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Logic synthesis provides a link between an HDL (Verilog or VHDL) and a netlist similarly to the way
that a C compiler provides a link between C code and machine language. However, the parallel is not
exact. C was developed for use with compilers, but HDLs were not developed for use with
logic-synthesis tools. Verilog was designed as a simulation language and VHDL was designed as a
documentation and description language. Both Verilog and VHDL were developed in the early 1980s,
well before the introduction of commercial logic-synthesis software. Because these HDLs are now being
used for purposes for which they were not intended, the state of the art in logic synthesis falls far short
of that for computer-language compilers. Logic synthesis forces designers to use a subset of both
Verilog and VHDL. This makes using logic synthesis more difficult rather than less difficult. The
current state of synthesis software is rather like learning a foreign language, and then having to talk to a
five-year-old. When talking to a logic-synthesis tool using an HDL, it is necessary to think like
hardware, anticipating the netlist that logic synthesis will produce. This situation should improve in the
next five years, as logic synthesizers mature.

Designers use graphic or text design entry to create an HDL behavioral model , which does not contain
any references to logic cells. State diagrams, graphical datapath descriptions, truth tables, RAM/ROM
templates, and gate-level schematics may be used together with an HDL description. Once a behavioral
HDL model is complete, two items are required to proceed: a logic synthesizer (software and
documentation) and a cell library (the logic cells-NAND gates and such) that is called the target library .
Most synthesis software companies produce only software. Most ASIC vendors produce only cell
libraries. The behavioral model is simulated to check that the design meets the specifications and then
the logic synthesizer is used to generate a netlist, a structural model , which contains only references to
logic cells. There is no standard format for the netlists that logic synthesis produces, but EDIF is widely
used. Some logic-synthesis tools can also create structural HDL (Verilog, VHDL, or both). Following
logic synthesis the design is simulated again, and the results are compared with the earlier behavioral
simulation. Layout for any type of ASIC may be generated from the structural model produced by logic
synthesis. 
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As an example of logic synthesis, we will compare two implementations of the Viterbi decoder
described in Chapter 11. Both versions used logic cells from a VLSI Technology cell library. The first
ASIC was designed by hand using schematic entry and a data book. The second version of the ASIC
(the one that was fabricated) used Verilog for design entry and a logic synthesizer. Table 12.1 compares
the two versions. The synthesized ASIC is 16 percent smaller and 13 percent faster than the
hand-designed version.

How does logic synthesis generate smaller and faster circuits? Figure 12.1 shows the schematic for a
hand-designed comparator and MUX used in the Viterbi decoder ASIC, called here the
comparator/MUX example. The Verilog code and the schematic in Figure 12.1 describe the same
function. The comparison, in Table 12.2 , of the two design approaches shows that the synthesized
version is smaller and faster than the hand design, even though the synthesized design uses more cells.

TABLE 12.1  A comparison of hand design with synthesis (using a 1.0 m m VLSI Technology cell
library).

 
Path delay/ 
ns ( 1 ) 

No. of standard cells No. of transistors 
Chip area/ 
mils 2 ( 2 ) 



Hand design 41.6 1,359 16,545 21,877

Synthesized design 36.3 1,493 11,946 18,322

 

 

 

// comp_mux.v 

module comp_mux(a, b, outp);

input [2:0] a, b;

output [2:0] outp; 

function [2:0] compare; 

input [2:0] ina, inb;

begin 

if (ina <= inb) compare = ina;

else compare = inb; 

end 

endfunction 

assign outp = compare(a, b);

endmodule 

FIGURE 12.1  Schematic and HDL design entry.

TABLE 12.2  Comparison of the comparator/MUX designs using a 1.0 m m standard-cell library.

 Delay /ns No. of standard cells No. of transistors Area /mils 2 

Hand design 4.3 12 116 68.68

Synthesized 2.9 15 66 46.43

1. These delays are under nominal operating conditions with no wiring capacitance. This is the only
stage at which a comparison could be made because the hand design was not completed.

2. Both figures are initial layout estimates using default power-bus and signal routing widths.

12.2  A Comparator/MUX
With the Verilog behavioral model of Figure 12.1 as the input, logic-synthesis software generates logic



that performs the same function as the Verilog. The software then optimizes the logic to produce a
structural model, which references logic cells from the cell library and details their connections. 

 

 

‘timescale 1ns / 10ps

module comp_mux_u (a, b, outp);

input [2:0] a; input [2:0] b;

output [2:0] outp;

supply1 VDD; supply0 VSS;

 

in01d0 u2 (.I(b[1]), .ZN(u2_ZN));

nd02d0 u3 (.A1(a[1]), .A2(u2_ZN), .ZN(u3_ZN));

in01d0 u4 (.I(a[1]), .ZN(u4_ZN));

nd02d0 u5 (.A1(u4_ZN), .A2(b[1]), .ZN(u5_ZN));

in01d0 u6 (.I(a[0]), .ZN(u6_ZN));

nd02d0 u7 (.A1(u6_ZN), .A2(u3_ZN), .ZN(u7_ZN));

nd02d0 u8 (.A1(b[0]), .A2(u3_ZN), .ZN(u8_ZN));

nd03d0 u9 (.A1(u5_ZN), .A2(u7_ZN), .A3(u8_ZN), .ZN(u9_ZN));

in01d0 u10 (.I(a[2]), .ZN(u10_ZN));

nd02d0 u11 (.A1(u10_ZN), .A2(u9_ZN), .ZN(u11_ZN));

nd02d0 u12 (.A1(b[2]), .A2(u9_ZN), .ZN(u12_ZN));

nd02d0 u13 (.A1(u10_ZN), .A2(b[2]), .ZN(u13_ZN));

nd03d0 u14 (.A1(u11_ZN), .A2(u12_ZN), .A3(u13_ZN), .ZN(u14_ZN));

nd02d0 u15 (.A1(a[2]), .A2(u14_ZN), .ZN(u15_ZN));

in01d0 u16 (.I(u14_ZN), .ZN(u16_ZN));

 

 



nd02d0 u17 (.A1(b[2]), .A2(u16_ZN), .ZN(u17_ZN));

nd02d0 u18 (.A1(u15_ZN), .A2(u17_ZN), .ZN(outp[2]));

nd02d0 u19 (.A1(a[1]), .A2(u14_ZN), .ZN(u19_ZN));

nd02d0 u20 (.A1(b[1]), .A2(u16_ZN), .ZN(u20_ZN));

nd02d0 u21 (.A1(u19_ZN), .A2(u20_ZN), .ZN(outp[1]));

nd02d0 u22 (.A1(a[0]), .A2(u14_ZN), .ZN(u22_ZN));

nd02d0 u23 (.A1(b[0]), .A2(u16_ZN), .ZN(u23_ZN));

nd02d0 u24 (.A1(u22_ZN), .A2(u23_ZN), .ZN(outp[0]));

 

endmodule 

FIGURE 12.2  The comparator/MUX after logic synthesis, but before logic optimization. This figure
shows the structural netlist, comp_mux_u.v , and its derived schematic.

 

 

 

‘timescale 1ns / 10ps

module comp_mux_o (a, b, outp);

input [2:0] a; input [2:0] b;  



output [2:0] outp;

supply1 VDD; supply0 VSS;

 

in01d0 B1_i1 (.I(a[2]), .ZN(B1_i1_ZN));

in01d0 B1_i2 (.I(b[1]), .ZN(B1_i2_ZN));

oa01d1 B1_i3 (.A1(a[0]), .A2(B1_i4_ZN), .B1(B1_i2_ZN),
.B2(a[1]), .ZN(B1_i3_Z;

fn05d1 B1_i4 (.A1(a[1]), .B1(b[1]), .ZN(B1_i4_ZN));

fn02d1 B1_i5 (.A(B1_i3_ZN), .B(B1_i1_ZN), .C(b[2]),
.ZN(B1_i5_ZN));

mx21d1 B1_i6 (.I0(a[0]), .I1(b[0]), .S(B1_i5_ZN),
.Z(outp[0]));

mx21d1 B1_i7 (.I0(a[1]), .I1(b[1]), .S(B1_i5_ZN),
.Z(outp[1]));

mx21d1 B1_i8 (.I0(a[2]), .I1(b[2]), .S(B1_i5_ZN),
.Z(outp[2]));

 

endmodule 

 

FIGURE 12.3  The comparator/MUX after logic synthesis and logic optimization with the default
settings. This figure shows the structural netlist, comp_mux_o.v , and its derived schematic.

Before running a logic synthesizer, it is necessary to set up paths and startup files ( synopsys_dc.setup ,
compass.boo , view.ini , or similar). These files set the target library and directory locations. Normally it
is easier to run logic synthesis in text mode using a script. A script is a text file that directs a software
tool to execute a series of synthesis commands (we call this a synthesis run ). Figure 12.2 shows a
structural netlist, comp_mux_u.v , and the derived schematic after logic synthesis, but before any logic
optimization . A derived schematic is created by software from a structural netlist (as opposed to a
schematic drawn by hand). 
shows the structural netlist, comp_mux_o.v , and the derived schematic after logic optimization is
performed (with the default settings). Figures 12.2 and 12.3 show the results of the two separate steps:
logic synthesis and logic optimization. Confusingly, the whole process, which includes synthesis and
optimization (and other steps as well), is referred to as logic synthesis . We also refer to the software that
performs all of these steps (even if the software consists of more than one program) as a logic
synthesizer . 



Logic synthesis parses (in a process sometimes called analysis ) and translates (sometimes called
elaboration ) the input HDL to a data structure. This data structure is then converted to a network of
generic logic cells. For example, the network in Figure 12.2 uses NAND gates (each with three or fewer
inputs in this case) and inverters. This network of generic logic cells is technology-independent since
cell libraries in any technology normally contain NAND gates and inverters. The next step, logic
optimization , attempts to improve this technology-independent network under the controls of the
designer. The output of the optimization step is an optimized, but still technology-independent, network.
Finally, in the logic-mapping step, the synthesizer maps the optimized logic to a specified
technology-dependent target cell library. Figure 12.3 shows the results of using a standard-cell library as
the target.

Text reports such as the one shown in Table 12.3 may be the only output that the designer sees from the
logic-synthesis tool. Often, synthesized ASIC netlists and the derived schematics containing thousands
of logic cells are far too large to follow. To make things even more difficult, the net names and instance
names in synthesized netlists are automatically generated. This makes it hard to see which lines of code
in the HDL generated which logic cells in the synthesized netlist or derived schematic.

TABLE 12.3  Reports from the logic synthesizer for the Verilog version of the comparator/MUX.

Command Synthesizer output 1 

> synthesize

                 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

in01d0 5 .8 3.8 7.2 36.0

nd02d0 16 1.0 16.0 9.6 153.6

nd03d0 2 1.3 2.5 12.0 24.0

--------- ----- ---------- -------- -------- --------

Totals: 23 22.2 213.6

 

> optimize

                 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width

--------- ----- ---------- -------- -------- --------

fn02d1 1 1.8 1.8 16.8 16.8

fn05d1 1 1.3 1.3 12.0 12.0

in01d0 2 .8 1.5 7.2 14.4



mx21d1 3 2.2 6.8 21.6 64.8

oa01d1 1 1.5 1.5 14.4 14.4

--------- ----- ---------- -------- -------- --------

Totals: 8 12.8 122.4

 

> report timing

instance name 

inPin --> outPin incr arrival trs rampDel cap cell 

                      (ns) (ns) (ns) (pf) 

---------------------------------------------------------------------- 

a[1] .00 .00 R .00 .04 comp_m... 

B1_i4 

A1 --> ZN .33 .33 R .17 .03 fn05d1 

B1_i3 

A2 --> ZN .39 .72 F .33 .06 oa01d1 

B1_i5 

A --> ZN 1.03 1.75 R .67 .11 fn02d1 

B1_i6 

S --> Z .68 2.43 R .09 .02 mx21d1 

 

In the comparator/MUX example the derived schematics are simple enough that, with hindsight, it is
clear that the XOR logic cell used in the hand design is logically inefficient. Using XOR logic cells
does, however, result in the simple schematic of Figure 12.1 . The synthesized version of the
comparator/MUX in Figure 12.3 uses complex combinational logic cells that are logically efficient, but
the schematic is not as easy to read. Of course, the computer does not care about this-and neither do we
since we usually never see the schematic.

Which version is best-the hand-designed or the synthesized version? Table 12.3 shows statistics
generated by the logic synthesizer for the comparator/MUX. To calculate the performance of each
circuit that it evaluates during synthesis, there is a timing-analysis tool (also known as a timing engine )



built into the logic synthesizer. The timing-analysis tool reports that the critical path in the optimized
comparator/MUX is 2.43 ns. This critical path is highlighted on the derived schematic of Figure 12.3
and consists of the following delays:

0.33 ns due to cell fn05d1 , instance name B1_i4 , a two-input NOR cell with an inverted input.
We might call this a NOR1-1 or (A + B’)’ logic cell. 
0.39 ns due to cell oa01d1 , instance name B1_i3 , an OAI22 logic cell. 
1.03 ns due to logic cell fn02d1 , instance name B1_i5 , a three-input majority function, MAJ3 (A,
B, C). 
0.68 ns due to logic cell mx21d1 , instance name B1_i6 , a 2:1 MUX. 

(In this cell library the ’d1’ suffix indicates normal drive strength.)

TABLE 12.4  Logic cell comparisons between the two comparator/MUX designs.

Cell type 
Library
cell
name 2 

3
tPLH
/ns 

tPHL
/ns 

Gate
equivalents
in cell 4 

Cells
used
in
hand 

design

Cells used
in 

synthesized
design 

Gate
equivalents
used 

by hand
design 

Gate
equivalents
used in 

synthesized
design 

Width
of
cell 5
/ m m

Width
used
by 

hand
design
/ m m

Inverter in01d0 0.37 0.36 0.8 2 2 1.6 1.6 7.2 14.4

2-input
XOR

xo02d1 0.93 0.62 1.8 3 - 5.3 - 16.8 50.4

2-input
AND

an02d1 0.34 0.46 1.3 1 - 1.3 - 12.0 12.0

3-input
AND

an03d1 0.38 0.52 1.5 1 - 1.5 - 14.4 14.4

4-input
AND

an04d1 0.41 0.98 1.8 1 - 1.8 - 16.8 16.8

3-input
OR

or03d1 0.60 0.44 1.8 1 - 1.8 - 16.8 16.8

2-input
MUX

mx21d1 0.69 0.68 2.2 3 3 6.6 6.6 21.6 64.8

AOI22 oa01d1 0.51 0.42 1.5 - 1 - 1.5 14.4 -

MAJ3 fn02d1 0.84 0.81 1.8 - 1 - 1.8 16.8 -

NOR1-1=
(A’ + B)’

fn05d1
6 

0.42 0.46 1.3 - 1 - 1.3 12.0 -

Totals     12 8 19.8 12.8  189.6

Table 12.4 lists the name, type, the number of transistors, the area, and the delay of each logic cell used
in the hand-designed and synthesized comparator/MUX. We could have performed this analysis by hand
using the cell-library data book and a calculator or spreadsheet, but it would have been tedious
work-especially calculating the delays. The computer is excellent at this type of bookkeeping. We can



think of the timing engine of a logic synthesizer as a logic calculator. 

We see from Table 12.4 that the sum of the widths of all the cells used in the synthesized design (122.4
m m) is less than for the hand design (189.6 m m). All the standard cells in a library are the same height,
72 l or 21.6 m m, in this case. Thus the synthesized design is smaller. We could estimate the critical path
of the hand design using the information from the cell-library data book (summarized in Table 12.4 ).
Instead we will use the timing engine in the logic synthesizer as a logic calculator to extract the critical
path for the hand-designed comparator/MUX. 

Table 12.5 shows a timing analysis obtained by loading the hand-designed schematic netlist into the
logic synthesizer. Table 12.5 shows that the hand-designed (critical path 2.42 ns) and synthesized
versions (critical path 2.43 ns) of the comparator/MUX are approximately the same speed. Remember,
though, that we used the default settings during logic optimization. Section 12.11 shows that the logic
synthesizer can do much better.

TABLE 12.5  Timing report for the hand-designed version of the comparator/MUX using the logic 
synthesizer to calculate the critical path (compare with Table 12.3 ).

Command Synthesizer output 7 

> report timing

instance name 

inPin --> outPin incr arrival trs rampDel cap cell 

                      (ns) (ns) (ns) (pf) 

---------------------------------------------------------------------- 

a[1]                    .00      .00    F    .00     .04    comp_mux 

B1_i4

A1 --> ZN               .61      .61    F    .14     .03    xo02d1

B1_i3 

A2 --> ZN               .85     1.46    F    .19     .05    an04d1

B1_i5 

A --> ZN                .42     1.88    F    .23     .09    or03d1

B1_i6 

S --> Z                 .54     2.42    R    .09     .02    mx21d1 

outp[0]                 .00     2.42    R    .00     .00    comp_mux

12.2.1 An Actel Version of the Comparator/MUX



Figure 12.4 shows the results of targeting the comparator/MUX design to the Actel ACT 2/3 FPGA
architecture. (The EDIF converter prefixes all internal nodes in this netlist with ’block_0_DEF_NET_’ .
This prefix was replaced with ’n_’ in the Verilog file, comp_mux_actel_o_adl_e.v , derived from the
.adl netlist.) As can be seen by comparing the netlists and schematics in Figures  12.3 and 12.4 , the
results are very different between a standard-cell library and the Actel library. Each of the symbols in
the schematic in Figure 12.4 represents the eight-input ACT 2/3 C-Module (see Figure 5.4 a). The logic
synthesizer, during the technology-mapping step, has decided which connections should be made to the
inputs to the combinational logic macro, CM8 . The CM8 names and the ACT2/3 C-Module names (in
parentheses) correspond as follows: S00(A0) , S01(B0) , S10(A1) , S11(A2) , D0(D00) , D1(D01) ,
D2(D10) , D3(D11) , and Y(Y) .

‘timescale 1 ns/100 ps

module comp_mux_actel_o (a, b, outp);

input [2:0] a, b; output [2:0] outp;

wire n_13, n_17, n_19, n_21, n_23, n_27, n_29, n_31, n_62;

 

CM8 I_5_CM8(.D0(n_31), .D1(n_62), .D2(a[0]), .D3(n_62),
.S00(n_62), .S01(n_13), .S10(n_23), .S11(n_21), .Y(outp[0]));

CM8 I_2_CM8(.D0(n_31), .D1(n_19), .D2(n_62), .D3(n_62),
.S00(n_62), .S01(b[1]), .S10(n_31), .S11(n_17), .Y(outp[1])); 

CM8 I_1_CM8(.D0(n_31), .D1(n_31), .D2(b[2]), .D3(n_31),
.S00(n_62), .S01(n_31), .S10(n_31), .S11(a[2]), .Y(outp[2]));

VCC VCC_I(.Y(n_62));

CM8 I_4_CM8(.D0(a[2]), .D1(n_31), .D2(n_62), .D3(n_62),
.S00(n_62), .S01(b[2]), .S10(n_31), .S11(a[1]), .Y(n_19));

CM8 I_7_CM8(.D0(b[1]), .D1(b[2]), .D2(n_31), .D3(n_31),
.S00(a[2]), .S01(b[1]), .S10(n_31), .S11(a[1]), .Y(n_23));

CM8 I_9_CM8(.D0(n_31), .D1(n_31), .D2(a[1]), .D3(n_31),
.S00(n_62), .S01(b[1]), .S10(n_31), .S11(b[0]), .Y(n_27));

CM8 I_8_CM8(.D0(n_29), .D1(n_62), .D2(n_31), .D3(a[2]),
.S00(n_62), .S01(n_27), .S10(n_31), .S11(b[2]), .Y(n_13));

CM8 I_3_CM8(.D0(n_31), .D1(n_31), .D2(a[1]), .D3(n_31),
.S00(n_62), .S01(a[2]), .S10(n_31), .S11(b[2]), .Y(n_17));

 

 



CM8 I_6_CM8(.D0(b[2]), .D1(n_31), .D2(n_62), .D3(n_62),
.S00(n_62), .S01(a[2]), .S10(n_31), .S11(b[0]), .Y(n_21));

CM8 I_10_CM8(.D0(n_31), .D1(n_31), .D2(b[0]), .D3(n_31),
.S00(n_62), .S01(n_31), .S10(n_31), .S11(a[2]), .Y(n_29));

GND GND_I(.Y(n_31));

endmodule 

FIGURE 12.4  The Actel version of the comparator/MUX after logic optimization. This figure shows
the s tructural netlist, comp_mux_actel_o_adl_e.v , and its derived schematic.

1. Cell Name  = cell name from the ASIC library (Compass Passport, 0.6 m m high-density, 5 V
standard-cell library, cb60hd230); Num Insts  = number of cell instances; Gate Count Per
Cell = equivalent gates with two-input NAND = 1 gate (with number of transistors ª equivalent gates  ¥
 4); Width Per Cell = width in m m (cell height in this library is 72 l or 21.6 m m); incr  = incremental
delay time due to logic cell delay; trs  = transition; R  = rising; F  = falling; rampDel  = ramp delay; cap
 = capacitance at node or cell output pin.

2. 0.6 m m, 5 V, high-density Compass standard-cell library, cb60hd230.

3. Average over all inputs with load capacitance equal to two standard loads (one standard load = 0.016
pF).

4. 2-input NAND = 1 gate equivalent.

5. Cell height is 72 l (21.6 m m).

6. Rise and fall delays are different for the two inputs, A and B, of this cell: t PLHA = 0.48 ns; t PLHB =

0.36 ns; t PHLA = 0.59 ns; t PHLB = 0.33 ns.

7. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table.

12.3  Inside a Logic Synthesizer 
The logic synthesizer parses the Verilog of Figure 12.1 and builds an internal data structure (usually a
graph represented by linked lists). Such an abstract representation is not easy to visualize, so we shall
use pictures instead. The first Karnaugh map in Figure 12.5 (a) is a picture that represents the sel signal
(labeled as the input to the three MUXes in the schematic of Figure 12.1 ) for the case when the inputs
are such that a[2]b[2] = 00 . The signal sel is responsible for steering the smallest input, a or b , to the
output of the comparator/MUX. We insert a ’1’ in the Karnaugh map (which will select the input b to be
the output) whenever b is smaller than a . When a = b we do not care whether we select a or b (since a
and b are equal), so we insert an ’x’ , a don’t care logic value, in the Karnaugh map of Figure 12.5 (a).
There are four Karnaugh maps for the signal sel , one each for the values a[2]b[2] = 00 , a[2]b[2] = 01 ,
a[2]b[2] = 10 , and a[2]b[2] = 11 .



  

FIGURE 12.5  Logic maps for the comparator/MUX. (a) If the input b is less than a , then sel is ’1’ . If
a = b , then sel = ’x’ (don’t care). (b) A cover for sel .

Next, logic minimization tries to find a minimum cover for the Karnaugh maps-the smallest number of
the largest possible circles to cover all the ’1’ s. One possible cover is shown in Figure 12.5 (b).

In order to understand the steps that follow we shall use some notation from the Berkeley Logic
Interchange Format ( BLIF ) and from the Berkeley tools misII and sis . We shall use the logic operators
(in decreasing order of their precedence): ’!’ (negation), ’*’ (AND), ’+’ (OR). We shall also abbreviate
Verilog signal names; writing a[2] as a2 , for example. We can write equations for sel and the output
signals of the comparator/MUX in the format that is produced by sis , as follows (this is the same format
as input file for the Berkeley tool eqntott ):

sel = a1*!b1*!b2 + a0*!b1*!b2 + a0*a1*!b2 + a1*!b1*a2 + a0*!b1*a2 + a0*a1*a2 + a2*!b2;[12.1]

outp2 = !sel*a2 + sel*b2;[12.2]

outp1 = !sel*a1 + sel*b1;[12.3]

outp0 = !sel*a0 + sel*b0;[12.4]



Equations 12.1 - 12.4 describe the synthesized network . There are seven product terms in Eq.  12.1 -the
logic equation for sel (numbered and labeled in the drawing of the cover for sel in Figure 12.5 ). We
shall keep track of the sel signal separately even though this is not exactly the way the logic synthesizer
works-the synthesizer looks at all the signals at once.

Logic optimization uses a series of factoring, substitution, and elimination steps to simplify the
equations that represent the synthesized network. A simple analogy would be the simplification of
arithmetic expressions. Thus, for example, we can simplify 189 / 315 to 0.6 by factoring the top and
bottom lines and eliminating common factors as follows: (3 ¥ 7 ¥ 9) / (5 ¥ 7 ¥ 9) = 3 / 5. Boolean
algebra is more complicated than ordinary algebra. To make logic optimization tractable, most tools use
algorithms based on algebraic factors rather than Boolean factors. 

Logic optimization attempts to simplify the equations in the hope that this will also minimize area and
maximize speed. In the synthesis results presented in Table 12.3 , we accepted the default optimization
settings without setting any constraints. Thus only a minimum amount of logic optimization is attempted
that did not alter the synthesized network in this case.

The technology-decomposition step builds a generic network from the optimized logic network. The
generic network is usually simple NAND gates ( sis uses either AND, or NOR gates, or both). This
generic network is in a technology-independent form. To build this generic network involves creating
intermediate nodes. The program sis labels these intermediate nodes [n] , starting at n = 100 .

sel = [100] * [101] * [102] ;[12.5]

[100] = !( !a2 * [103] );

[101] = !( b2 * [103] );

[102] = !( !a2 * b2 );

[103] = !( [104] * [105] * [106] );

[104] = !( !a1 * b1 );

[105] = !( b0 * [107] );

[106] = !( a0’ * [107] );

[107] = !( a1 * !b1 );

outp2 = !( [108] * [109] );[12.6]

[108] = !( a2 * !sel );

[109] = !( sel * b2 );

There are two other sets of equations, similar to Eq.  12.6 , for outp1 and outp0 . Notice the polarity of
the sel signal in Eq.  12.5 is correct and represents an AND gate (a consequence of labeling sel as the



MUX select input in Table 12.1 ).

Next, the technology-mapping step (or logic-mapping step) implements the technology-independent
network by matching pieces of the network with the logic cells that are available in a
technology-dependent cell library (an FPGA or standard-cell library, for example). While performing
the logic mapping, the algorithms attempt to minimize area (the default constraint) while meeting any
other user constraints (timing or power constraints, for example).

Working backward from the outputs the logic mapper recognizes that each of the three output nodes (
outp2 , outp1 , and outp0 ) may be mapped to a MUX. (We are using the term "node mapping to a logic
cell" rather loosely here-an exact parallel is a compiler mapping patterns of source code to object code.)
Here is the equation that shows the mapping for outp2 :

outp2 = MUX(a, b, c) = ac + b!c[12.7]

a = b2 ; b = a2 ; c = sel

The equations for outp1 and outp0 are similar.

The node sel can be mapped to the three-input majority function as follows:

sel = MAJ3(w, x, y) = !(wx + wy + xy) [12.8]

w = !a2 ; x = b2 ; y = [103] ; 

Next node [103] is mapped to an OAI22 cell,

[103] = OAI22(w, x, y, z) = ! ((w + x)(y + z)) = (!w!x + !y!z) [12.9]

w = a0 ; x = a1 ; y = !b1 z = [107] ; 

Finally, node [107] is mapped to a two-input NOR with one inverted input,

[107] = !(b1 + !a1) ; [12.10]

Putting Equations 12.7 - 12.10 together describes the following optimized logic network (corresponding
to the structural netlist and schematic shown in Figure 12.3 ):

sel = !((( !a0 * !(a1&!b1) | (b1*!a1) ) * (!a2|b2) ) | (!a2*b2)) ;[12.11]

outp2 = !sel * a2 | sel * b2;

outp1 = !sel * a1 | sel * b1;

outp0 = !sel * a0 | sel * b0;

The comparator/MUX example illustrates how logic synthesis takes the behavioral model (the HDL
input) and, in a series of steps, converts this to a structural model describing the connections of logic



cells from a cell library. 

When we write a C program we almost never think of the object code that will result. When we write
HDL it is always necessary to consider the hardware. In C there is not much difference between i*j and
i/j . In an HDL, if i and j are 32-bit numbers, i*j will take up a large amount of silicon. If j is a constant,
equal to 2, then i*j take up hardly any space at all. Most logic synthesizers cannot even produce logic to
implement i/j . In the following sections we shall examine the Verilog and VHDL languages as a way to
communicate with a logic synthesizer. Using one of these HDLs we have to tell the logic synthesizer
what hardware we want-we imply A. The logic synthesizer then has to figure out what we want-it has to
infer 

12.4  Synthesis of the Viterbi Decoder
In this section we return to the Viterbi decoder from Chapter 11. After an initial synthesis run that shows
how logic synthesis works with a real example, we step back and study some of the issues and problems
of using HDLs for logic synthesis.

12.4.1 ASIC I/O

Some logic synthesizers can include I/O cells automatically, but the designer may have to use directives
to designate special pads (clock buffers, for example). It may also be necessary to use commands to set
I/O cell features such as selection of pull-up resistor, slew rate, and so on. Unfortunately there are no
standards in this area. Worse, there is currently no accepted way to set these parameters from an HDL.
Designers may also use either generic technology-independent I/O models or instantiate I/O cells
directly from an I/O cell library. Thus, for example, in the Compass tools the statement

asPadIn #(3,"1,2,3") u0 (in0, padin0);

uses a generic I/O cell model, asPadIn . This statement will generate three input pads (with pin numbers
"1" , "2" , and "3" ) if in0 is a 3-bit-wide bus.

The next example illustrates the use of generic I/O cells from a standard-component library. These
components are technology independent (so they may equally well be used with a 0.6 m m or 0.35 m m
technology).

module allPads(padTri, padOut, clkOut, padBidir, padIn, padClk);

output padTri, padOut, clkOut; inout padBidir;

input [3:0] padIn; input padClk; wire [3:0] in;

//compass dontTouch u*

// asPadIn #(W, N, L, P) I (toCore, Pad) also asPadInInv

// asPadOut #(W, N, L, P) I (Pad, frCore)



// asPadTri #(W, N, S, L, P) I (Pad, frCore, OEN)

// asPadBidir #(W, N, S, L, P) I (Pad, toCore, frCore, OEN)

// asPadClk #(N, S, L) I (Clk, Pad) also asPadClkInv

// asPadVxx #(N, subnet) I (Vxx)

// W = width, integer (default=1)

// N = pin number string, e.g. "1:3,5:8" 

// S = strength = {2, 4, 8, 16} in mA drive

// L = level = {cmos, ttl, schmitt} (default = cmos)

// P = pull-up resistor = {down, float, none, up} 

// Vxx = {Vss, Vdd}

// subnet = connect supply to {pad, core, both} 

asPadIn #(4,"1:4","","none") u1 (in, padIn);

asPadOut #(1,"5",13) u2 (padOut, d);

asPadTri #(1,"6",11) u3 (padTri, in[1], in[0]);

asPadBidir #(1,"7",2,"","") u4 (d, padBidir, in[3], in[2]);

asPadClk #(8) u5 (clk, padClk);

asPadOut #(1, "9") u6 (clkOut, clk);

asPadVdd #("10:11","pads") u7 (vddr);

asPadVss #("12,13","pads") u8 (vssr);

asPadVdd #("14","core") u9 (vddc);

asPadVss #("15","core") u10 (vssc);

asPadVdd #("16","both") u11 (vddb);

asPadVss #("17","both") u12 (vssb);

endmodule 



The following code is an example of the contents of a generic model for a three-state I/O cell (provided
in a standard-component library or in an I/O cell library): 

module PadTri (Pad, I, Oen); // active-low output enable

parameter width = 1, pinNumbers = "", \strength = 1, 

level = "CMOS", externalVdd = 5;

output [width-1:0] Pad; input [width-1:0] I; input Oen;

assign #1 Pad = (Oen ? {width{1’bz}} : I);

endmodule 

The module PadTri can be used for simulation and as the basis for synthesizing an I/O cell. However,
the synthesizer also has to be told to synthesize an I/O cell connected to a bonding pad and the outside
world and not just an internal three-state buffer. There is currently no standard mechanism for doing
this, and every tool and every ASIC company handles it differently. 

The following model is a generic model for a bidirectional pad. We could use this model as a basis for
input-only and output-only I/O cell models.

module PadBidir (C, Pad, I, Oen); // active-low output enable

parameter width = 1, pinNumbers = "", \strength = 1, 

level = "CMOS", pull = "none", externalVdd = 5;

output [width-1:0] C; inout [width-1:0] Pad;

input [width-1:0] I; input Oen;

assign #1 Pad = Oen ? {width{1’bz}} : I; assign #1 C = Pad;

endmodule 

In Chapter 8 we used the halfgate example to demonstrate an FPGA design flow-including I/O. If the
synthesis tool is not capable of synthesizing I/O cells, then we may have to instantiate them by hand; the
following code is a hand-instantiated version of lines 19 - 22 in module allPads :

pc5o05 u2_2 (.PAD(padOut), .I(d));

pc5t04r u3_2 (.PAD(padTri), .I(in[1]), .OEN(in[0]));

pc5b01r u4_3 (.PAD(padBidir), .I(in[3]), .CIN(d), .OEN(in[2]));

pc5d01r u5_in_1 (.PAD(padClk), .CIN(u5toClkBuf[0]));



The designer must find the names of the I/O cells ( pc5o05 and so on), and the names, positions,
meanings, and defaults for the parameters from the cell-library documentation.

I/O cell models allow us to simulate the behavior of the synthesized logic inside an ASIC "all the way to
the pads." To simulate "outside the pads" at a system level, we should use these same I/O cell models.
This is important in ASIC design. For example, the designers forgot to put pull-up resistors on the
outputs of some of the SparcStation ASICs. This was one of the very few errors in a complex project,
but an error that could have been caught if a system-level simulation had included complete I/O cell
models for the ASICs.

12.4.2 Flip-Flops

In Chapter 11 we used this D flip-flop model to simulate the Viterbi decoder:

module dff(D,Q,Clock,Reset); // N.B. reset is active-low

output Q; input D,Clock,Reset;

parameter CARDINALITY = 1; reg [CARDINALITY-1:0] Q;

wire [CARDINALITY-1:0] D;

always @( posedge Clock) if (Reset!==0) #1 Q=D;

always begin wait (Reset==0); Q=0; wait (Reset==1); end 

endmodule 

Most simulators cannot synthesize this model because there are two wait statements in one always
statement (line 6 ). We could change the code to use flip-flops from the synthesizer standard-component
library by using the following code:

asDff ff1 (.Q(y), .D(x), .Clk(clk), .Rst(vdd));

Unfortunately we would have to change all the flip-flop models from ’dff’ to ’asDff’ and the code would
become dependent on a particular synthesis tool. Instead, to maintain independence from vendors, we
shall use the following D flip-flop model for synthesis and simulation:

module dff(D, Q, Clk, Rst); // new flip-flop for Viterbi decoder

parameter width = 1, reset_value = 0; input [width - 1 : 0] D;

output [width - 1 : 0] Q; reg [width - 1 : 0] Q; input Clk, Rst;

initial Q <= {width{1’bx}};

always @ ( posedge Clk or negedge Rst )



if ( Rst == 0 ) Q <= #1 reset_value; else Q <= #1 D;

endmodule 

12.4.3 The Top-Level Model

The following code models the top-level Viterbi decoder and instantiates (with instance name v_1 ) a
copy of the Verilog module viterbi from Chapter 11. The model uses generic input, output, power, and
clock I/O cells from the standard-component library supplied with the synthesis software. The
synthesizer will take these generic I/O cells and map them to I/O cells from a technology-specific
library. We do not need three-state I/O cells or bidirectional I/O cells for the Viterbi ASIC. 

/* This is the top-level module, viterbi_ASIC.v */

module viterbi_ASIC

(padin0, padin1, padin2, padin3, padin4, padin5, padin6, padin7, 

padOut, padClk, padRes, padError);

input [2:0] padin0, padin1, padin2, padin3,

padin4, padin5, padin6, padin7;

input padRes, padClk; output padError; output [2:0] padOut; 

wire Error, Clk, Res; wire [2:0] Out; // core 

wire padError, padClk, padRes; wire [2:0] padOut; 

wire [2:0] in0,in1,in2,in3,in4,in5,in6,in7; // core 

wire [2:0] 

padin0, padin1,padin2,padin3,padin4,padin5,padin6,padin7;

// Do not let the software mess with the pads.

//compass dontTouch u* 

asPadIn #(3,"1,2,3") u0 (in0, padin0);

asPadIn #(3,"4,5,6") u1 (in1, padin1);

asPadIn #(3,"7,8,9") u2 (in2, padin2);



asPadIn #(3,"10,11,12") u3 (in3, padin3);

asPadIn #(3,"13,14,15") u4 (in4, padin4);

asPadIn #(3,"16,17,18") u5 (in5, padin5);

asPadIn #(3,"19,20,21") u6 (in6, padin6);

asPadIn #(3,"22,23,24") u7 (in7, padin7);

asPadVdd #("25","both") u25 (vddb);

asPadVss #("26","both") u26 (vssb);

asPadClk #("27") u27 (Clk, padClk);

asPadOut #(1,"28") u28 (padError, Error);

asPadin #(1,"29") u29 (Res, padRes);

asPadOut #(3,"30,31,32") u30 (padOut, Out);

// Here is the core module:

viterbi v_1

(in0,in1,in2,in3,in4,in5,in6,in7,Out,Clk,Res,Error);

endmodule 

At this point we are ready to begin synthesis. In order to demonstrate how synthesis works, I am
cheating here. The code that was presented in Chapter 11 has already been simulated and synthesized
(requiring several iterations to produce error-free code). What I am doing is a little like the Galloping

that I prepared earlier." The synthesis results for the Viterbi decoder are shown in Table 12.6 . Normally
the worst thing we can do is prepare a large amount of code, put it in the synthesis oven, close the door,
push the "synthesize and optimize" button, and wait. Unfortunately, it is easy to do. In our case it works
(at least we may think so at this point) because this is a small ASIC by today’s standards-only a few
thousand gates. I made the bus widths small and chose this example so that the code was of a reasonable
size. Modern ASICs may be over one million gates, hundreds of times more complicated than our
Viterbi decoder example.

TABLE 12.6  Initial synthesis results of the Viterbi decoder ASIC.

Command Synthesizer output 1 , 2 

                 Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width



> optimize

--------- ----- ---------- -------- -------- --------

pc5c01 1 315.4 315.4 100.8 100.8

pc5d01r 26 315.4 8200.4 100.8 2620.8

pc5o06 4 315.4 1261.6 100.8 403.2

pv0f 1 315.4 315.4 100.8 100.8

pvdf 1 315.4 315.4 100.8 100.8

viterbi_p 1 1880.0 1880.0 18048.0 18048.0

The derived schematic for the synthesized core logic is shown in Figure 12.6 . There are eight boxes in
Figure 12.6 that represent the eight modules in the Verilog code. The schematics for each of these eight
blocks are too complex to be useful. With practice it is possible to "see" the synthesized logic from
reports such as Table 12.6 . First we check the following cells at the top level:

  

FIGURE 12.6  The core logic of the Viterbi decoder ASIC. Bus names are abbreviated in this figure
for clarity. For example the label m_out0-3 denotes the four buses: m_out0, m_out1, m_out2, and
m_out3.

pc5c01 is an I/O cell that drives the clock node into the logic core. ASIC designers also call an I/O
cell a pad cell , and often refer to the pad cells (the bonding pads and associated logic) as just "the
pads ." From the library data book we find this is a "core-driven, noninverting clock buffer capable
of driving 125 pF." This is a large logic cell and does not have a bonding pad, but is placed in a



pad site (a slot in the ring of pads around the perimeter of the die) as if it were an I/O cell with a
bonding pad. 
pc5d01r is a 5V CMOS input-only I/O cell with a bus repeater. Twenty-four of these I/O cells are
used for the 24 inputs ( in0 to in7 ). Two more are used for Res and Clk . The I/O cell for Clk
receives the clock signal from the bonding pad and drives the clock buffer cell ( pc5c01 ). The
pc5c01 cell then buffers and drives the clock back into the core. The power-hungry clock buffer is
placed in the pad ring near the VDD and VSS pads. 
pc5o06 is a CMOS output-only I/O cell with 6X drive strength (6 mA AC drive and 4 mA DC
drive). There are four output pads: three pads for the signal outputs, outp[2:0 ], and one pad for the
output signal, error . 
pv0f is a power pad that connects all VSS power buses on the chip. 
pvdf is a power pad that connects all VDD power buses on the chip. 
viterbi_p is the core logic. This cell takes its name from the top-level Verilog module ( viterbi ).
The software has appended a "_p" suffix (the default) to prevent input files being accidentally
overwritten. 

The software does not tell us any of this directly. We learn what is going on by looking at the names and
number of the synthesized cells, reading the synthesis tool documentation, and from experience. We
shall learn more about I/O pads and the layout of power supply buses in Chapter 16. 

Next we examine the cells used in the logic core. Most synthesis tools can produce reports, such as that
shown in Table 12.7 , which lists all the synthesized cells. The most important types of cells to check are
the sequential elements: flip-flops and latches (I have omitted all but the sequential logic cells in
Table 12.7 ). One of the most common mistakes in synthesis is to accidentally leave variables
unassigned in all situations in the HDL. Unassigned variables require memory and will generate
unnecessary sequential logic. In the Viterbi decoder it is easy to identify the sequential logic cells that
should be present in the synthesized logic because we used the module dff explicitly whenever we
required a flip-flop. By scanning the code in Chapter 11 and counting the references to the dff model,
we can see that the only flip-flops that should be inferred are the following:

24 (3 ¥ 8) D flip-flops in instance subset_decode 
132 (11 ¥ 12) D flip-flops in instance path_memory that contains 11 instances of path (12 D
flip-flops in each instance of path ) 
12 D flip-flops in instance pathin 
20 (5 ¥ 4) D flip-flops in instance metric 

The total is 24 + 132 + 12 + 20 = 188 D flip-flops, which is the same as the number of dfctnb cell
instances in Table 12.7 .

TABLE 12.7  Number of synthesized flip-flops in the Viterbi ASIC.

Command Synthesizer output 3 

 

Num Gate Count Tot Gate Width Total

Cell Name Insts Per Cell Count Per Cell Width



> report area -flat 

--------- ----- ---------- -------- -------- --------

...

dfctnb 188 5.8 1081.0 55.2 10377.6

...

--------- ----- ---------- -------- -------- --------

Totals: 1383 12716.5 25485.6

Table 12.6 gives the total width of the standard cells in the logic core after logic optimization as 18,048
m m. Since the standard-cell height for this library is 72 l (21.6 m m), we can make a first estimate of the
total logic cell area as 

(18,048 m m) (21.6 m m) = 390 k( m m) 2  (12.12)

     

  390 k( m m) 2 mil 2   

 ª --------------   

  (25.4 m m) 2   

     

 ª 600 mil 2   

In the physical layout we shall need additional space for routing. The ratio of routing to logic cell area is
called the routing factor . The routing factor depends primarily on whether we use two levels or three
levels of metal. With two levels of metal the routing factor is typically between 1 and 2. With three
levels of metal, where we may use over-the-cell routing, the routing factor is usually zero to 1. We thus
expect a logic core area of 600-1000 mils 2 for the Viterbi decoder using this cell library. 

From Table 12.6 we see the I/O cells in this library are 100.8 m m wide or approximately 4 mil (the
width of a single pad site). From the I/O cell data book we find the I/O cell height is 650 m m (actually
648.825 m m) or approximately 26 mil. Each I/O cell thus occupies 104 mil 2 . Our 33 pad sites will thus
require approximately 3400 mil 2 which is larger than the estimated core logic area.

Let us go back and take a closer look at what it usually takes to get to this point. Remember we used an
already prepared Verilog model for the Viterbi decoder. 

1. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table.

2. I/O cell height (I/O cells have prefixes pc5 and pv ) is approximately 650 m m in this cell library.



3. See footnote 1 in Table 12.3 for explanations of the abbreviations used in this table. Logic cell dfctnb
is a D flip-flop with clear in this standard-cell library.

12.5  Verilog and Logic Synthesis
A top-down design approach using Verilog begins with a single module at the top of the hierarchy to
model the input and output response of the ASIC:

module MyChip_ASIC(); ... (code to model ASIC I/O) ... endmodule ;

This top-level Verilog module is used to simulate the ASIC I/O connections and any bus I/O during the
earliest stages of design. Often the reason that designs fail is lack of attention to the connection between
the ASIC and the rest of the system.

As a designer, you proceed down through the hierarchy as you add lower-level modules to the top-level
Verilog module. Initially the lower-level modules are just empty placeholders, or stubs , containing a
minimum of code. For example, you might start by using inverters just to connect inputs directly to the
outputs. You expand these stubs before moving down to the next level of modules.

module MyChip_ASIC()

// behavioral "always", etc. ...

SecondLevelStub1 port mapping

SecondLevelStub2 port mapping

... endmodule 

module SecondLevelStub1() ... assign Output1 = ~Input1; endmodule 

module SecondLevelStub2() ... assign Output2 = ~Input2;

endmodule 

Eventually the Verilog modules will correspond to the various component pieces of the ASIC. 

12.5.1 Verilog Modeling

Before we could start synthesis of the Viterbi decoder we had to alter the model for the D flip-flop. This
was because the original flip-flop model contained syntax (multiple wait statements in an always
statement) that was acceptable to the simulation tool but not by the synthesis tool. This example was
artificial because we had already prepared and tested the Verilog code so that it was acceptable to the
synthesis software (we say we created synthesizable code). However, finding ourselves with
nonsynthesizable code arises frequently in logic synthesis. The original OVI LRM included a synthesis
policy , a set of guidelines that outline which parts of the Verilog language a synthesis tool should



support and which parts are optional. Some EDA vendors call their synthesis policy a modeling style .
There is no current standard on which parts of an HDL (either Verilog or VHDL) a synthesis tool should
support.

It is essential that the structural model created by a synthesis tool is functionally identical , or
functionally equivalent , to your behavioral model. Hopefully, we know this is true if the synthesis tool
is working properly. In this case the logic is "correct by construction." If you use different HDL code for
simulation and for synthesis, you have a problem. The process of formal verification can prove that two
logic descriptions (perhaps structural and behavioral HDL descriptions) are identical in their behavior.
We shall return to this issue in Chapter 13.

Next we shall examine Verilog and VHDL from the following viewpoint: "How do I write synthesizable
code?"

12.5.2  Delays in Verilog

Synthesis tools ignore delay values. They must-how can a synthesis tool guarantee that logic will have a
certain delay? For example, a synthesizer cannot generate hardware to implement the following Verilog
code:

module Step_Time(clk, phase);

input clk; output [2:0] phase; reg [2:0] phase;

always @( posedge clk) begin 

phase <= 4’b0000; 

phase <= #1 4’b0001; phase <= #2 4’b0010;

phase <= #3 4’b0011; phase <= #4 4’b0100;

end 

endmodule 

We can avoid this type of timing problem by dividing a clock as follows:

module Step_Count (clk_5x, phase);

input clk_5x; output [2:0] phase; reg [2:0] phase;

always @( posedge clk_5x)

case (phase)

0:phase = #1 1; 1:phase = #1 2; 2:phase = #1 3; 3:phase = #1 4;



default : phase = #1 0;

endcase 

endmodule 

12.5.3  Blocking and Nonblocking Assignments

There are some synthesis limitations that arise from the different types of Verilog assignment
statements. Consider the following shift-register model:

module race(clk, q0); input clk, q0; reg q1, q2;

always @( posedge clk) q1 = #1 q0; always @( posedge clk) q2 = #1 q1;

endmodule 

This example has a race condition (or a race ) that occurs as follows. The synthesizer ignores delays and
the two always statements are procedures that execute concurrently. So, do we update q1 first and then
assign the new value of q1 to q2 ? or do we update q2 first (with the old value of q1 ), and then update
q1 ? In real hardware two signals would be racing each other-and the winner is unclear. We must think
like the hardware to guide the synthesis tool. Combining the assignment statements into a single always
statement, as follows, is one way to solve this problem:

module no_race_1(clk, q0, q2); input clk, q0; output q2; reg q1, q2;

always @( posedge clk) begin q2 = q1; q1 = q0; end 

endmodule 

Evaluation is sequential within an always statement, and the order of the assignment statements now
ensures q2 gets the old value of q1 -before we update q1 .

We can also avoid the problem if we use nonblocking assignment statements,

module no_race_2(clk, q0, q2); input clk, q0; output q2; reg q1, q2;

always @( posedge clk) q1 <= #1 q0; always @( posedge clk) q2 <= #1 q1;

endmodule 

This code updates all the registers together, at the end of a time step, so q2 always gets the old value of
q1 .

12.5.4  Combinational Logic in Verilog



To model combinational logic, the sensitivity list of a Verilog always statement must contain only
signals with no edges (no reference to keywords posedge or negedge ). This is a level-sensitive
sensitivity list-as in the following example that implies a two-input AND gate:

module And_Always(x, y, z); input x,y; output z; reg z; 

always @(x or y) z <= x & y; // combinational logic method 1 

endmodule 

Continuous assignment statements also imply combinational logic (notice that z is now a wire rather
than a reg ),

module And_Assign(x, y, z); input x,y; output z; wire z;

assign z <= x & y; // combinational logic method 2 = method 1

endmodule 

We may also use concatenation or bit reduction to synthesize combinational logic functions, 

module And_Or (a,b,c,z); input a,b,c; output z; reg [1:0]z; 

always @(a or b or c) begin z[1]<= &{a,b,c}; z[2]<= |{a,b,c}; end 

endmodule 

module Parity (BusIn, outp); input [7:0] BusIn; output outp; reg outp;

always @(BusIn) if (^Busin == 0) outp = 1; else outp = 0;

endmodule 

The number of inputs, the types, and the drive strengths of the synthesized combinational logic cells will
depend on the speed, area, and load requirements that you set as constraints. 

You must be careful if you reference a signal ( reg or wire ) in a level-sensitive always statement and do
not include that signal in the sensitivity list. In the following example, signal b is missing from the
sensitivity list, and so this code should be flagged with a warning or an error by the synthesis tool-even
though the code is perfectly legal and acceptable to the Verilog simulator:

module And_Bad(a, b, c); input a, b; output c; reg c;

always @(a) c <= a & b; // b is missing from this sensitivity list

endmodule 

It is easy to write Verilog code that will simulate, but that does not make sense to the synthesis software.



You must think like the hardware. To avoid this type of problem with combinational logic inside an
always statement you should either:

include all variables in the event expression or 
assign to the variables before you use them 

For example, consider the following two models:

module CL_good(a, b, c); input a, b; output c; reg c;

always @(a or b)

begin c = a + b; d = a & b; e = c + d; end // c, d: LHS before RHS

endmodule 

module CL_bad(a, b, c); input a, b; output c; reg c;

always @(a or b)

begin e = c + d; c = a + b; d = a & b; end // c, d: RHS before LHS

endmodule 

In CL_bad , the signals c and d are used on the right-hand side (RHS) of an assignment statement before
they are defined on the left-hand side (LHS) of an assignment statement. If the logic synthesizer
produces combinational logic for CL_bad , it should warn us that the synthesized logic may not match
the simulation results.

When you are describing combinational logic you should be aware of the complexity of logic
optimization. Some combinational logic functions are too difficult for the optimization algorithms to
handle. The following module, Achilles , and large parity functions are examples of hard-to-synthesize
functions. This is because most logic-optimization algorithms calculate the complement of the functions
at some point. The complements of certain functions grow exponentially in the number of their product
terms.

// The complement of this function is too big for synthesis.

module Achilles (out, in); output out; input [30:1] in;

assign out =   in[30]&in[29]&in[28] | in[27]&in[26]&in[25]

| in[24]&in[23]&in[22] | in[21]&in[20]&in[19]

| in[18]&in[17]&in[16] | in[15]&in[14]&in[13]

| in[12]&in[11]&in[10] | in[9] & in[8]&in[7]



| in[6] & in[5]&in[4] | in[3] & in[2]&in[1];

endmodule 

In a case like this you can isolate the problem function in a separate module. Then, after synthesis, you
can use directives to tell the synthesizer not to try and optimize the problem function. 

12.5.5 Multiplexers In Verilog

We imply a MUX using a case statement, as in the following example:

module Mux_21a(sel, a, b, z); input sel, a , b; output z; reg z;

always @(a or b or sel)

begin case (sel) 1’b0: z <= a; 1’b1: z <= b; end 

endmodule 

Be careful using ’x’ in a case statement. Metalogical values (such as ’x’ ) are not "real" and are only
valid in simulation (and they are sometimes known as simbits for that reason). For example, a
synthesizer cannot make logic to model the following and will usually issue a warning to that effect:

module Mux_x(sel, a, b, z); input sel, a, b; output z; reg z;

always @(a or b or sel)

begin case (sel) 1’b0: z <= 0; 1’b1: z <= 1; 1’bx: z <= ’x’; end 

endmodule 

For the same reason you should avoid using casex and casez statements.

An if statement can also be used to imply a MUX as follows:

module Mux_21b(sel, a, b, z); input sel, a, b; output z; reg z;

always @(a or b or sel) begin if (sel) z <= a else z <= b; end 

endmodule 

However, if you do not always assign to an output, as in the following code, you will get a latch:

module Mux_Latch(sel, a, b, z); input sel, a, b; output z; reg z;

always @(a or sel) begin if (sel) z <= a; end 



endmodule 

It is important to understand why this code implies a sequential latch and not a combinational MUX.
Think like the hardware and you will see the problem. When sel is zero, you can pass through the
always statement whenever a change occurs on the input a without updating the value of the output z . In
this situation you need to "remember" the value of z when a changes. This implies sequential logic using
a as the latch input, sel as the active-high latch enable, and z as the latch output.

The following code implies an 8:1 MUX with a three-state output:

module Mux_81(InBus, sel, OE, OutBit);

input [7:0] InBus; input [2:0] Sel;

input OE; output OutBit; reg OutBit;

always @(OE or sel or InBus)

begin 

if (OE == 1) OutBit = InBus[sel]; else OutBit = 1’bz; 

end 

endmodule 

When you synthesize a large MUX the required speed and area, the output load, as well as the cells that
are available in the cell library will determine whether the synthesizer uses a large MUX cell, several
smaller MUX cells, or equivalent random logic cells. The synthesized logic may also use different logic
cells depending on whether you want the fastest path from the select input to the MUX output or from
the data inputs to the MUX output. 

12.5.6 The Verilog Case Statement

Consider the following model:

module case8_oneHot(oneHot, a, b, c, z); 

input a, b, c; input [2:0] oneHot; output z; reg z;

always @(oneHot or a or b or c)

begin case (oneHot) //synopsys full_case

3’b001: z <= a; 3’b010: z <= b; 3’b100: z <= c; 

default: z <= 1’bx; endcase 



end 

endmodule 

By including the default choice, the case statement is exhaustive . This means that every possible value
of the select variable ( oneHot ) is accounted for in the arms of the case statement. In some synthesizers
(Synopsys, for example) you may indicate the arms are exhaustive and imply a MUX by using a
compiler directive or synthesis directive . A compiler directive is also called a pseudocomment if it uses
the comment format (such as //synopsys full_case ). The format of pseudocomments is very specific.
Thus, for example, //synopys may be recognized but // synopys (with an extra space) or //SynopSys
(uppercase) may not. The use of pseudocomments shows the problems of using an HDL for a purpose
for which it was not intended. When we start "extending" the language we lose the advantages of a
standard and sacrifice portability. A compiler directive in module case8_oneHot is unnecessary if the
default choice is included. If you omit the default choice and you do not have the ability to use the
full_case directive (or you use a different tool), the synthesizer will infer latches for the output z .

If the default in a case statement is ’x’ (signifying a synthesis don’t care value ), this gives the
synthesizer flexibility in optimizing the logic. It does not mean that the synthesized logic output will be
unknown when the default applies. The combinational logic that results from a case statement when a
don’t care ( ’x’ ) is included as a default may or may not include a MUX, depending on how the logic is
optimized.

In case8_oneHot the choices in the arms of the case statement are exhaustive and also mutually
exclusive . Consider the following alternative model:

module case8_priority(oneHot, a, b, c, z); 

input a, b, c; input [2:0] oneHot; output z; reg z;

always @(oneHot or a or b or c) begin 

case (1’b1) //synopsys parallel_case

oneHot[0]: z <= a; 

oneHot[1]: z <= b; 

oneHot[2]: z <= c; 

default: z <= 1’bx; endcase 

end 

endmodule 

In this version of the case statement the choices are not necessarily mutually exclusive ( oneHot[0] and
oneHot[2] may both be equal to 1’b1 , for example). Thus the code implies a priority encoder. This may
not be what you intended. Some logic synthesizers allow you to indicate mutually exclusive choices by



using a directive ( //synopsys parallel_case , for example). It is probably wiser not to use these
"outside-the-language" directives if they can be avoided.

12.5.7  Decoders In Verilog

The following code models a 4:16 decoder with enable and three-state output:

module Decoder_4To16(enable, In_4, Out_16); // 4-to-16 decoder

input enable; input [3:0] In_4; output [15:0] Out_16;

reg [15:0] Out_16;

always @(enable or In_4)

begin Out_16 = 16’hzzzz;

if (enable == 1) 

begin Out_16 = 16’h0000; Out_16[In_4] = 1; end 

end 

endmodule 

In line 7 the binary-encoded 4-bit input sets the corresponding bit of the 16-bit output to ’1’ . The
synthesizer infers a three-state buffer from the assignment in line 5 . Using the equality operator, ’==’ ,
rather than the case equality operator, ’===’ , makes sense in line 6 , because the synthesizer cannot
generate logic that will check for enable being ’x’ or ’z’ . So, for example, do not write the following
(though some synthesis tools will still accept it):

if (enable === 1) // can’t make logic to check for enable = x or z

12.5.8 Priority Encoder in Verilog

The following Verilog code models a priority encoder with three-state output:

module Pri_Encoder32 (InBus, Clk, OE, OutBus);

input [31:0]InBus; input OE, Clk; output [4:0]OutBus; 

reg j; reg [4:0]OutBus;

always @( posedge Clk) 

begin 



if (OE == 0) OutBus = 5’bz ; 

else 

begin OutBus = 0;

for (j = 31; j >= 0; j = j - 1)

begin if (InBus[j] == 1) OutBus = j; end 

end 

end 

endmodule 

In lines 9 - 11 the binary-encoded output is set to the position of the lowest-indexed ’1’ in the input bus.
The logic synthesizer must be able to unroll the loop in a for statement. Normally the synthesizer will
check for fixed (or static) bounds on the loop limits, as in line 9 above.

12.5.9  Arithmetic in Verilog

You need to make room for the carry bit when you add two numbers in Verilog. You may do this using
concatenation on the LHS of an assignment as follows:

module Adder_8 (A, B, Z, Cin, Cout);

input [7:0] A, B; input Cin; output [7:0] Z; output Cout;

assign {Cout, Z} = A + B + Cin;

endmodule 

In the following example, the synthesizer should recognize ’1’ as a carry-in bit of an adder and should
synthesize one adder and not two: 

module Adder_16 (A, B, Sum, Cout);

input [15:0] A, B; output [15:0] Sum; output Cout;

reg [15:0] Sum; reg Cout;

always @(A or B) {Cout, Sum} = A + B + 1;

endmodule 

It is always possible to synthesize adders (and other arithmetic functions) using random logic, but they



may not be as efficient as using datapath synthesis (see Section 12.5.12 ).

A logic sythesizer may infer two adders from the following description rather than shaping a single
adder. 

module Add_A (sel, a, b, c, d, y); 

input a, b, c, d, sel; output y; reg y;

always @(sel or a or b or c or d)

begin if (sel == 0) y <= a + b; else y <= c + d; end 

endmodule 

To imply the presence of a MUX before a single adder we can use temporary variables. For example, the
synthesizer should use only one adder for the following code:

module Add_B (sel, a, b, c, d, y); 

input a, b, c, d, sel; output y; reg t1, t2, y;

always @(sel or a or b or c or d) begin 

if (sel == 0) begin t1 = a; t2 = b; end // Temporary 

else begin t1 = c; t2 = d; end // variables.

y = t1 + t2; end 

endmodule 

If a synthesis tool is capable of performing resource allocation and resource sharing in these situations,
the coding style may not matter. However we may want to use a different tool, which may not be as
advanced, at a later date-so it is better to use Add_B rather than Add_A if we wish to conserve area.
This example shows that the simplest code ( Add_A ) does not always result in the simplest logic (
Add_B ).

Multiplication in Verilog assumes nets are unsigned numbers:

module Multiply_unsigned (A, B, Z); 

input [1:0] A, B; output [3:0] Z; 

assign Z <= A * B;

endmodule 



To multiply signed numbers we need to extend the multiplicands with their sign bits as follows (some
simulators have trouble with the concatenation ’{}’ structures, in which case we have to write them out
"long hand"):

module Multiply_signed (A, B, Z); 

input [1:0] A, B; output [3:0] Z; 

// 00 -> 00_00  01 -> 00_01  10 -> 11_10  11 -> 11_11

assign Z = { { 2{A[1]} }, A} * { { 2{B[1]} }, B};

endmodule 

How the logic synthesizer implements the multiplication depends on the software.

12.5.10  Sequential Logic in Verilog

The following statement implies a positive-edge-triggered D flip-flop:

always @( posedge clock) Q_flipflop = D; // A flip-flop.

When you use edges ( posedge or negedge ) in the sensitivity list of an always statement, you imply a
clocked storage element. However, an always statement does not have to be edge-sensitive to imply
sequential logic. As another example of sequential logic, the following statement implies a
level-sensitive transparent latch:

always @(clock or D) if (clock) Q_latch = D; // A latch.

On the negative edge of the clock the always statement is executed, but no assignment is made to
Q_latch . These last two code examples concisely illustrate the difference between a flip-flop and a
latch. 

Any sequential logic cell or memory element must be initialized. Although you could use an initial
statement to simulate power-up, generating logic to mimic an initial statement is hard. Instead use a reset
as follows:

always @( posedge clock or negedge reset)

A problem now arises. When we use two edges, the synthesizer must infer which edge is the clock, and
which is the reset. Synthesis tools cannot read any significance into the names we have chosen. For
example, we could have written

always @( posedge day or negedge year)

-but which is the clock and which is the reset in this case?



For most synthesis tools you must solve this problem by writing HDL code in a certain format or pattern
so that the logic synthesizer may correctly infer the clock and reset signals. The following examples
show one possible pattern or template . These templates and their use are usually described in a
synthesis style guide that is part of the synthesis software documentation.

always @( posedge clk or negedge reset) begin // template for reset: 

if (reset == 0) Q = 0; // initialize,

else Q = D; // normal clocking

end 

module Counter_With_Reset (count, clock, reset); 

input clock, reset; output count; reg [7:0] count;

always @ ( posedge clock or negedge reset) 

if (reset == 0) count = 0; else count = count + 1;

endmodule 

module DFF_MasterSlave (D, clock, reset, Q); // D type flip-flop

input D, clock, reset; output Q; reg Q, latch;

always @( posedge clock or posedge reset)

if (reset == 1) latch = 0; else latch = D; // the master.

always @(latch) Q = latch; // the slave.

endmodule 

The synthesis tool can now infer that, in these templates, the signal that is tested in the if statement is the
reset, and that the other signal must therefore be the clock.

12.5.11 Component Instantiation in Verilog

When we give an HDL description to a synthesis tool, it will synthesize a netlist that contains generic
logic gates. By generic we mean the logic is technology-independent (it could be CMOS standard cell,
FPGA, TTL, GaAs, or something else-we have not decided yet). Only after logic optimization and
mapping to a specific ASIC cell library do the speed or area constraints determine the cell choices from
a cell library: NAND gates, OAI gates, and so on. 

The only way to ensure that the synthesizer uses a particular cell, ’special’ for example, from a specific



library is to write structural Verilog and instantiate the cell, ’special’ , in the Verilog. We call this hand
instantiation . We must then decide whether to allow logic optimization to replace or change ’special’ .
If we insist on using logic cell ’special’ and do not want it changed, we flag the cell with a synthesizer
command. Most logic synthesizers currently use a pseudocomment statement or set an attribute to do
this. 

For example, we might include the following statement to tell the Compass synthesizer-"Do not change
cell instance my_inv_8x ." This is not a standard construct, and it is not portable from tool to tool either.

//Compass dontTouch my_inv_8x or // synopsys dont_touch

INVD8 my_inv_8x(.I(a), .ZN(b) ); 

( some compiler directives are trademarks). Notice, in this example, instantiation involves declaring the
instance name and defining a structural port mapping. 

There is no standard name for technology-independent models or components-we shall call them soft
models or standard components . We can use the standard components for synthesis or for behavioral
Verilog simulation. Here is an example of using standard components for flip-flops (remember there are
no primitive Verilog flip-flop models-only primitives for the elementary logic cells):

module Count4(clk, reset, Q0, Q1, Q2, Q3);

input clk, reset; output Q0, Q1, Q2, Q3; wire Q0, Q1, Q2, Q3;

//           Q , D , clk, reset

asDff dff0( Q0, ~Q0, clk, reset); // The asDff is a

asDff dff1( Q1, ~Q1, Q0, reset); // standard component,

asDff dff2( Q2, ~Q2, Q1, reset); // unique to one set of tools.

asDff dff3( Q3, ~Q3, Q2, reset);

endmodule 

The asDff and other standard components are provided with the synthesis tool. The standard
components have specific names and interfaces that are part of the software documentation. When we
use a standard component such as asDff we are saying: "I want a D flip-flop, but I do not know which
ASIC technology I want to use-give me a generic version. I do not want to write a Verilog model for the
D flip-flop myself because I do not want to bother to synthesize each and every instance of a flip-flop.
When the time comes, just map this generic flip-flop to whatever is available in the
technology-dependent (vendor-specific) library." 

If we try and simulate Count4 we will get an error,

:Count4.v: L5: error: Module ’asDff’ not defined



(and three more like this) because asDff is not a primitive Verilog model. The synthesis tool should
provide us with a model for the standard component. For example, the following code models the
behavior of the standard component, asDff :

module asDff (D, Q, Clk, Rst); 

parameter width = 1, reset_value = 0;

input [width-1:0] D; output [width-1:0] Q; reg [width-1:0] Q;

input Clk,Rst; initial Q = {width{1’bx}};

always @ ( posedge Clk or negedge Rst )

if ( Rst==0 ) Q <= #1 reset_value; else Q <= #1 D;

endmodule 

When the synthesizer compiles the HDL code in Count4 , it does not parse the asDff model. The
software recognizes asDff and says "I see you want a flip-flop." The first steps that the synthesis
software and the simulation software take are often referred to as compilation, but the two steps are
different for each of these tools.

Synopsys has an extensive set of libraries, called DesignWare , that contains standard components not
only for flip-flops but for arithmetic and other complex logic elements. These standard components are
kept protected from optimization until it is time to map to a vendor technology. ASIC or EDA
companies that produce design software and cell libraries can tune the synthesizer to the silicon and
achieve a more efficient mapping. Even though we call them standard components, there are no
standards that cover their names, use, interfaces, or models. 

12.5.12  Datapath Synthesis in Verilog

Datapath synthesis is used for bus-wide arithmetic and other bus-wide operations. For example,
synthesis of a 32-bit multiplier in random logic is much less efficient than using datapath synthesis.
There are several approaches to datapath synthesis:

Synopsys VHDL DesignWare. This models generic arithmetic and other large functions (counters,
shift registers, and so on) using standard components. We can either let the synthesis tool map
operators (such as ’+’ ) to VHDL DesignWare components, or we can hand instantiate them in the
code. Many ASIC vendors support the DesignWare libraries. Thus, for example, we can instantiate
a DesignWare counter in VHDL and map that to a cell predesigned and preoptimized by Actel for
an Actel FPGA. 
Compiler directives. This approach uses synthesis directives in the code to steer the mapping of
datapath operators either to specific components (a two-port RAM or a register file, for example)
or flags certain operators to be implemented using a certain style ( ’+’ to be implemented using a
ripple-carry adder or a carry-lookahead adder, for example). 
X-BLOX is a system from Xilinx that allows us to keep the logic of certain functions (counters,



arithmetic elements) together. This is so that the layout tool does not splatter the synthesized CLBs
all over your FPGA, reducing the performance of the logic. 
LPM ( library of parameterized modules) and RPM ( relationally placed modules) are other
techniques used principally by FPGA companies to keep logic that operates on related data close
together. This approach is based on the use of the EDIF language to describe the modules. 

In all cases the disadvantage is that the code becomes specific to a certain piece of software. Here are
two examples of datapath synthesis directives:

module DP_csum(A1,B1,Z1); input [3:0] A1,B1; output Z1; reg [3:0] Z1;

always @(A1 or B1) Z1 <= A1 + B1;//Compass adder_arch cond_sum_add

endmodule 

module DP_ripp(A2,B2,Z2); input [3:0] A2,B2; output Z2; reg [3:0] Z2;

always @(A2 or B2) Z2 <= A2 + B2;//Compass adder_arch ripple_add

endmodule 

These directives steer the synthesis of a conditional-sum adder (usually the fastest adder
implementation) or a ripple-carry adder (small but slow). 

There are some limitations to datapath synthesis. Sometimes, complex operations are not synthesized as
we might expect. For example, a datapath library may contain a subtracter that has a carry input;
however, the following code may synthesize to random logic, because the synthesizer may not be able to
infer that the signal CarryIn is a subtracter carry:

module DP_sub_A(A,B,OutBus,CarryIn);

input [3:0] A, B ; input CarryIn ;

output OutBus ; reg [3:0] OutBus ;

always @(A or B or CarryIn) OutBus <= A - B - CarryIn ;

endmodule 

If we rewrite the code and subtract the carry as a constant, the synthesizer can more easily infer that it
should use the carry-in of a datapath subtracter:

module DP_sub_B (A, B, CarryIn, Z) ;

input [3:0] A, B, CarryIn ; output [3:0] Z; reg [3:0] Z;

always @(A or B or CarryIn) begin 



case (CarryIn)

1’b1 : Z <= A - B - 1’b1;

default : Z <= A - B - 1’b0; endcase 

end 

endmodule 

This is another example of thinking like the hardware in order to help the synthesis tool infer what we
are trying to imply.

12.6  VHDL and Logic Synthesis
Most logic synthesizers insist we follow a set of rules when we use a logic system to ensure that what
we synthesize matches the behavioral description. Here is a typical set of rules for use with the IEEE
VHDL nine-value system:

You can use logic values corresponding to states ’1’ , ’H’ , ’0’ , and ’L’ in any manner. 
Some synthesis tools do not accept the uninitialized logic state ’U’ . 
You can use logic states ’Z’ , ’X’ , ’W’ , and ’-’ in signal and variable assignments in any manner.
’Z’ is synthesized to three-state logic. 
The states ’X’ , ’W’ , and ’-’ are treated as unknown or don’t care values. 

The values ’Z’ , ’X’ , ’W’ , and ’-’ may be used in conditional clauses such as the comparison in an if or
case statement. However, some synthesis tools will ignore them and only match surrounding ’1’ and ’0’
bits. Consequently, a synthesized design may behave differently from the simulation if a stimulus uses
’Z’ , ’X’ , ’W’ or ’-’ . The IEEE synthesis packages provide the STD_MATCH function for
comparisons.

12.6.1  Initialization and Reset

You can use a VHDL process with a sensitivity list to synthesize clocked logic with a reset, as in the
following code:

process (signal_1, signal_2) begin 

if (signal_2’EVENT and signal_2 = ’0’)

then -- Insert initialization and reset statements.

elsif (signal_1’EVENT and signal_1 = ’1’)

then -- Insert clocking statements.



end if ;

end process ;

Using a specific pattern the synthesizer can infer that you are implying a positive-edge clock ( signal_1 )
and a negative-edge reset ( signal_2 ). In order to be able to recognize sequential logic in this way, most
synthesizers restrict you to using a maximum of two edges in a sensitivity list.

12.6.2 Combinational Logic Synthesis in VHDL

In VHDL a level-sensitive process is a process statement that has a sensitivity list with signals that are
not tested for event attributes ( ’EVENT or ’STABLE , for example) within the process . To synthesize
combinational logic we use a VHDL level-sensitive process or a concurrent assignment statement. Some
synthesizers do not allow reference to a signal inside a level-sensitive process unless that signal is in the
sensitivity list. In this example, signal b is missing from the sensitivity list:

entity And_Bad is port (a, b: in BIT; c: out BIT); end And_Bad;

architecture Synthesis_Bad of And_Bad is 

begin process (a) -- this should be process (a, b)

begin c <= a and b; 

end process ;

end Synthesis_Bad;

This situation is similar but not exactly the same as omitting a variable from an event control in a
Verilog always statement. Some logic synthesizers accept the VHDL version of And_Bad but not the
Verilog version or vice versa. To ensure that the VHDL simulation will match the behavior of the
synthesized logic, the logic synthesizer usually checks the sensitivity list of a level-sensitive process and
issues a warning if signals seem to be missing.

12.6.3 Multiplexers in VHDL

Multiplexers can be synthesized using a case statement (avoiding the VHDL reserved word ’select’ ), as
the following example illustrates:

entity Mux4 is port 

(i: BIT_VECTOR(3 downto 0); sel: BIT_VECTOR(1 downto 0); s: out BIT);

end Mux4;

architecture Synthesis_1 of Mux4 is 



begin process (sel, i) begin 

case sel is 

when "00" => s <= i(0); when "01" => s <= i(1);

when "10" => s <= i(2); when "11" => s <= i(3);

end case ;

end process ;

end Synthesis_1;

The following code, using a concurrent signal assignment is equivalent:

architecture Synthesis_2 of Mux4 is 

begin with sel select s <=

i(0) when "00", i(1) when "01", i(2) when "10", i(3) when "11";

end Synthesis_2;

In VHDL the case statement must be exhaustive in either form, so there is no question of any priority in
the choices as there may be in Verilog. 

For larger MUXes we can use an array, as in the following example:

library IEEE; use ieee.std_logic_1164. all ;

entity Mux8 is port 

(InBus : in STD_LOGIC_VECTOR(7 downto 0);

Sel : in INTEGER range 0 to 7;

OutBit : out STD_LOGIC);

end Mux8;

architecture Synthesis_1 of Mux8 is 

begin process (InBus, Sel)

begin OutBit <= InBus(Sel); 



end process ; 

end Synthesis_1;

 

Most synthesis tools can infer that, in this case, Sel requires three bits. If not, you have to declare the
signal as a STD_LOGIC_VECTOR ,

Sel : in STD_LOGIC_VECTOR(2 downto 0);

and use a conversion routine from the STD_NUMERIC package like this:

OutBit <= InBus(TO_INTEGER ( UNSIGNED (Sel) ) ) ;

At some point you have to convert from an INTEGER to BIT logic anyway, since you cannot connect
an INTEGER to the input of a chip! The VHDL case , if , and select statements produce similar results.
Assigning don’t care bits ( ’x’ ) in these statements will make it easier for the synthesizer to optimize the
logic.

12.6.4 Decoders in VHDL

The following code implies a decoder:

library IEEE; 

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Decoder is port (enable : in BIT;

Din: STD_LOGIC_VECTOR (2 downto 0); 

Dout: out STD_LOGIC_VECTOR (7 downto 0));

end Decoder;

architecture Synthesis_1 of Decoder is 

begin 

with enable select Dout <= 

STD_LOGIC_VECTOR

(UNSIGNED’

(shift_left 



("00000001", TO_INTEGER (UNSIGNED(Din)) 

) 

)

)

when ’1’, 

"11111111" when ’0’, "00000000" when others ;

end Synthesis_1;

There are reasons for this seemingly complex code:

Line 1 declares the IEEE library. The synthesizer does not parse the VHDL code inside the library
packages, but the synthesis company should be able to guarantee that the logic will behave exactly
the same way as a simulation that uses the IEEE libraries and does parse the code. 
Line 2 declares the STD_LOGIC_1164 package, for STD_LOGIC types, and the NUMERIC_STD
package for conversion and shift functions. The shift operators ( sll and so on-the infix operators)
were introduced in VHDL-93, they are not defined for STD_LOGIC types in the 1164 standard.
The shift functions defined in NUMERIC_STD are not operators and are called shift_left and so
on. Some synthesis tools support NUMERIC_STD , but not VHDL-93. 
Line 10 performs a type conversion to STD_LOGIC_VECTOR from UNSIGNED . 
Line 11 is a type qualification to tell the software that the argument to the type conversion function
is type UNSIGNED . 
Line 12 is the shift function, shift_left , from the NUMERIC_STD package. 
Line 13 converts the STD_LOGIC_VECTOR , Din , to UNSIGNED before converting to
INTEGER . We cannot convert directly from STD_LOGIC_VECTOR to INTEGER . 
The others clause in line 18 is required by the logic synthesizer even though type BIT may only be
’0’ or ’1’ . 

If we model a decoder using a process, we can use a case statement inside the process. A MUX model
may be used as a decoder if the input bits are set at ’1’ (active-high decoder) or at ’0’ (active-low
decoder), as in the following example:

library IEEE; 

use IEEE.NUMERIC_STD. all ; use IEEE.STD_LOGIC_1164. all ; 

entity Concurrent_Decoder is port (

enable : in BIT;

Din : in STD_LOGIC_VECTOR (2 downto 0); 

Dout : out STD_LOGIC_VECTOR (7 downto 0));



end Concurrent_Decoder;

architecture Synthesis_1 of Concurrent_Decoder is 

begin process (Din, enable) 

variable T : STD_LOGIC_VECTOR(7 downto 0);

begin 

if (enable = ’1’) then 

T := "00000000"; T( TO_INTEGER (UNSIGNED(Din))) := ’1’; 

Dout <= T ;

else Dout <= ( others => ’Z’);

end if ;

end process ;

end Synthesis_1;

Notice that T must be a variable for proper timing of the update to the output. The else clause in the if
statement is necessary to avoid inferring latches.

12.6.5 Adders in VHDL

To add two n -bit numbers and keep the overflow bit, we need to assign to a signal with more bits, as
follows:

library IEEE; 

use IEEE.NUMERIC_STD. all ; use IEEE.STD_LOGIC_1164. all ; 

entity Adder_1 is 

port (A, B: in UNSIGNED(3 downto 0); C: out UNSIGNED(4 downto 0));

end Adder_1;

architecture Synthesis_1 of Adder_1 is 

begin C <= (’0’ & A) + (’0’ & B);



end Synthesis_1;

Notice that both A and B have to be SIGNED or UNSIGNED as we cannot add
STD_LOGIC_VECTOR types directly using the IEEE packages. You will get an error if a result is a
different length from the target of an assignment, as in the following example (in which the arguments
are not resized):

adder_1: begin C <= A + B; 

Error : Width mis-match: right expression is 4 bits wide, c is 5 bits wide

The following code may generate three adders stacked three deep:

z <= a + b + c + d;

Depending on how the expression is parsed, the first adder may perform x = a + b , a second adder y = x
+ c , and a third adder z = y + d . The following code should generate faster logic with three adders
stacked only two deep:

z <= (a + b) + (c + d);

12.6.6 Sequential Logic in VHDL

Sensitivity to an edge implies sequential logic in VHDL. A synthesis tool can locate edges in VHDL by
finding a process statement that has either:

no sensitivity list with a wait until statement 
a sensitivity list and test for ’EVENT plus a specific level 

Any signal assigned in an edge-sensitive process statement should also be reset-but be careful to
distinguish between asynchronous and synchronous resets. The following example illustrates these
points:

library IEEE; use IEEE.STD_LOGIC_1164. all ; entity DFF_With_Reset is 

port (D, Clk, Reset : in STD_LOGIC; Q : out STD_LOGIC);

end DFF_With_Reset;

architecture Synthesis_1 of DFF_With_Reset is 

begin process (Clk, Reset) begin 

if (Reset = ’0’) then Q <= ’0’; -- asynchronous reset 

elsif rising_edge(Clk) then Q <= D;



end if ;

end process ;

end Synthesis_1;

architecture Synthesis_2 of DFF_With_Reset is 

begin process begin 

wait until rising_edge(Clk);

-- This reset is gated with the clock and is synchronous:

if (Reset = ’0’) then Q <= ’0’; else Q <= D; end if ;

end process ;

end Synthesis_2;

Sequential logic results when we have to "remember" something between successive executions of a
process statement. This occurs when a process statement contains one or more of the following
situations:

A signal is read but is not in the sensitivity list of a process statement. 
A signal or variable is read before it is updated. 
A signal is not always updated. 
There are multiple wait statements. 

Not all of the models that we could write using the above constructs will be synthesizable. Any models
that do use one or more of these constructs and that are synthesizable will result in sequential logic.

12.6.7 Instantiation in VHDL

The easiest way to find out how to hand instantiate a component is to generate a structural netlist from a
simple HDL input-for example, the following Verilog behavioral description (VHDL could have been
used, but the Verilog is shorter):

‘timescale 1ns/1ns

module halfgate (myInput, myOutput);

input myInput; output myOutput; wire myOutput; 

assign myOutput = ~myInput;

endmodule 



We synthesize this module and generate the following VHDL structural netlist:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

library COMPASS_LIB; use COMPASS_LIB.COMPASS. all ;

--compass compile_off -- synopsys etc.

use COMPASS_LIB.COMPASS_ETC. all ;

--compass compile_on -- synopsys etc.

entity halfgate_u is 

--compass compile_off -- synopsys etc.

generic ( 

myOutput_cap : Real := 0.01; 

INSTANCE_NAME : string := "halfgate_u" );

--compass compile_on -- synopsys etc.

port ( myInput : in Std_Logic := ’U’;

myOutput : out Std_Logic := ’U’ );

end halfgate_u;

architecture halfgate_u of halfgate_u is 

component in01d0

port ( I : in Std_Logic; ZN : out Std_Logic ); end component ;

begin 

u2: in01d0 port map ( I => myInput, ZN => myOutput );

end halfgate_u;

--compass compile_off -- synopsys etc.

library cb60hd230d;

configuration halfgate_u_CON of halfgate_u is 



for halfgate_u

for u2 : in01d0 use configuration cb60hd230d.in01d0_CON

generic map ( 

ZN_cap => 0.0100 + myOutput_cap, 

INSTANCE_NAME => INSTANCE_NAME&"/u2" )

port map ( I => I, ZN => ZN);

end for ;

end for ;

end halfgate_u_CON;

--compass compile_on -- synopsys etc.

This gives a template to follow when hand instantiating logic cells. Instantiating a standard component
requires the name of the component and its parameters:

component ASDFF

generic (WIDTH : POSITIVE := 1;

RESET_VALUE : STD_LOGIC_VECTOR := "0" );

port (Q : out STD_LOGIC_VECTOR (WIDTH-1 downto 0);

D : in STD_LOGIC_VECTOR (WIDTH-1 downto 0);

CLK : in STD_LOGIC;

RST : in STD_LOGIC );

end component ;

Now you have enough information to be able to instantiate both logic cells from a cell library and
standard components. The following model illustrates instantiation:

library IEEE, COMPASS_LIB; 

use IEEE.STD_LOGIC_1164. all ; use COMPASS_LIB.STDCOMP. all ;

entity Ripple_4 is 



port (Trig, Reset: STD_LOGIC; QN0_5x: out STD_LOGIC;

Q : inout STD_LOGIC_VECTOR(0 to 3));

end Ripple_4;

architecture structure of Ripple_4 is 

signal QN : STD_LOGIC_VECTOR(0 to 3); 

component in01d1

port ( I : in Std_Logic; ZN : out Std_Logic ); end component ;

component in01d5

port ( I : in Std_Logic; ZN : out Std_Logic ); end component ;

begin 

--compass dontTouch inv5x -- synopsys dont_touch etc.

-- Named association for hand-instantiated library cells:

inv5x: IN01D5 port map ( I=>Q(0), ZN=>QN0_5x );

inv0 : IN01D1 port map ( I=>Q(0), ZN=>QN(0) ); 

inv1 : IN01D1 port map ( I=>Q(1), ZN=>QN(1) ); 

inv2 : IN01D1 port map ( I=>Q(2), ZN=>QN(2) ); 

inv3 : IN01D1 port map ( I=>Q(3), ZN=>QN(3) ); 

-- Positional association for standard components:

--                           Q          D        Clk   Rst

d0: asDFF port map (Q (0 to 0), QN(0 to 0), Trig, Reset);

d1: asDFF port map (Q (1 to 1), QN(1 to 1), Q(0), Reset);

d2: asDFF port map (Q (2 to 2), QN(2 to 2), Q(1), Reset);

d3: asDFF port map (Q (3 to 3), QN(3 to 3), Q(2), Reset);

end structure; 



Lines 5 and 8 . Type STD_LOGIC_VECTOR must be used for standard component ports, because
the standard components are defined using this type. 
Line 5 . Mode inout has to be used for Q since it has to be read/write and this is a structural model.
You cannot use mode buffer since the formal outputs of the standard components are declared to
be of mode out . 
Line 14 . This synthesis directive prevents the synthesis tool from removing the 5X drive strength
inverter inv5x . This statement ties the code to a particular synthesis tool. 
Lines 16 - 20 . Named association for the hand-instantiated library cells. The names ( IN01D5 and
IN01D1 ) and port names ( I and ZN ) come from the cell library data book or from a template
(such as the one created for the IN01D1 logic cell). These statements tie the code to a particular
cell library. 
Lines 23 - 26 . Positional port mapping of the standard components. The port locations are from
the synthesis standard component library documentation. These asDFF standard components will
be mapped to D flip-flop library cells. These statements tie the code to a particular synthesis tool. 

You would receive the following warning from the logic synthesizer when it synthesizes this input code
(entity Ripple_4 ): 

Warning : Net has more than one driver: d3_Q[0]; connected to: ripple_4_p.q[3], inv3.I, d3.Q

There is potentially more than one driver on a net because Q was declared as inout . There are a total of
four warnings of this type for each of the flip-flop outputs. You can check the output netlist to make sure
that you have the logic you expected as follows (the Verilog netlist is shorter and easier to read):

‘timescale 1ns / 10ps

module ripple_4_u (trig, reset, qn0_5x, q);

input trig; input reset; output qn0_5x; inout [3:0] q;

wire [3:0] qn; supply1 VDD; supply0 VSS;

in01d5 inv5x (.I(q[0]),.ZN(qn0_5x));

in01d1 inv0 (.I(q[0]),.ZN(qn[0]));

in01d1 inv1 (.I(q[1]),.ZN(qn[1]));

in01d1 inv2 (.I(q[2]),.ZN(qn[2]));

in01d1 inv3 (.I(q[3]),.ZN(qn[3]));

dfctnb d0(.D(qn[0]),.CP(trig),.CDN(reset),.Q(q[0]),.QN(\d0.QN ));

dfctnb d1(.D(qn[1]),.CP(q[0]),.CDN(reset),.Q(q[1]),.QN(\d1.QN ));

dfctnb d2(.D(qn[2]),.CP(q[1]),.CDN(reset),.Q(q[2]),.QN(\d2.QN ));



dfctnb d3(.D(qn[3]),.CP(q[2]),.CDN(reset),.Q(q[3]),.QN(\d3.QN ));

endmodule 

12.6.8 Shift Registers and Clocking in VHDL

The following code implies a serial-in/parallel-out (SIPO) shift register:

library IEEE;

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity SIPO_1 is port (

Clk : in STD_LOGIC;

SI : in STD_LOGIC; -- serial in

PO : buffer STD_LOGIC_VECTOR(3 downto 0)); -- parallel out

end SIPO_1;

architecture Synthesis_1 of SIPO_1 is 

begin process (Clk) begin 

if (Clk = ’1’ ) then PO <= SI & PO(3 downto 1); end if ;

end process ;

end Synthesis_1;

Here is the Verilog structural netlist that results ( dfntnb is a positive-edge-triggered D flip-flop without
clear or reset):

module sipo_1_u (clk, si, po);

input clk; input si; output [3:0] po;

supply1 VDD; supply0 VSS;

dfntnb po_ff_b0 (.D(po[1]),.CP(clk),.Q(po[0]),.QN(\po_ff_b0.QN));

dfntnb po_ff_b1 (.D(po[2]),.CP(clk),.Q(po[1]),.QN(\po_ff_b1.QN));

dfntnb po_ff_b2 (.D(po[3]),.CP(clk),.Q(po[2]),.QN(\po_ff_b2.QN));



dfntnb po_ff_b3 (.D(si),.CP(clk),.Q(po[3]),.QN(\po_ff_b3.QN ));

endmodule 

The synthesized design consists of four flip-flops. Notice that (line 6 in the VHDL input) signal PO is of
mode buffer because we cannot read a signal of mode out inside a process. This is acceptable for
synthesis but not usually a good idea for simulation models. We can modify the code to eliminate the
buffer port and at the same time we shall include a reset signal, as follows:

library IEEE; 

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity SIPO_R is port (

clk : in STD_LOGIC ; res : in STD_LOGIC ;

SI : in STD_LOGIC ; PO : out STD_LOGIC_VECTOR(3 downto 0));

end ;

architecture Synthesis_1 of SIPO_R is 

signal PO_t : STD_LOGIC_VECTOR(3 downto 0); 

begin 

process (PO_t) begin PO <= PO_t; end process ;

process (clk, res) begin 

if (res = ’0’) then PO_t <= ( others => ’0’);

elsif (rising_edge(clk)) then PO_t <= SI & PO_t(3 downto 1);

end if ;

end process ;

end Synthesis_1;

Notice the following:

Line 10 uses a temporary signal, PO_t , to avoid using a port of mode buffer for the output signal
PO . We could have used a variable instead of a signal and the variable would consume less
overhead during simulation. However, we must complete an assignment to a variable inside the
clocked process (not in a separate process as we can for the signal). Assignment between a
variable and a signal inside a single process creates its own set of problems. 



Line 11 is sensitive to the clock, clk , and the reset, res . It is not sensitive to PO_t or SI and this is
what indicates the sequential logic. 
Line 13 uses the rising_edge function from the STD_LOGIC_1164 package. 

The software synthesizes four positive-edge-triggered D flip-flops for design entity
SIPO_R(Synthesis_1) as it did for design entity SIPO_1(Synthesis_1) . The difference is that the
synthesized flip-flops in SIPO_R have active-low resets. However, the simulation behavior of these two
design entities will be different. In SIPO_R , the function rising_edge only evaluates to TRUE for a
transition from ’0’ or ’L’ to ’1’ or ’H’ . In SIPO_1 we only tested for Clk = ’1’ . Since nearly all
synthesis tools now accept rising_edge and falling_edge , it is probably wiser to use these functions
consistently.

12.6.9 Adders and Arithmetic Functions

If you wish to perform BIT_VECTOR or STD_LOGIC_VECTOR arithmetic you have three choices:

Use a vendor-supplied package (there are no standard vendor packages-even if a company puts its
own package in the IEEE library). 
Convert to SIGNED (or UNSIGNED ) and use the IEEE standard synthesis packages (IEEE Std
1076.3-1997). 
Use overloaded functions in packages or functions that you define yourself. 

Here is an example of addition using a ripple-carry architecture:

library IEEE; 

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Adder4 is port (

in1, in2 : in BIT_VECTOR(3 downto 0) ;

mySum : out BIT_VECTOR(3 downto 0) ) ;

end Adder4;

architecture Behave_A of Adder4 is 

function DIY(L,R: BIT_VECTOR(3 downto 0)) return BIT_VECTOR is 

variable sum:BIT_VECTOR(3 downto 0); variable lt,rt,st,cry: BIT;

begin cry := ’0’;

for i in L’REVERSE_RANGE loop 

lt := L(i); rt := R(i); st := lt xor rt;



sum(i):= st xor cry; cry:= (lt and rt) or (st and cry);

end loop ;

return sum;

end ;

begin mySum <= DIY (in1, in2); -- do it yourself (DIY) add 

end Behave_A;

This model results in random logic. 

An alternative is to use UNSIGNED or UNSIGNED from the IEEE NUMERIC_STD or
NUMERIC_BIT packages as in the following example:

library IEEE; 

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

entity Adder4 is port (

in1, in2 : in UNSIGNED(3 downto 0) ;

mySum : out UNSIGNED(3 downto 0) ) ;

end Adder4;

architecture Behave_B of Adder4 is 

begin mySum <= in1 + in2; -- This uses an overloaded ’+’.

end Behave_B;

In this case, the synthesized logic will depend on the logic synthesizer. 

12.6.10  Adder/Subtracter and Don’t Cares

The following code models a 16-bit sequential adder and subtracter. The input signal, xin , is added to
output signal, result , when signal addsub is high; otherwise result is subtracted from xin . The internal
signal addout temporarily stores the result until the next rising edge of the clock:

library IEEE; 

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;



entity Adder_Subtracter is port (

xin : in UNSIGNED(15 downto 0);

clk, addsub, clr: in STD_LOGIC; 

result : out UNSIGNED(15 downto 0));

end Adder_Subtracter;

architecture Behave_A of Adder_Subtracter is 

signal addout, result_t: UNSIGNED(15 downto 0);

begin 

result <= result_t;

with addsub select 

addout <= (xin + result_t) when ’1’, 

(xin - result_t) when ’0’,

( others => ’-’) when others ;

process (clr, clk) begin 

if (clr = ’0’) then result_t <= ( others => ’0’);

elsif rising_edge(clk) then result_t <= addout;

end if ;

end process ;

end Behave_A;

Notice the following:

Line 11 is a concurrent assignment to avoid using a port of mode buffer . 
Lines 12 - 15 define an exhaustive list of choices for the selected signal assignment statement. The
default choice sets the result to ’-’ (don’t care) to allow the synthesizer to optimize the logic. 

Line 18 includes a reference to signal addout that could be eliminated by moving the selected signal
assignment statement inside the clocked process as follows:

architecture Behave_B of Adder_Subtracter is 



signal result_t: UNSIGNED(15 downto 0);

begin 

result <= result_t;

process (clr, clk) begin 

if (clr = ’0’) then result_t <= ( others => ’0’);

elsif rising_edge(clk) then 

case addsub is 

when ’1’ => result_t <= (xin + result_t); 

when ’0’ => result_t <= (xin - result_t);

when others => result_t <= ( others => ’-’);

end case ;

end if ;

end process ;

end Behave_B;

This code is simpler than architecture Behave_A , but the synthesized logic should be identical for both
architectures. Since the logic that results is an adder/subtracter followed by a register (bank of flip-flops)
the Behave_A model more clearly reflects the hardware.

12.7  Finite-State Machine Synthesis
There are three ways to synthesize a finite-state machine ( FSM ):

1. Omit any special synthesis directives and let the logic synthesizer operate on the state machine as
though it were random logic. This will prevent any reassignment of states or state machine
optimization. It is the easiest method and independent of any particular synthesis tool, but is the
most inefficient approach in terms of area and performance. 

2. Use directives to guide the logic synthesis tool to improve or modify state assignment. This
approach is dependent on the software that you use. 

3. Use a special state-machine compiler, separate from the logic synthesizer, to optimize the state
machine. You then merge the resulting state machine with the rest of your logic. This method
leads to the best results but is harder to use and ties your code to a particular set of software tools,
not just the logic synthesizer. 



Most synthesis tools require that you write a state machine using a certain style-a special format or
template. Synthesis tools may also require that you declare an FSM, the encoding, and the state register
using a synthesis directive or special software command. Common FSM encoding options are: 

Adjacent encoding assigns states by the minimum logic difference in the state transition graph.
This normally reduces the amount of logic needed to decode each state. The minimum number of
bits in the state register for an FSM with n states is log 2 n . In some tools you may increase the
state register width up to n to generate encoding based on Gray codes. 
One-hot encoding sets one bit in the state register for each state. This technique seems wasteful.
For example, an FSM with 16 states requires 16 flip-flops for one-hot encoding but only four if
you use a binary encoding. However, one-hot encoding simplifies the logic and also the
interconnect between the logic. One-hot encoding often results in smaller and faster FSMs. This is
especially true in programmable ASICs with large amounts of sequential logic relative to
combinational logic resources. 
Random encoding assigns a random code for each state. 
User-specified encoding keeps the explicit state assignment from the HDL. 
Moore encoding is useful for FSMs that require fast outputs. A Moore state machine has outputs
that depend only on the current state (Mealy state machine outputs depend on the current state and
the inputs). 

You need to consider how the reset of the state register will be handled in the synthesized hardware. In a
programmable ASIC there are often limitations on the polarity of the flip-flop resets. For example, in
some FPGAs all flip-flop resets must all be of the same polarity (and this restriction may or may not be
present or different for the internal flip-flops and the flip-flops in the I/O cells). Thus, for example, if
you try to assign the reset state as ’0101’ , it may not be possible to set two flip-flops to ’0’ and two
flip-flops to ’1’ at the same time in an FPGA. This may be handled by assigning the reset state, resSt , to
’0000’ or ’1111’ and inverting the appropriate two bits of the state register wherever they are used.

You also need to consider the initial value of the state register in the synthesized hardware. In some
reprogrammable FPGAs, after programming is complete the flip-flops may all be initialized to a value
that may not correspond to the reset state. Thus if the flip-flops are all set to ’1’ at start-up and the reset
state is ’0000’ , the initial state is ’1111’ and not the reset state. For this reason, and also to ensure
fail-safe behavior, it is important that the behavior of the FSM is defined for every possible value of the
state register.

12.7.1 FSM Synthesis in Verilog

The following FSM model uses paired processes . The first process synthesizes to sequential logic and
the second process synthesizes to combinational logic: 

‘define resSt 0

‘define S1 1

‘define S2 2

‘define S3 3



module StateMachine_1 (reset, clk, yOutReg);

input reset, clk; output yOutReg;

reg yOutReg, yOut; reg [1:0] curSt, nextSt;

always @( posedge clk or posedge reset)

begin :Seq //Compass statemachine oneHot curSt

if (reset == 1) 

begin yOut = 0; yOutReg = yOut; curSt = ‘resSt; end 

else begin 

case (curSt)

‘resSt:yOut = 0;‘S1:yOut = 1;‘S2:yOut = 1;‘S3:yOut = 1;

default :yOut = 0;

endcase 

yOutReg = yOut; curSt = nextSt; // ... update the state.

end 

end 

always @(curSt or yOut) // Assign the next state:

begin :Comb 

case (curSt)

‘resSt:nextSt = ‘S3; ‘S1:nextSt = ‘S2;

‘S2:nextSt = ‘S1; ‘S3:nextSt = ‘S1;

default :nextSt = ‘resSt;

endcase 

end 

endmodule 



Synopsys uses separate pseudocomments to define the states and state vector as in the following
example:

module StateMachine_2 (reset, clk, yOutReg);

input reset, clk; output yOutReg; reg yOutReg, yOut; 

parameter [1:0] //synopsys enum states 

resSt = 2’b00, S1 = 2’b01, S2 = 2’b10, S3 = 2’b11;

reg [1:0] /* synopsys enum states */ curSt, nextSt;

//synopsys state_vector curSt

always @( posedge clk or posedge reset) begin 

if (reset == 1) 

begin yOut = 0; yOutReg = yOut; curSt = resSt; end 

else begin 

case (curSt) resSt:yOut = 0;S1:yOut = 1;S2:yOut = 1;S3:yOut = 1; 

default :yOut = 0; endcase 

yOutReg = yOut; curSt = nextSt; end 

end 

always @(curSt or yOut) begin 

case (curSt) 

resSt:nextSt = S3; S1:nextSt = S2; S2:nextSt = S1; S3:nextSt = S1;

default :nextSt = S1; endcase 

end 

endmodule 

To change encoding we can assign states explicitly by altering lines 3 - 4 to the following, for example:

parameter [3:0] //synopsys enum states 



resSt = 4’b0000, S1 = 4’b0010, S2 = 4’b0100, S3 = 4’b1000;

12.7.2 FSM Synthesis in VHDL

The first architecture that follows is a template for a Moore state machine:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity SM1 is 

port (aIn, clk : in Std_logic; yOut: out Std_logic);

end SM1;

architecture Moore of SM1 is 

type state is (s1, s2, s3, s4);

signal pS, nS : state;

begin 

process (aIn, pS) begin 

case pS is 

when s1 => yOut <= ’0’; nS <= s4;

when s2 => yOut <= ’1’; nS <= s3;

when s3 => yOut <= ’1’; nS <= s1;

when s4 => yOut <= ’1’; nS <= s2;

end case ;

end process ;

process begin 

-- synopsys etc.

--compass Statemachine adj pS

wait until clk = ’1’; pS <= nS;

end process ;



end Moore;

An example input, aIn , is included but not used in the next state assignments. A reset is also omitted to
further simplify this example.

An FSM compiler extracts the state machine. Some companies use FSM compilers that are separate
from the logic synthesizers (and priced separately) because the algorithms for FSM optimization are
different from those for optimizing combinational logic. We can see what is happening by asking the
Compass synthesizer to write out intermediate results. The synthesizer extracts the FSM and produces
the following output in a state-machine language used by the tools:

sm sm1_ps_sm;

inputs; outputs yout_smo; clock clk;

STATE S1 { let yout_smo=0 ; } --> S4;

STATE S2 { let yout_smo=1 ; } --> S3;

STATE S3 { let yout_smo=1 ; } --> S1;

STATE S4 { let yout_smo=1 ; } --> S2;

end

You can use this language to modify the FSM and then use this modified code as an input to the
synthesizer if you wish. In our case, it serves as documentation that explains the FSM behavior.

Using one-hot encoding generates the following structural Verilog netlist ( dfntnb is
positive-edge-triggered D flip-flop, and nd03d0 is a three-input NAND):

dfntnb sm_ps4(.D(sm_ps1_Q),.CP(clk),.Q(sm_ps4_Q),.QN(sm_ps4_QN));

dfntnb sm_ps3(.D(sm_ps2_Q),.CP(clk),.Q(sm_ps3_Q),.QN(sm_ps3_QN));

dfntnb sm_ps2(.D(sm_ps4_Q),.CP(clk),.Q(sm_ps2_Q),.QN(sm_ps2_QN));

dfntnb sm_ps1(.D(sm_ps3_Q),.CP(clk),.Q(sm_ps1_Q),.QN(\sm_ps1.QN ));

nd03d0 i_6(.A1(sm_ps4_QN),.A2(sm_ps3_QN),.A3(sm_ps2_QN), .ZN(yout_smo));

(Each example shows only the logic cells and their interconnection in the Verilog structural netlists.)
The synthesizer has assigned one flip-flop to each of the four states to form a 4-bit state register. The
FSM output (renamed from yOut to yout_smo by the software) is taken from the output of the
three-input NAND gate that decodes the outputs from the flip-flops in the state register. 

Using adjacent encoding gives a simpler result,



dfntnb sm_ps2(.D(i_4_ZN),.CP(clk), .Q(\sm_ps2.Q ),.QN(sm_ps2_QN));

dfntnb sm_ps1(.D(sm_ps1_QN),.CP(clk),.Q(\sm_ps1.Q ),.QN(sm_ps1_QN));

oa04d1 i_4(.A1(sm_ps1_QN),.A2(sm_ps2_QN),.B(yout_smo),.ZN(i_4_ZN));

nd02d0 i_5(.A1(sm_ps2_QN), .A2(sm_ps1_QN), .ZN(yout_smo));

( oa04d1 is an OAI21 logic cell, nd02d0 is a two-input NAND). In this case binary encoding for the four
states uses only two flip-flops. The two-input NAND gate decodes the states to produce the output. The
OAI21 logic cell implements the logic that determines the next state. The combinational logic in this
example is only slightly more complex than that for the one-hot encoding, but, in general, combinational
logic for one-hot encoding is simpler than the other forms of encoding. 

Using the option ’moore’ for Moore encoding, we receive the following message from the FSM
compiler:

The states were assigned these codes:

0?? : S1       100 : S2       101 : S3       110 : S4

The FSM compiler has assigned three bits to the state register. The first bit in the state register is used as
the output. We can see more clearly what has happened by looking at the Verilog structural netlist:

dfntnb sm_ps3(.D(i_6_ZN),.CP(clk),.Q(yout_smo),.QN(sm_ps3_QN));

dfntnb sm_ps2(.D(sm_ps3_QN),.CP(clk),.Q(sm_ps2_Q),.QN(\sm_ps2.QN ));

dfntnb sm_ps1(.D(i_5_ZN),.CP(clk),.Q(sm_ps1_Q),.QN(\sm_ps1.QN ));

nr02d0 i_5(.A1(sm_ps3_QN),.A2(sm_ps2_Q),.ZN(i_5_ZN));

nd02d0 i_6(.A1(sm_ps1_Q),.A2(yout_smo),.ZN(i_6_ZN));

The output, yout_smo , is now taken directly from a flip-flop. This means that the output appears after
the clock edge with no combinational logic delay (only the clock-to-Q delay). This is useful for FSMs
that are required to produce outputs as soon as possible after the active clock edge (in PCI bus
controllers, for example).

The following code is a template for a Mealy state machine:

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity SM2 is 

port (aIn, clk : in Std_logic; yOut: out Std_logic);

end SM2;



architecture Mealy of SM2 is 

type state is (s1, s2, s3, s4);

signal pS, nS : state;

begin 

process (aIn, pS) begin 

case pS is 

when s1 => if (aIn = ’1’) 

then yOut <= ’0’; nS <= s4;

else yOut <= ’1’; nS <= s3;

end if ;

when s2 => yOut <= ’1’; nS <= s3;

when s3 => yOut <= ’1’; nS <= s1;

when s4 => if (aIn = ’1’)

then yOut <= ’1’; nS <= s2;

else yOut <= ’0’; nS <= s1;

end if ;

end case ;

end process ;

process begin 

wait until clk = ’1’ ;

--Compass Statemachine oneHot pS

pS <= nS;

end process ;

end Mealy;



12.8  Memory Synthesis
There are several approaches to memory synthesis:

1. Random logic using flip-flops or latches 
2. Register files in datapaths 
3. RAM standard components 
4. RAM compilers 

The first approach uses large vectors or arrays in the HDL code. The synthesizer will map these
elements to arrays of flip-flops or latches depending on how the timing of the assignments is handled.
This approach is independent of any software or type of ASIC and is the easiest to use but inefficient in
terms of area. A flip-flop may take up 10 to 20 times the area of a six-transistor static RAM cell.

The second approach uses a synthesis directive or hand instantiation to synthesize a memory to a
datapath component. Usually the datapath components are constructed from latches in a regular array.
These are slightly more efficient than a random arrangement of logic cells, but the way we create the
memory then depends on the software and the ASIC technology we are using.

The third approach uses standard components supplied by an ASIC vendor. For example, we can
instantiate a small RAM using CLBs in a Xilinx FPGA. This approach is very dependent on the
technology. For example, we could not easily transfer a design that uses Xilinx CLBs as SRAM to an
Actel FPGA.

The last approach, using a custom RAM compiler, is the most area-efficient approach. It depends on
having the capability to call a compiler from within the synthesis tool or to instantiate a component that
has already been compiled.

12.8.1 Memory Synthesis in Verilog

Most synthesizers implement a Verilog memory array, such as the one shown in the following code, as
an array of latches or flip-flops.

reg [31:0] MyMemory [3:0]; // a 4 x 32-bit register

For example, the following code models a small RAM, and the synthesizer maps the memory array to
sequential logic:

module RAM_1(A, CEB, WEB, OEB, INN, OUTT);

input [6:0] A; input CEB,WEB,OEB; input [4:0]INN;

output [4:0] OUTT; 

reg [4:0] OUTT; reg [4:0] int_bus; reg [4:0] memory [127:0]; 



always @( negedge CEB) begin 

if (CEB == 0) begin 

if (WEB == 1) int_bus = memory[A];

else if (WEB == 0) begin memory[A] = INN; int_bus = INN; end 

else int_bus = 5’bxxxxx;

end 

end 

always @(OEB or int_bus) begin 

case (OEB) 0 : OUTT = int_bus;

default : OUTT = 5’bzzzzz; endcase 

end 

endmodule 

Memory synthesis using random control logic and transparent latches for each bit is reasonable only for
small, fast register files, or for local RAM on an MGA or CBIC. For large RAMs synthesized memory
becomes very expensive and instead you should normally use a dedicated RAM compiler. 

Typically there will be restrictions on synthesizing RAM with multiple read/writes:

If you write to the same memory in two different processes, be careful to avoid address contention.
You need a multiport RAM if you read or write to multiple locations simultaneously. 
If you write and read the same memory location, you have to be very careful. To mimic hardware
you need to read before you write so that you read the old memory value. If you attempt to write
before reading, the difference between blocking and nonblocking assignments can lead to trouble. 

You cannot make a memory access that depends on another memory access in the same clock cycle. For
example, you cannot do this:

memory[i + 1] = memory[i]; // needs two clock cycles

or this:

pointer = memory[memory[i]]; // needs two clock cycles

For the same reason (but less obviously) we cannot do this:

pc = memory[addr1]; memory[addr2] = pc + 1; // not on the same cycle



12.8.2 Memory Synthesis in VHDL

VHDL allows multidimensional arrays so that we can synthesize a memory as an array of latches by
declaring a two-dimensional array as follows:

type memStor is array(3 downto 0) of integer ; -- This is OK.

subtype MemReg is STD_LOGIC_VECTOR(15 downto 0); -- So is this.

type memStor is array(3 downto 0) of MemReg;

-- other code...

signal Mem1 : memStor;

As an example, the following code models a standard-cell RAM:

library IEEE; 

use IEEE.STD_LOGIC_1164. all ;

package RAM_package is 

constant numOut : INTEGER := 8;

constant wordDepth: INTEGER := 8;

constant numAddr : INTEGER := 3;

subtype MEMV is STD_LOGIC_VECTOR(numOut-1 downto 0);

type MEM is array (wordDepth-1 downto 0) of MEMV;

end RAM_package;

library IEEE; 

use IEEE.STD_LOGIC_1164. all ; use IEEE.NUMERIC_STD. all ;

use work.RAM_package. all ;

entity RAM_1 is 

port (signal A : in STD_LOGIC_VECTOR(numAddr-1 downto 0);

signal CEB, WEB, OEB : in STD_LOGIC;



signal INN : in MEMV;

signal OUTT : out MEMV);

end RAM_1;

architecture Synthesis_1 of RAM_1 is 

signal i_bus : MEMV; -- RAM internal data latch

signal mem : MEM; -- RAM data 

begin 

process begin 

wait until CEB = ’0’;

if WEB = ’1’ then i_bus <= mem(TO_INTEGER(UNSIGNED(A)));

elsif WEB = ’0’ then 

mem(TO_INTEGER(UNSIGNED(A))) <= INN;

i_bus <= INN;

else i_bus <= ( others => ’X’);

end if ;

end process ;

process (OEB, int_bus) begin -- control output drivers:

case (OEB) is 

when ’0’ => OUTT <= i_bus; 

when ’1’ => OUTT <= ( others => ’Z’);

when others => OUTT <= ( others => ’X’);

end case ;

end process ;

end Synthesis_1; 



12.9  The Multiplier
This section looks at the messages that result from attempting to synthesize the VHDL code from
Section 10.2, "A 4-bit Multiplier." The following examples use the line numbers that were assigned in
the comments at the end of each line of code in Tables 10.1-10.9. The first problem arises in the
following code (line 7 of the full adder in Table 10.1):

Sum <= X xor Y xor Cin after TS;

Warning : AFTER clause in a waveform element is not supported

This is not a serious problem if you are using a synchronous design style. If you are, then your logic will
work whatever the delays (it may run slowly but it will work).

The next problem is from lines 3 - 4 of the 8-bit MUX in Table 10.5,

port (A, B : in BIT_VECTOR (7 downto 0); Sel : in BIT := ’0’; Y : out BIT_VECTOR (7 downto 0));

Warning : Default values on interface signals are not supported

The synthesis tool cannot mimic the behavior of a default value on a port in the software model. The
default value is the value given to an input if nothing is connected ( ’open’ in VHDL). In hardware
either an input is connected or it is not. If it is connected, there will be a voltage on the wire. If it is not
connected, the node will be floating. Default values are useful in VHDL-without a default value on an
input port, an entity-architecture pair will not compile. The default value may be omitted in this model
because this input port is connected at the next higher level of hierarchy.

The next problem illustrates what happens when a designer fails to think like the hardware (from line 3
of the zero-detector in Table 10.6),

port (X:BIT_VECTOR; F:out BIT );

Error : An index range must be specified for this data type

This code has the advantage of being flexible, but the synthesizer needs to know exactly how wide the
bus will be. There are two other similar errors in shiftn, the variable-width shift register (from lines 4-5
in Table 10.7). There are also three more errors generated by the same problem in the component
statement for AllZero (from lines 4-5 of package Mult_Components ) and the component statement for
shiftn (from lines 10-11 of package Mult_Components ).

All of these index range problems may be fixed by sacrificing the flexible nature of the code and
specifying an index range explicitly, as in the following example:

port (X:BIT_VECTOR(7 downto 0); F:out BIT );

Table 12.8 shows the synthesizable version of the shift-register model. The constrained index ranges in
lines 6 , 7 , 11 , 18 , 22 , and 23 fix the problem, but are rather ugly. It would be better to use generic



parameters for the input and output bus widths. However, a shift register with different input and output
widths is not that common so, for now, we will leave the code as it is.

TABLE 12.8  A synthesizable version of the shift register shown in Table 10.7.

entity ShiftN is 

generic (TCQ:TIME := 0.3 ns;
TLQ:TIME := 0.5 ns;

TSQ:TIME := 0.7 ns);

port (

CLK, CLR, LD, SH, DIR: in BIT; 

D: in BIT_VECTOR(3 downto 0);

Q: out BIT_VECTOR(7 downto 0) );

end ShiftN;

architecture Behave of ShiftN is 

begin Shift: process (CLR, CLK)

variable St: BIT_VECTOR(7 downto
0);

begin 

if CLR = ’1’ then 

St := ( others => ’0’); Q <= St after
TCQ;

elsif CLK’EVENT and CLK=’1’ then 

if LD = ’1’ then 

St := ( others => ’0’); 

St(3 downto 0) := D; 

Q <= St after TLQ;

elsif SH = ’1’ then 

 

 

CLK Clock

CLR Clear, active high

LD Load, active high

SH Shift, active high

DIR Direction, 1=left

D Data in

Q Data out

 

Shift register. Input width = 4. Output width = 8. Output is
left-shifted or right-shifted under control of DIR. Unused
MSBs are zero-padded during load. Clear is asynchronous.
Load is synchronous.

 



case DIR is 

when ’0’=>St:=’0’ & St(7 downto 1);

when ’1’=>St:=St(6 downto 0) & ’0’;

end case ;

Q <= St after TSQ;

end if ;

end if ;

end process ;

end ;

Timing: 

TCQ (CLR to Q) = 0.3 ns

TLQ (LD to Q) = 0.5 ns

TSQ (SH to Q) =0. 7 ns

The next problem occurs because VHDL is not a synthesis language (from lines 6-7 of the
variable-width shift register in Table 10.7),

begin assert (D’LENGTH <= Q’LENGTH) 

report "D wider than output Q" severity Failure;

Warning : Assertion statements are ignored

Error : Statements in entity declarations are not supported

The synthesis tool warns us it does not know how to generate hardware that writes to our screen to
implement an assertion statement. The error occurs because a synthesis tool cannot support any of the
passive statements (no assignments to signals, for example) that VHDL allows in an entity declaration.
Synthesis software usually provides a way around these problems by providing switches to turn the
synthesizer on and off. For example, we might be able to write the following:

//Compass compile_off

begin assert (D’LENGTH <= Q’LENGTH) 

report "D wider than output Q" severity Failure;

//Compass compile_on

The disadvantage of this approach is that the code now becomes tied to a particular synthesis tool. The
alternative is to move the statement to the architecture to eliminate the error, and ignore the warning.

The next error message is, at first sight, confusing (from lines 15-16 of the variable-width shift register
in Table 10.7),



if CLR = ’1’ then St := (others => ’0’); Q <= St after TCQ;

Error : Illegal use of aggregate with the choice "others": the derived subtype of an array aggregate that
has a choice "others" must be a constrained array subtype

This error message is precise and uses the terminology of the LRM but does not reveal the source of the
problem. To discover the problem we work backward through the model. We declared variable St as
follows (lines 12-13 of Table 10.7):

subtype OutB is NATURAL range Q’LENGTH-1 downto 0;

variable St: BIT_VECTOR(OutB);

(to keep the model flexible). Continuing backward we see Q is declared as type BIT_VECTOR with no
index range as follows (lines 4-5 of Table 10.7): 

port(CLK, CLR, LD, SH, DIR: in BIT; 

D: in BIT_VECTOR; Q: out BIT_VECTOR);

The error is thus linked to the previous problem (undeclared bus widths) in this entity-architecture pair.
Because the synthesizer does not know the width of Q , it does not know how many ’0’ s to put in St
when it has to implement St := (others => ’0’) . There is one more error like this one in the second
assignment to St (line 19 in Table 10.7). Again the problem may be solved by sacrificing flexibility and
constraining the width of Q to be a fixed value.

The next warning involves names (line 5 in Table 10.9),

signal SRA, SRB, ADDout, MUXout, REGout: BIT_VECTOR(7 downto 0);

Warning : Name is reserved word in VHDL-93: sra

This problem can be fixed by (a) changing the signal name, (b) using an escaped name, or (c) accepting
that this code will not work in a VHDL-93 environment.

Finally, there is the following warning (line 6 in Table 10.9):

signal Zero, Init, Shift, Add, Low: BIT := ’0’; signal High: BIT := ’1’;

Warning : Initial values on signals are only for simulation and setting the value of undriven signals in
synthesis. A synthesized circuit can not be guaranteed to be in any known state when the power is turned
on.

Signals Low and High are used to tie inputs to a logic ’0’ and to a logic ’1’ , respectively. This is
because VHDL-87 does not allow ’1’ or ’0’ , which are literals, as actual parameters. Thus one way to
solve this problem is to change to a VHDL-93 environment, where this restriction was lifted. Some
synthesis systems handle VDD and GND nets in a specific fashion. For example, VDD and GND may



be declared as constants in a synthesis package. It does not really matter how inputs are connected to
VDD and GND as long as they are connected in the synthesized logic.

12.9.1 Messages During Synthesis

After fixing the error and warning messages, we can synthesize the multiplier. During synthesis we see
these messages:

These unused instances are being removed: in full_adder_p_dup8: u5, u2, u3, u4

These unused instances are being removed: in dffclr_p_dup1: u2

and seven more similar to this for dffclr_p_dup2: u2 to dffclr_p_dup8: u2 . We are suspicious because
we did not include any redundant or unused logic in our input code. Let us dig deeper.

Turning to the second set of messages first, we need to discover the locations of dffclr_p_dup1: u2 and
the other seven similarly named unused instances. We can ask the synthesizer to produce the following
hierarchy map of the design:

************* Hierarchy of cell "mult8_p" *************

mult8_p

adder8_p

| full_adder_p [x8]

allzero_p

mux8_p

register8_p

| dffclr_p [x8]

shiftn_p [x2]

sm_1_p

The eight unused instances in question are inside the 8-bit shift register, register8_p . The only models in
this shift register are eight copies of the D flip-flop model, DFFClr . Let us look more closely at the
following code:

architecture Behave of DFFClr is 

signal Qi : BIT;

begin QB <= not Qi; Q <= Qi;



process (CLR, CLK) begin 

if CLR = ’1’ then Qi <= ’0’ after TRQ;

elsif CLK’EVENT and CLK = ’1’ then Qi <= D after TCQ;

end if ;

end process ;

end ;

The synthesizer infers an inverter from the first statement in line 3 ( QB <= not Qi ). What we meant to
imply (A) was: "I am trying to describe the function of a D flip-flop and it has two outputs; one output is
the complement of the other." What the synthesizer inferred (B) was: "You described a D flip-flop with
an inverter connected to Q." Unfortunately A does not equal B. 

Why were four cell instances ( u5 , u2 , u3 , u4 ) removed from inside a cell with instance name
full_adder_p_dup8 ? The top-level cell mult8_p contains cell adder8_p , which in turn contains
full_adder_p [x8] . This last entry in the hierarchy map represents eight occurrences or instances of cell
full_adder_p . The logic synthesizer appends the suffix ’_p’ by default to the names of the design units
to avoid overwriting any existing netlists (it also converts all names to lowercase). The synthesizer has
then added the suffix ’dup8’ to create the instance name full_adder_p_dup8 for the eighth copy of cell
full_adder_p .

What is so special about the eighth instance of full_adder_p inside cell adder8_p ? The following (line
13 in Table 10.9) instantiates Adder8 :

A1:Adder8 port map (A=>SRB,B=>REGout,Cin=>Low,Cout=>OFL,Sum=>ADDout);

The signal OFL is declared but not used. This means that the formal port name Cout for the entity
Adder8 in Table 10.2 is unconnected in the instance full_adder_p_dup8 . Since the carry-out bit is
unused, the synthesizer deletes some logic. Before dismissing this message as harmless, let us look a
little closer. In the architecture for entity Adder8 we wrote:

Cout <= (X and Y) or (X and Cin) or (Y and Cin) after TC;

In one of the instances of Adder8 , named full_adder_p_dup8 , this statement is redundant since we
never use Cout in that particular cell instance. If we look at the synthesized netlist for
full_adder_p_dup8 before optimization, we find four NAND cells that produce the signal Cout . During
logic optimization the synthesizer removes these four instances. Their instance names are
full_adder_p_dup8:u2, u3, u4, u5 .
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