow, and then shift sum to keep the carry bit.
However, because all operands in the expression are of an 8-bit width, the expression (a + b) is only
8 bits wide, and we lose the carry bit before the shift. One solution forces the expression (a + b) to use
at least 9 bits. For example, adding an integer value of 0 to the expression will cause the evaluation to be
performed using the bit size of integers [LRM 4.4.2]. Check to see if the following alternatives produce
the intended result:

sum = (a + b + 0) >> 1; 
sum = {0,a} + {0,b} >> 1;

11.34 (*Data slip, 60 min.) Table 11.20 shows several different ways to model the connection of a 2-bit
shift register. Determine which of these models suffer from data slip. In each case show your simulation
results.



TABLE 11.20    Data slip (Problem 11.34).

 Alternative Data slip?

1 always @(posedge Clk) begin Q2 = Q1; Q1 = D1; end  

2 always @(posedge Clk) begin Q1 = D1; Q2 = Q1; end  

3 always @(posedge Clk) begin Q1 <= #1 D1; Q2 <= #1 Q1; end  

4 always @(posedge Clk) Q1 = D1; always @(posedge Clk) Q2 = Q1; Y

5 always @(posedge Clk) Q1 = #1 D1; always @(posedge Clk) Q2 = #1 Q1; N

6 always @(posedge Clk) #1 Q1 = D1; always @(posedge Clk) #1 Q2 = Q1;  

7 always @(posedge Clk) Q1 <= D1; always @(posedge Clk) Q2 <= Q1;  

8
module FF_1 (Clk, D1, Q1); always @(posedge Clk) Q1 = D1; endmodule
module FF_2 (Clk, Q1, Q2); always @(posedge Clk) Q2 = Q1; endmodule  

9
module FF_1 (Clk, D1, Q1); always @(posedge Clk) Q1 <= D1; endmodule
module FF_2 (Clk, Q1, Q2); always @(posedge Clk) Q2 <= Q1; endmodule  

11.35 (**Timing, 30 min.) What does a simulator display for the following?

assign p = q; initial begin q = 0; #1 q = 1; $display(p); end

What is the problem here? Conduct some experiments to illustrate your answer.

11.36 (Port connections, 10 min.) Explain the following declaration:

module test (.a(c), .b(c));

11.37 (**Functions and tasks, 30 min.) Experiment to determine whether invocation of a function (or
task) behaves as a blocking or nonblocking assignment.

11.38 (Nonblocking assignments, 10 min.) Predict the output of the following model:

module e1; reg a, b, c;
initial begin a = 0; b = 1; c = 0; end 
always c = #5 ~c; always @(posedge c) begin a <= b; b <= a; end
endmodule 

11.39 (Assignment timing, 20 min.) Predict the output of the following module and explain the timing
of the assignments:

module e2; reg a, b, c, d, e, f;
initial begin a = #10 1; b = #2 0; c = #4 1; end 
initial begin d <= #10 1; e <= #2 0; f <= #4 1; end 
endmodule 



11.40 (Swap, 10 min.) Explain carefully what happens in the following code:

module e3; reg a, b;
initial begin a = 0; b = 1; a <= b; b <= a; end 
endmodule

11.41 (*Overwriting, 30 min.) Explain the problem in the following code, determine what happens, and
conduct some experiments to explore the problem further:

module m1; reg a;
initial a = 1;
initial begin a <= #4 0; a <= #4 1; end 
endmodule

11.42 (*Multiple assignments, 30 min.) Explain what happens in the following:

module m2; reg r1; reg [2:0] i;
initial begin 
r1 = 0; for (i = 0; i <= 5; i = i+1) r1 <= # (i*10) i[0]; end
endmodule

11.43 (Timing, 30 min) Write a model to mimic the behavior of a traffic light signal. The clock input is
1 MHz. You are to drive the lights as follows (times that the lights are on are shown in parentheses):
green (60 s), yellow (1 s), red (60 s).

11.44 (Port declarations, 30 min.) The rules for port declarations are as follows: "The port expression in
the port definition can be one of the following:

a simple identifier 
a bit-select of a vector declared within the module 
a part-select of a vector declared within the module 
a concatenation of any of the above 

Each port listed in the module definition’s list of ports shall be declared in the body of the module as an
input, output, or inout (bidirectional). This is in addition to any other declaration for a particular
port--for example, a reg, or wire. A port can be declared in both a port declaration and a net or register
declaration. If a port is declared as a vector, the range specification between the two declarations of a
port shall be identical" [Verilog LRM 12.3.2].

Compile the following and comment (you may be surprised at the results):

module stop (); initial #1 $finish; endmodule
module Outs_1 (a); output [3:0] a; reg [3:0] a;
initial a <= 4’b10xz; endmodule
module Outs_2 (a); output [2:0] a; reg [3:0] a;
initial a <= 4’b10xz; endmodule
module Outs_3 (a); output [3:0] a; reg [2:0] a;
initial a <= 4’b10xz; endmodule
module Outs_4 (a); output [2:0] a; reg [2:0] a;
initial a <= 4’b10xz; endmodule
module Outs_5 (a); output a; reg [3:0] a;
initial a <= 4’b10xz; endmodule
module Outs_6 (a[2:0]); output [3:0] a; reg [3:0] a;
initial a <= 4’b10xz; endmodule



module Outs_7 (a[1]); output [3:0] a; reg [3:0] a;
initial a <= 4’b10xz; endmodule
module Outs_8 (a[1]); output a; reg [3:0] a; 
always a <= 4’b10xz; endmodule

11.45 (Specify blocks, 30 min.)

a. Describe the pin-to-pin timing of the following module. Build a testbench to demonstrate your
explanation.

module XOR_spec (a, b, z); input a, b: output z; xor x1 (z, a, b);
specify
  specparam tnr = 1, tnf = 2 specparam tir = 3, tif = 4;
  if ( a)(b => z) = (tir, tif); if ( b)(a => z) = (tir, tif);
  if (~a)(b => z) = (tnr, tnf); if (~b)(a => z) = (tnr, tnf);
endspecify
endmodule 

b. Write and test a module for a 2:1 MUX with inputs A0 , A1 , and sel ; output Z ; and the following
delays: A0 to Z : 0.3 ns (rise) and 0.4 ns (fall); A1 to Z : 0.2 ns (rise) and 0.3 ns (fall); sel to Z = 0.5 ns.

11.46 (Design contest, **60 min.) In 1995 John Cooley organized a contest between VHDL and Verilog
for ASIC designers. The goal was to design the fastest 9-bit counter in under one hour using Synopsys
synthesis tools and an LSI Logic vendor technology library. The Verilog interface is as follows:

module counter (data_in, up, down, clock,
  count_out, carry_out, borrow_out, parity_out);
output [8:0]  count_out;
output carry_out, borrow_out, parity_out;
input  [8:0]  data_in; input clock, up, down;
reg    [8:0]  count_out; reg carry_out,  borrow_out, parity_out;
// Insert your design here. 
endmodule

The counter is positive-edge triggered, counts up with up=’1’ and down with down=’1’ . The
contestants had the advantage of a predefined testbench with a set of test vectors; you do not. Design a
model for the counter and a testbench.

11.47 (Timing checks, ***60 min.+) Flip-flops with preset and clear require more complex
timing-check constructs than those described in Section 11.13.3. The following BNF defines a
controlled timing-check event:

controlled_timing_check_event ::= timing_check_event_control specify_terminal_descriptor [ &&& timing_check_condition ]
timing_check_condition ::=
  scalar_expression | ~scalar_expression
| scalar_expression == scalar_constant
| scalar_expression === scalar_constant
| scalar_expression != scalar_constant
| scalar_expression !== scalar_constant

The scalar expression that forms the conditioning signal must be a scalar net, or else the least significant
bit of a vector net or a multibit expression value is used. The comparisons in the timing check condition
may be deterministic (using === , !== , ~ , or no operator) or nondeterministic (using == or != ). For
deterministic comparisons, an ’x’ result disables the timing check. For nondeterministic comparisons,



an ’x’ result enables the timing check.

As an example the following unconditioned timing check,

$setup(data, posedge clock, 10);

performs a setup timing check on every positive edge of clock , as was explained in Section 11.13.3.
The following controlled timing check is enabled only when clear is high, which is what is required in
a flip-flop model, for example.

$setup(data, posedge clock &&& clear, 10);

The next example shows two alternative ways to enable a timing check only when clear is low. The
second method uses a nondeterministic operator.

$setup(data,posedge clock &&&(~clear),10); // clear=x disables check
$setup(data,posedge clock &&&(clear==0),10); // clear=x enables check

To perform the setup check only when clear and preset signals are high, you can add a gate outside
the specify block, as follows:

and g1(clear_and_preset, clear, set);

A controlled timing check event can then use this clear_and_preset signal:

$setup(data, posedge clock &&& clear_and_preset, 10);

Use the preceding techniques to expand the D flip-flop model, dff_udp, from Section 11.13.3 to include
asynchronous active-low preset and clear signals as well as an output, qbar . Use the following module
interface:

module dff(q, qbar, clock, data, preset, clear);

11.48 (Verilog BNF, 30 min.) Here is the "old" BNF definition of a sequential block (used in the Verilog
reference manuals and the OVI LRM). Are there any differences from the "new" version?

<sequential_block> ::=
  begin <statement>* end
  or
  begin: <block_IDENTIFIER> <block_declaration>*
    <statement>*
  end
<block_declaration> ::= parameter <list_of_param_assignment>;
  or reg <range>? <attribute_decl>*
    <list_of_register_variable>;
  or integer <attribute_decl>* <list_of_register_variable>;
  or real <attribute_decl>* <list_of_variable_IDENTIFIER>;
  or time <attribute_decl>* <list_of_register_variable>;
  or event <attribute_decl>* <list_of_event_IDENTIFIER>;
<statement> ::=
  <blocking_assignment>;
  or <non-blocking_assignment>;
  or if(<expression>) <statement_or_null>
    <else <statement_or_null> >?
  or <case or casez or casex>



    (<expression>) <case item>+ endcase
  or forever <statement>
  or repeat(<expression>) <statement>
  or while(<expression>) <statement>
  or for(<assignment>;
    <expression>; <assignment>) <statement>
  or wait(<expression>) <statement_or_null>
  or disable <task_IDENTIFIER>;
  or disable <block_IDENTIFIER>;
  or force <assignment>; or release <value>;
  or <timing_control> <statement_or_null>
  or -> <event_IDENTIFIER>;
  or <sequential_block> or <parallel_block>
  or <task_enable> or <system_task_enable>

11.49 (Conditional compiler directives, 30 min.) The conditional compiler directives: ‘define , ‘ifdef
, ‘else , ‘endif , and ‘undef ; work much as in C. Write and compile a module that models an AND
gate as ’z = a&b’ if the variable behavioral is defined. If behavioral is not defined, then model the AND
gate as ’and a1 (z, a, b)’.

11.50 (*Macros, 30 min.) According to the IEEE Verilog LRM [16.3.1] you can create a macro with
parameters using ‘define , as the following example illustrates. This is a particularly difficult area of
compliance. Does your software allow the following? You may have to experiment considerably to get
this to work. Hint: Check to see if your software is substituting for the macro text literally or if it does in
fact substitute for parameters.

‘define M_MAX(a, b)((a) > (b) ? (a) : (b))
‘define M_ADD(a,b) (a+b)
module macro;
reg m1, m2, m3, s0, s1;
‘define var_nand(delay) nand #delay
‘var_nand (2) g121 (q21, n10, n11);
‘var_nand (3) g122 (q22, n10, n11);
initial begin s0=0; s1=1;
m1 = ‘M_MAX (s0, s1); m2 = ‘M_ADD (s0,s1); m3 = s0 > s1 ? s0 : s1;
end
initial #1 $display(" m1=",m1," m2=",m2," m3=",m3);
endmodule

11.51 (**Verilog hazards, 30 min.) The MTI simulator, VSIM, is capable of detecting the following
kinds of Verilog hazards:

1. WRITE/WRITE: Two processes writing to the same variable at the same time. 
2. READ/WRITE: One process reading a variable at the same time it is being written to by another

process. VSIM calls this a READ/WRITE hazard if it executed the read first. 
3. WRITE/READ: Same as a READ/WRITE hazard except that VSIM executed the write first. 

For example, the following log shows how to simulate Verilog code in hazard mode for the example in
Section 11.6.2:

> vlib work
> vlog -hazards data_slip_1.v
> vsim -c -hazards data_slip_1
...(lines omitted)...
# 100 0   1 1  x



# ** Error: Write/Read hazard detected on Q1 (ALWAYS 3 followed by ALWAYS 4)
#    Time: 150 ns  Iteration: 1  Instance:/
# 150 1   1 1  1
...(lines omitted)...

There are a total of five hazards in the module data_slip_1, four are on Q1, but there is another. If you
correct the code as suggested in Section 11.6.2 and run VSIM, you will find this fifth hazard. If you do
not have access to MTI’s simulator, can you spot this additional read/write hazard? Hint: It occurs at
time zero on Clk. Explain.

11.15.1   The Viterbi Decoder

11.52 (Understanding, 20 min.) Calculate the values shown in Table 11.8 if we use 4 bits for the
distance measures instead of 3.

11.53 (Testbenches)

a. (30 min.) Write a testbench for the encoder, viterbi_encode, in Section 11.12 and reproduce the results
of Table 11.7.

b. (30 min.) Write a testbench for the receiver front-end viterbi_distances and reproduce the results of
Table 11.9 (you can write this stand-alone or use the answer to part a to generate the input). Hint: You
will need a model for a D flip-flop. The sequence of results is more important than the exact timing. If
you do have timing differences, explain them carefully.

11.54 (Things go wrong, 60 min.) Things do not always go as smoothly as the examples in this book
might indicate. Suppose you accidentally invert the sense of the reset for the D flip-flops in the encoder.
Simulate the output of the faulty encoder with an input sequence X n = 0, 1, 2, 3, ... (in other words run

the encoder with the flip-flops being reset continually). The output sequence looks reasonable (you
should find that it is Y n = 0, 2, 4, 6, ...). Explain this result using the state diagram of Figure 11.3. If you

had constructed a testbench for the entire decoder and did not check the intermediate signals against
expected values you would probably never find this error.

11.55 (Subset decoder) Table 11.21 shows the inputs and outputs from the first-stage of the Viterbi
decoder, the subset decoder. Calculate the expected output and then confirm your predictions using
simulation.

TABLE 11.21    Subset decoder (Problem 11.55).

input in0 in1 in2 in3 in4 in5 in6 in7 s0 s1 s2 s3 sout0 sout1 sout2 sout3

5 6 7 6 4 1 0 1 4 1 0 1 4     

4 7 6 4 1 0 1 4 6 0 1 4 1     

1 1 0 1 4 6 7 6 4 1 0 1 4     

0 0 1 4 6 7 6 4 1 0 1 4 1     
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11.16   Bibliography
The IEEE Verilog LRM [1995] is less intimidating than the IEEE VHDL LRM, because it is based on
the OVI LRM, which in turn was based on the Verilog-XL simulator reference manual. Thus it has more
of a "User’s Guide" flavor and is required reading for serious Verilog users. It is the only source for
detailed information on the PLI.

Phil Moorby was one of the original architects of the Verilog language. The Thomas and Moorby text is
a good introduction to Verilog [1991]. The code examples from this book can be obtained from the
World Wide Web. Palnitkar’s book includes an example of the use of the PLI routines [1996].

Open Verilog International (OVI) has a Web site maintained by Chronologic (
http://www.chronologic.com/ovi ) with membership information and addresses and an ftp site
maintained by META-Software ( ftp://ftp.metasw.com in /pub/OVI/ ). OVI sells reference
material, including proceedings from the International Verilog HDL Conference.

The newsgroup comp.lang.verilog (with a FAQ--frequently asked questions) is accessible from a
number of online sources. The FAQ includes a list of reference materials and book reviews. Cray
Research maintained an archive for comp.lang.verilog going back to 1993 but this was lost in January
1997 and is still currently unavailable. Cadence has a discussion group at talkverilog@cadence.com .
Wellspring Solutions offers VeriWell, a no-cost, limited capability, Verilog simulator for UNIX, PC,
and Macintosh platforms.

There is a free, "copylefted" Verilog simulator, vbs , written by Jimen Ching and Lay Hoon Tho as part
of their Master’s theses at the University of Hawaii, which is part of the comp.lang.verilog archive.
The package includes explanations of the mechanics of a digital event-driven simulator, including event
queues and time wheels.

More technical references are included as part of Appendix B.
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