ASIC
CONSTRUCTION

A town planner works out the number, types, and sizes of buildings in a development project. An
architect designs each building, including the arrangement of the rooms in each building. Then a builder
carries out the construction according to the architect’ s drawings. Electrical wiring is one of the |ast
stepsin the construction of each building. The physical design of ASICsisnormally divided into system
partitioning, floorplanning, placement, and routing. A microelectronic system is the town and the ASICs
are the buildings. System partitioning corresponds to town planning, ASIC floorplanning is the
architect’ s job, placement is done by the builder, and the routing is done by the electrician. We shall
design most, but not all, ASICs using these design steps.

15.1 Physical Design

15.2 CAD Tools

15.3 System Partitioning
15.4 Estimating ASIC Size
15.5 Power Dissipation
15.6 FPGA Partitioning
15.7 Partitioning M ethods
15.8 Summary

15.9 Problems

15.10 Bibliography

15.11 References

15.1 Physical Design

Figure 15.1 shows part of the design flow, the physical design steps, for an ASIC (omitting simulation,
test, and other logical design steps that have already been covered). Some of the stepsin Figure 15.1
might be performed in a different order from that shown. For example, we might, depending on the size
of the system, perform system partitioning before we do any design entry or synthesis. There may be

some iteration between the different stepstoo.
D sign antry .
l WH DL erilog

FIGURE 15.1 Part of an ASIC design flow showing the system Syrihesis
partitioning, floorplanning, placement, and routing steps. These netlist
steps may be performed in adlightly different order, iterated or !
omitted depending on the type and size of the system and its e
ASICs. Asthe focus shifts from logic to interconnect, floorplanning
assumes an increasingly important role. Each of the steps shownin !
the figure must be performed and each depends on the previous Flootplanning
step. However, the trend is toward completing these stepsin a
parallel fashion and iterating, rather than in a sequential manner. Placemtm

'

Routing

We must first apply system partitioning to divide a microel ectronics system into separate ASICs. In
floorplanning we estimate sizes and set the initial relative locations of the various blocksin our ASIC
(sometimes we also call this chip planning). At the same time we all ocate space for clock and power
wiring and decide on the location of the 1/0 and power pads. Placement defines the location of the logic
cells within the flexible blocks and sets aside space for the interconnect to each logic cell. Placement for
agate-array or standard-cell design assigns each logic cell to aposition in arow. For an FPGA,
placement chooses which of the fixed logic resources on the chip are used for which logic cells.
Floorplanning and placement are closely related and are sometimes combined in asingle CAD tool.
Routing makes the connections between logic cells. Routing is a hard problem by itself and is normally
split into two distinct steps, called global and local routing. Global routing determines where the
interconnections between the placed logic cells and blocks will be situated. Only the routes to be used by
the interconnections are decided in this step, not the actual locations of the interconnections within the
wiring areas. Global routing is sometimes called loose routing for this reason. Local routing joins the
logic cells with interconnections. Information on which interconnection areas to use comes from the
global router. Only at this stage of layout do we finally decide on the width, mask layer, and exact
location of the interconnections. Local routing is also known as

15.2 CAD Tools

In order to develop a CAD tool it is necessary to convert each of the physical design steps to a problem
with well-defined goals and objectives. The goals for each physical design step are the things we must
achieve. The objectives for each step are things we would like to meet on the way to achieving the goals.
Some examples of goals and objectives for each of the ASIC physical design steps are as follows:

System partitioning:
® Goal. Partition a system into a number of ASICs.
® Objectives. Minimize the number of external connections between the ASICs. Keep each ASIC
smaller than a maximum size.

Floorplanning:

® Goal. Calculate the sizes of all the blocks and assign them locations.
® Objective. Keep the highly connected blocks physically close to each other.

Placement:

® Goal. Assign the interconnect areas and the location of all the logic cells within the flexible blocks.
® Objectives. Minimize the ASIC area and the interconnect density.

Global routing:

® Goal. Determine the location of all the interconnect.
® Objective. Minimize the total interconnect area used.

Detailed routing:

® Goal. Completely route all the interconnect on the chip.
® Objective. Minimize the total interconnect length used.

There is no magic recipe involved in the choice of the ASIC physical design steps. These steps have
been chosen simply because, as tools and techniques have developed historically, these steps proved to
be the easiest way to split up the larger problem of ASIC physical design. The boundaries between the
steps are not cast in stone. For example, floorplanning and placement are often thought of as one step
and in some tools placement and routing are performed together.

15.2.1 Methods and Algorithms

A CAD tool needs methods or algorithms to generate a solution to each problem using a reasonable
amount of computer time. Often there is no best solution possible to a particular problem, and the tools
must use heuristic algorithms, or rules of thumb, to try and find a good solution. The term algorithmis
usually reserved for a method that always gives a solution.

We need to know how practical any algorithm is. We say the complexity of an algorithmisO (f (n))
(read as order f (n)) if there are constants k and n so that the running time of the algorithm T (n) is

lessthank f (n) for al n>n, [Sedgewick, 1988]. Here n is ameasure of the size of the problem
(number of transistors, number of wires, and so on). In ASIC design nisusually very large. We have to

be careful, though. The notation does not specify the units of time. An algorithm that isO (n 2)
nanoseconds might be better than an algorithm that is O (n) seconds, for quite large values of n. The
notation O (n) refersto an upper limit on the running time of the algorithm. A practical example may
take less running time-it is just that we cannot proveit. We also have to be careful of the constants k and
N - They can hide overhead present in the implementation and may be large enough to mask the

dependence on n, up to large values of n. The function f (n) is usually one of the following kinds:

® f (n) = constant. The algorithm is constant in time. In this case, steps of the algorithm are repeated
once or just afew times. It would be niceif our algorithms had this property, but it does not
usually happen in ASIC design.

® f(n) =log n. Thealgorithm islogarithmic in time. This usually happens when a big problemis
(possibly recursively) transformed into a smaller one.

® f(n) =n. Thealgorithmislinear intime. Thisisagood situation for an ASIC algorithm that
works with n objects.

® f(n) = n log n. Thistype of agorithm arises when alarge problem is split into a number of
smaller problems, each solved independently.

® f(n) = n?2. Theagorithmis quadratic in time and usually only practical for small ASIC
problems.

If the time it takes to solve a problem increases with the size of the problem at arate that is polynomial
but faster than quadratic (or worse in an exponential fashion), it is usually not appropriate for ASIC
design. Even after subdividing the ASIC physical design problem into smaller steps, each of the steps
still resultsin problems that are hard to solve automatically. In fact, each of the ASIC physical design
steps, in general, belongs to a class of mathematical problems known as NP-complete problems. This
means that it is unlikely we can find an algorithm to solve the problem exactly in polynomial time.

Suppose we find a practical method to solve our problem, even if we can find a solution we now have a
dilemma. How shall we know if we have a good solution if, because the problem is NP-complete, we
cannot find the optimum or best solution to which to compare it? We need to know how close we are to
the optimum solution to a problem, even if that optimum solution cannot be found exactly. We need to
make a quantitative measurement of the quality of the solution that we are able to find. Often we
combine severa parameters or metrics that measure our goals and objectives into a measurement
function or objective function. If we are minimizing the measurement function, it is a cost function. If
we are maximizing the measurement function, we call the function a gain function (sometimes just

gain).

Now we are ready to solve each of the ASIC physical design steps with the following itemsin hand: a
set of goals and objectives, away to measure the goals and objectives, and an algorithm or method to
find a solution that meets the goals and objectives. As designers attempt to achieve adesired ASIC
performance they make a continuous trade-off between speed, area, power, and several other factors.
Presently CAD tools are not smart enough to be able to do this aone. In fact, current CAD tools are only
capable of finding a solution subject to afew, very simple, objectives.

15.3 System Partitioning

Microelectronic systems typically consist of many functional blocks. If afunctional block istoo large to
fitin one ASIC, we may haveto split, or partition, the function into pieces using goals and objectives
that we need to specify. For example, we might want to minimize the number of pinsfor each ASIC to
minimize package cost. We can use CAD toolsto help us with this type of system partitioning.

Figure 15.2 shows the system diagram of the Sun Microsystems SPARCstation 1. The systemis
partitioned as follows; the numbers refer to the labelsin Figure 15.2 . (See Section 1.3, "Case Study" for
the sources of infomation in this section.)

® Nine custom ASICs (1-9)

® Memory subsystems (SIMMs, single-in-line memory modules): CPU cache (10), RAM (11),
memory cache (12, 13)

® Six ASSPs (application-specific standard products) for 1/0 (14-19)

® An ASSP for time of day (20)

® AnEPROM (21)

® \/ideo memory subsystem (22)

® Oneanaog/digital ASSP DAC (digital-to-analog converter) (23)

Table 15.1 shows the details of the nine custom ASICs used in the SPARCstation 1. Some of the
partitioning of the system shown in Figure 15.2 is determined by whether to use ASSPs or custom
ASICs. Some of these design decisions are based on intangible issues. time to market, previous
experience with atechnology, the ability to reuse part of a design from a previous product. No CAD
tools can help with such decisions. The goals and objectives are too poorly defined and finding away to
measure these factors is very difficult. CAD tools cannot answer a question such as: "What isthe
cheapest way to build my system?' but can help the designer answer the question: "How do | split this
circuit into pieces that will fit on achip?' Table 15.2 shows the partitioning of the SPARCstation 10 so
you can compare it to the SPARCstation 1. Notice that the gate counts of nearly all of the
SPARCstation 10 ASICs have increased by afactor of 10, but the pin counts have increased by a smaller
factor.

32-bit data
and address

@ @ @ SBus “, @
] A%?Ce ASIC M
3
@ @ 4 oF [G
=71
FE] o B —
. Ly 6]
mER—E ML g
| —
e — o
e C— S Ethermet port
mou se I50M “_"'Egﬁ-lﬂj
foppy disk @ W \—| SBus slmﬁ#?scs'pm
e
@ \—D SBus slot #2
Elsol-ccti |_....S Im@ Ezpam: v I-" \—D SBus slot #3
cﬁs
— sl
®
&

2-bit color sde o board

FIGURE 15.2 The Sun Microsystems SPARCstation 1 system block diagram. The acronyms for the
variousASICs arelistedin Table 15.1 .

15.4 Estimating ASIC Size

Table 15.3 shows some useful numbers for estimating ASIC die size. Suppose we wish to estimate the
die size of a40 k-gate ASIC in a0.35 m m gate array, three-level metal process with 166 1/O pads. For
this ASIC the minimum feature size is 0.35 m m. Thus| (one-half the minimum feature size) = 0.35 m
m/2 = 0.175 m m. Using our data and Table 15.3 , we can derive the following information. We know

that 0.35 m m standard-cell density is roughly 5 ¥ 10 4 gate/ | 2 From this we can calcul ate the gate
density for a0.35 m m gate array:

gate density = 0.35 m m standard-cell density ¥ (0.8 to 0.9)
= 4¥10%t04.5¥10 % gate/ 1 2. (15.1)

This gives the core size (logic and routing only) as

(4 ¥ 104 gates/gate density) ¥ routing factor ¥ (1/gate-array utilization)
=4¥104/(4¥10%t045¥10%) ¥ (1t02) ¥1/(0.8t00.9) =108t0 2.5 ¥ 108 2

= 4840 to 11,900 mil 2. (15.2)
TABLE 15.2 System partitioning for the Sun Microsystems SPARCstation 10.
SPARCstation 10 ASIC Gates Pins Package Type

1 SuperSPARC Superscalar SPARC 3 M-transistors 293 PGA FC
2 SuperCache cache controller 2 M-transistors 369 PGA FC

3 EMC memory control 40 k-gate 299 PGA GA

4 MSI MBus-SBus interface 40 k-gate 223 PGA GA
5 DMAZ2 Ethernet, SCSI, parale port 30 k-gate 160 PQFP GA
6 SEC SBusto 8-bit bus 20 k-gate 160 PQFP GA
7 DBRI dual ISDN interface 72 k-gate 132 PQFP GA
8 MM Codec stereo codec 32 k-gate 44 PLCC FC
Abbreviations:

PGA = pin-grid array GA = channelless gate array

PQFP = plastic quad flat pack FC = full custom

PLCC = plastic leaded chip carrier

We shall need to add (0.175/0.5) ¥ 2 ¥ (15 to 20) = 10.5 to 21 mil (per side) for the pad heights (we
included the effects of scaling in this calculation). With a pad pitch of 5 mil and roughly 166/4 = 42 1/Os
per side (not counting any power pads), we need adie at least 5 ¥ 42 = 210 mil on aside for the 1/Os.
Thus the die size must be at least 210 ¥ 210 = 4.4 ¥ 104 mil 2 to fit 166 1/Os. Of this die area only 1.19

¥104/(4.4¥10%) = 27 % (at most) is used by the core logic. Thisis a severely pad-limited design and
we need to rethink the partitioning of this system.

Table 15.4 shows some typical areas for datapath elements. Y ou would use many of these datapath
elements in floating-point arithmetic (these elements are large-you should not use floating-point
arithmetic unless you have to):

® A leading-one detector with barrel shifter normalizes a mantissa.

® A priority encoder corrects exponents due to mantissa normalization.

® A denormalizing barrel shifter aligns mantissas.

® A normalizing barrel shifter with aleading-one detector normalizes mantissa subtraction.

TABLE 15.3 Some useful numbers for ASIC estimates, normalized to a 1 m m technology

unless noted.
Parameter Typica value Comment 1 Scaling
05mm=05
Lambda, | (minimum feature Inal mmtechnology,|20.5mm. NA
size)
1 micron=10%m
=1mm Not to be confused with minimum
CAD pitch CAD grid size (whichisusually less |
= minimum feature than 0.01 m m).
size
: Less than drawn gate length, usually
Effective gate length 0.25t01.0mm by about 10 percent. I
5to 10 mil For a1 m mtechnology, 2LM (I =
[/O-pad width (pitch) 0.5 mm). Scaleslessthan linearly |

=125t0250 mm withl.

15 to 20 mil For a1 m mtechnology, 2LM (| =
[/O-pad height 0.5 m m). Scales approximately I
=375t0500 mm linearly with| .
Largedie rln?(l)g mil/side, 10 Approximately constant 1
Small die rln?(l)zmlll side, 10 Approximately constant 1
1.5¥103gate/ m For Lmm, 2LM, library
2
N - m 2
Standard-cell density = 4¥10 gate /I 2 (independent of /!
= 1.0 gate/mil 2 scaling).
8¥10-3gate/ mm For 0.5mm, 3LM, library
2
N ' 2
Standard-cel| density =5¥ 104 gate/ | 2 (independent of |
= 5.0 gate/mil 2 scaling).
Gate-array utilization 60 to 80 % For 2LM, approximately constant 1
80t0 90 % For 3LM, approximately constant 1
. (0.8t00.9) ¥ For the same process as standard
Gate-array density standard cell density calls 1
Standard-cell routing factor 1.5to0 2.5 (2LM)
= (cell area + route Approximately constant 1
area)/cell area 1.0t0 2.0 (3LM)
- Varies widely, figureisfor low-cost
Package cost $2}01ijr$'l N, “penny plastic package, approximately 1
Perp constant
$1kto$5k Varieswidely, figureisfor amature,
Wafer cost 2LM CMOS process, approximately 1
average $2 k constant

TABLE 15.4 Areaestimates for datapath functions. 2

Datapath function

High-speed comparator (4-32 bit)
High-speed comparator (32-128 bit)
L eading-one detector (n -bit)
All-ones detector (n -bit)

Priority encoder (n -bit)

Zexo detector (n -bit)

Areaper bit/| 2 gzefalil)z

24,000 7.7E+ 05
28,800 9.2E + 05
7200log, n 1.2E + 06

6000 + 8001og, N 3.2E + 05
19,000 + 1400 log
>(Nn-2)

5500 +8001log, n 3.0E + 05

8.4E + 05

Areal | 2
(64-bit)
1.5E + 06
1.8E + 06

2.8E + 06
6.9E + 05

1.8E + 06

6.6E + 05

19,000 + 1000 n +

Barrel shifter/rotator (n- by m -bit) 1600 m 3.4E + 06 1.2E+07
Carry-save adder 24,000 7.7E + 05 1.5E + 06
Digital delay line (n delay stages, t output 12,000 + 6000 n + 15E + 07 6.0E + 07
taps) 8400t

Synchronous FIFO (n -bit) 34,000+9600n 1.1E+07 4.1E + 07
Multiplier-accumulator (n -bit) 1000+ 1800 o 4e+07 BsE+O7
Unsigned multiplier (n- by m -hbit) §4C2)§)0 + 18,000 (1.9 + 07 7.4E + 07
2:1 MUX 7200 2.3E + 05 4.6E + 05
8:1 MUX 29,000 9.2E + 05 1.8E + 06
L ow-speed adder 28,000 8.8E + 05 1.8E + 06
2901 ALU 41,000 1.3E + 06 2.6E + 06
L ow-speed adder/subtracter 30,000 9.6E + 05 19E + 06
cgller;? up-down counter with sync. load and 43,000 14E + 06 2 8E + 06
L ow-speed decrementer 14,000 4.6E + 05 9.2E + 05
L ow-speed incrementer 14,000 4.6E + 05 9.2E + 05
L ow-speed incrementer/decrementer 20,000 6.5E + 05 1.3E+06

Most datapath elements have an area per bit that depends on the number of bitsin the datapath (the
datapath width). Sometimes this dependency is linear (for the multipliers and the barrel shifter, for

example); in other elements it depends on the logarithm (to base 2) of the datapath width (the leading
one, al ones, and zero detectors, for example). In some elements you might expect thereto be a
dependency on datapath width, but it is small (the comparators are an example).

The area estimates given in Table 15.4 can be misleading. The exact size of an adder, for example,

depends on the architecture: carry-save, carry-select, carry-lookahead, or ripple-carry (which depends on
the speed you require). These area figures also exclude the routing between datapath elements, which is
difficult to predict-it will depend on the number and size of the datapath elements, their type, and how
much logic is random and how much is datapath.

Figure 15.3 (a) showsthe typical size of SRAM constructed on an ASIC. These figures are based on the
use of aRAM compiler (as opposed to building memory from flip-flops or latches) using a standard
CMOS ASIC process, typically using a six-transistor cell. The actual size of amemory will depend on
(1) the required access time, (2) the use of synchronous or asynchronous read or write, (3) the number
and type of ports (read-write), (4) the use of special design rules, (5) the number of interconnect layers
available, (6) the RAM architecture (number of devicesin RAM cell), and (7) the process technology
(active pull-up devices or pull-up resistors).

(a) (b)

RiésMaread’ multiplier aread’
108

107 -

—O—1k
wonl lengthbits ——ap

Wt T 2w 106

£ =2 3 ¢ 5 . T T .
= 8 g] Ed 236 1024 4036
word depthbits multiplier size = meawbits

FIGURE 15.3 (a) ASIC memory size. These figures are for static RAM constructed using compilers
ina2LM ASIC process, but with no special memory design rules. The actual area of aRAM will
depend on the speed and number of read-write ports. (b) Multiplier size for a2LM process. The actual
areawill depend on the multiplier architecture and speed.

The maximum size of SRAM in Figure 15.3 (a) is 32 k-bit, which occupies approximately 6.0 ¥ 1071 2,
Ina0.5 m m process (with | = 0.25 m m), the area of a 32 k-bit SRAM is6.0 ¥ 10’ ¥0.25 ¥ 0.25 = 3.75

¥ 105 m m 2 (or about 2 mm on aside-alarge piece of silicon). If you need an SRAM that is larger than
this, you probably need to consult with your ASIC vendor to determine the best way to implement a
large on-chip memory. Figure 15.3 (b) shows the typical sizesfor multipliers. Again the actual
multiplier size will depend on the architecture (Booth encoding, Wallace tree, and so on), the process
technology, and design rules. Table 15.5 shows some estimated gate counts for medium-size functions
corresponding to some popular ASSP devices.

TABLE 15.5 Gate size estimates for popular ASSP functions.

ASSP device Function Gate estimate
8251A Universal synchronous/asynchronous receiver/transmitter (USART) 2900
8253 Programmable interval timer 5680
8255A Programmable peripheral interface 784-1403
8259 Programmable interrupt controller 2205
8237 Programmable DMA controller 5100
8284 Clock generator/driver 99

8288 Bus controller 250

8254 Programmable interval timer 3500
6845 CRT controller 2843
87030 SCSI controller 3600
87012 Ethernet controller 3900
2901 4 bit ALU 917

2902 Carry-lookahead ALU 33

2904 Status and shift control 500

2910 12- bit microprogram controller 1100

Source: Fujitsu channelless gate-array data book, AU and CG21 series.

1. 2LM = two-level metal; 3LM = three-level metal.

2. Area estimates are for atwo-level metal (2 LM) process. Areas for athree-level metal (3LM) process
are approximately 0.75 to 1.0 times these figures.

15.5 Power Dissipation

Power dissipation in CMOS logic arises from the following sources:

® Dynamic power dissipation due to switching current from charging and discharging parasitic
capacitance.

® Dynamic power dissipation due to short-circuit current when both n -channel and p -channel
transistors are momentarily on at the same time.

® Static power dissipation due to leakage current and subthreshold current.

15.5.1 Switching Current

When the p -channel transistor in an inverter is charging a capacitance, C, at afrequency, f , the current
through the transistor isC (d V /d t). The power dissipation isthus CV (d V /d t) for one-half the period
of theinput, t = /(2). The power dissipated in the p -channel transistor isthus

1/(2f) dv V op
U CV -- dt=0 CV dV
0 dt 0

=05CV pp2 (153

When the n -channel transistor discharges the capacitor, the power dissipation is equal, making the total
power dissipation

P, =fCV2,, (154)

Most of the power dissipation in a CMOS ASIC arises from this source-the switching current. The best
way to reduce power isto reduce V 5 (because it appears as a squared termin Eq. 15.4), andto

reduce C , the amount of capacitance we have to switch. A rough estimate is that 20 percent of the nodes
switch (or toggle) in acircuit per clock cycle. To determine more accurately the power dissipation due to
switching, we need to find out how many nodes toggle during typical circuit operation using a dynamic
logic simulator. This requires input vectors that correspond to typical operation, which can be difficult to
produce. Using adigital simulator also will not take into account the effect of glitches, which can be
significant. Power simulators are usually a hybrid between SPICE transistor-level simulators and digital
event-driven simulators [Najm, 1994].

15.5.2 Short-Circuit Current

The short-circuit current or crowbar current can be particularly important for output drivers and large
clock buffers. For a CMOS inverter (see Problem 15.17) the power dissipation due to the crowbar
current is

P, = (U12)bft,(Vpp-2V,,)3 (155)

where we assume the following: We ratio the p -channel and n -channel transistor sizes so that b = (W/L
) mC , isthe same for both p - and n -channel transistors, the magnitude of the threshold voltagesV ; |

are assumed equal for both transistor types, and t ; isthe rise and fall time (assumed equal) of the input

signa [Veendrick, 1984]. For example, consider an output buffer that is capable of sinking 12 mA at an
output voltage of 0.5 V. From Eg. 2.9 we can derive the transistor gain factor that we need as follows:

b = (15.6)

[(3.3- 0.65) - (0.5) (0.5)] (0.5)

=0.01AV 1

If the output buffer is switching at 100 MHz and the input rise time to the buffer is 2 ns, we can
calculate the power dissipation due to short-circuit current as

Py =(U12) bt (Vpp-2V,)° (15.7)

= (0.01) (100 ¥ 106) (2 ¥ 1079) (3.3- (2)(0.65)) 3
= 0.00133W or about 1 mW .

If the output load is 10 pF, the dissipation due to switching current is

— 2
P, =fCV 2,

= (100 ¥10%) (10 ¥10-12)(3.3) 2
= 0.01089 W or about 10 mW .

Asagenera rule, if we adjust the transistor sizes so that the rise times and fall times through a chain of

logic are approximately equal (as they should be), the short-circuit current is typically less than 20
percent of the switching current.

For the example output buffer, we can make a rough estimate of the output-node switching time by
assuming the buffer output drive current is constant at 12 mA. This current will cause the voltage on the
output load capacitance to change between 3.3V and 0V at aconstant slew rated V /d t for atime

CDV (10¥10712)(3.3)
Dt = - S — (15.8)

| (12 ¥10°3)

Thisisclose to the input rise time of 2 ns. So our estimate of the short-circuit current being less than 20
percent of the switching current assuming equal input rise time and output rise timeisvalid in this case.

15.5.3 Subthreshold and L eakage Current

Despite the claim made in Section 2.1, a CMOS transistor is never completely off . For example, a
typical specification for a0.5 m m process for the subthreshold current (per micron of gate width for V

cs=0V)islessthan 5pA mm -1 but not zero. With 10 million transistors on alarge chip and with

each transistor 10 m m wide, we will have atotal subthreshold current of 0.1 mA; high, but reasonable.
The problem is that the subthreshold current does not scale with process technology.

When the gate-to-source voltage, V g, of an MOS transistor is less than the threshold voltage, V , the
transistor conducts a very small subthreshold current in the subthreshold region

E qVGS A

where| ;isa constant, and the constant, n, is normally between 1 and 2.
The dlope, S, of the transistor current in the subthreshold regionis

-nkT nkT
S=-- logpe=23--- V/decade. (15.10)

q q

For example, at ajunction temperature, T = 125 °C (2400 K) and assuming n21.5, S = 120 mV/decade
(q=16¥10 P Fm-1 k=138¥10-2 JK 1), which does not scale. The constant value of S= 120
mV/decade means it takes 120 mV to reduce the subthreshold current by afactor of 10 in any process. If
we reduce the threshold voltages to 0.36 V in a degp-submicron process, for example, this means at V
=0V wecanonly reducel to0.001timesitsvaueatV =V . Thisproblem canlead to large

GS—U vV weldlullly reuucle i DSLUU.UUJ. uliess i vauc a v GS ™~ \" t- 111> pruvicetii tdl icau W ia yce

static currents.

Transistor leakage is caused by the fact that a reverse-biased diode conducts a very small leakage
current. The sources and drains of every transistor, as well as the junctions between the wells and
substrate, form parasitic diodes. The parasitic-diode |eakage currents are strongly dependent on the type
and quality of the process as well as temperature. The parasitic diodes have two componentsin parallel:
an areadiode and a perimeter diode. Theidea parasitic diode currents are given by the following
equation:

E qVp n
| =1 eXp A - -1~ (1511

T
R BTN
Table 15.6 shows specified maximum |leakage currents of junction parasitic diodes as well as the leakage
currents of the field transistors (the parasitic MOS transistors formed when poly crosses over the thick
oxide, or field oxide) in atypical 0.5 m m process.

TABLE 15.6 Diffusion leakage currents (at 25 °C) for a typical 0.5 mm (| =0.25m m) CMOS
process.

Junction Diode type Leakage (max.) Unit

n -diffusion/ p -substrate area 0.6 fAmm-=2v-l
n -diffusion/ p -substrate perimeter 2.0 fAmm-1yv-l
p -diffusion/ n -well area 0.6 fAmm-=2v-1
p -diff/ n -well perimeter 3.0 fAmm-1v-1
n -well / p -substrate area 1.0 fAmm-=2v-l
Field NMOS transistor 100 fAmm-t
Field PMOS transistor 30 fAmm-1

For example, if we have an n -diffusion region at a potential of 3.3V thatis10mmby 4 mm insize,
the parasitic leakage current due to the area diode would be

40mm2¥33V ¥06fAmm=2v-1
= (40) (3.3) (0.6 ¥10°15)
=792¥1014A

or approximately 80 fA.

The perimeter of thisdrain region is 28 m m, so that the leakage current due to the perimeter diodeis

28mm¥33V¥20fAmmlyv-l
= (28) (3.3) (20¥10°15)
=2848¥10°13A |

or approximately 0.2 pA, over twice as large as the area-diode |eakage current.

Asavery rough estimate, if we have 100,000 transistors each with asource and adrain 10 mmby 4 m
m, and half of them are biased at 3.3 V, then the total leakage current would be

(100 ¥ 10°) (2) (0.5) (280 ¥ 10°1°)
=28¥10°A, (15.12)

or approximately 3 m A. Thisisthe same order of magnitude (afew microamperes) as the quiescent
leakage current, | DDQ * that we expect to measure when we test an ASIC with power applied, but with

no signal activity. A measurement of more current than thisin a nonactive CMOS ASIC indicates a
problem with the chip manufacture or the design. We use this measurement to test an ASIC using an
IDDQ test.

15.6 FPGA Partitioning

In Section 15.3 we saw how many different issues have to be considered when partitioning a complex
system into custom ASICs. There are no commercial tools that can help us with al of these issues-a
spreadsheet isthe best tool in this case. Things are alittle easier if we limit ourselves to partitioning a
group of logic cellsinto FPGAs-and restrict the FPGAsto be al of the same type.

15.6.1 ATM Simulator

In this section we shall examine a hardware simulator for Asynchronous Transfer Mode (ATM). ATM
isasignaling protocol for many different types of traffic including constant bit rates (voice signals) as
well as variable bit rates (compressed video). The ATM Connection Simulator is a card that is connected
to a computer. Under computer control the card monitors and corrupts the ATM signals to simulate the
effects of real networks. An example would be to test different video compression agorithms.
Compressed video is very bursty (brief periods of very high activity), has very strict delay constraints,
and is susceptible to errors. ATM is based on ATM cells (packets). Each ATM cell has 53 bytes: a
5-byte header and a 48-byte payload; Figure 15.4 shows the format of the ATM packet. The ATM
Connection Simulator looks at the entire header as an address.

b bit num ber

e

rmber 5 7 B 3 4 3 2 1

i GFCAF | | WEI GFC = genetic flow control

WP = wittual path identifar
2 WPl W1 = wirtwal channel identifier
FTI=payload type idertifier
WCI CLFP = cell lasz priority
HE C = header error contral
WCI | FTI |EL F

HEC

oo = W

payload

] payload

FIGURE 15.4 The asynchronous transfer mode (ATM) cell format. The ATM protocol uses 53-byte
cells or packets of information with a data payload and header information for routing and error
control.

Figure 15.5 shows the system block diagram of the ATM simulator designed by Craig Fujikami at the
University of Hawaii. Now produced by AdTech, the ssmulator emulates the characteristics of asingle
connection in an ATM network and models ATM traffic policing, ATM cell delays, and ATM cell
errors. The ssimulator is partitioned into the three mgjor blocks, shown in Figure 15.5 , and connected to
an IBM-compatible PC through an Intel 80186 controller board together with an interface board. These
three blocks are

]

ATOPIA
ntedface,
t=h Anithar

O ger ersbor
% bit enor rake
geherator

14 | 3andom wariable

=l Jenerator

b Sanidom number

™ 24
P

12

1 38

2B 25 parallel port

Intzl 80186

13

FIGURE 15.5 An asynchronous transfer
mode (ATM) connection simulator.

el storage ——t

a
£
i

a
K

sohiroller
I 2

caloulakor
“eadiwrite

address poinker
el storage
address poinker

Seby walue

Personal computer

Jely generator

3
b
1
LY

3
1
L
7
1
1
frmpist”

1)
a gﬁ Eg
z 5 a= g i3
E . |5]|a %EE'& _L"—"E
I SHEs | |Zced | Doz
ol == o -3 =
e | |2g SE% L £E5%
i (48 i5sa SEHZ
% I e LU m_ﬂ_‘am
T P J ~ -} er
B -
2 7 :)
a

ITOPIA
hteface

® Thetraffic policer, which regulates the input to the simulator.

® Thedelay generator, which delays ATM cells, reorders ATM cells, and inserts ATM cells with
valid ATM cell headers.

® The error generator, which produces bit errors and four random variables that are needed by the
other two blocks.

The error generator performs the following operationson ATM cells:

1. Payload bit error ratio generation. The user specifies the Bernoulli probability, p ggg , of the

payload bit error ratio.
2. Random-variable generation for ATM cell loss, misinsertion, reordering, and deletion.

The delay generator delays, misinserts, and reorders the target ATM cells. Finally, the traffic policer
performs the following operations:

1. Performs header screening and remapping.
2. Checks ATM cell conformance.
3. Deletes selected ATM cdlls.

Table 15.7 shows the partitioning of the ATM board into 12 L attice Logic FPGASs (ispL Sl 1048)

corresponding to the 12 blocks shown in Figure 15.5 . The Lattice Logic ispL Sl 1048 has 48 GLBs
(generic logic blocks) on each chip. This system was partitioned by hand-with difficulty. Tools for
automatic partitioning of systems like thiswill become increasingly important. In Section 15.6.2 we
shall briefly look at some examples of such tools, before examining the partitioning methods that are
used in Section 15.7 .

TABLE 15.7 Partitioning of the ATM board using Lattice Logic ispL Sl 1048 FPGAs. Each FPGA
contains 48 generic logic blocks (GLBS).

Chip # Size Chip # Size

1 42 GLBs 7 36 GLBs

2 64 k-bit ¥ 8 SRAM 8 22 GLBs

3 38 GLBs 9 256 k-bit ¥ 16 SRAM
4 38 GLBs 10 43 GLBs

5 42 GLBs 11 40 GLBs

6 64 k-bit ¥ 16 SRAM 12 30GLBs

15.6.2 Automatic Partitioning with FPGAs

Some vendors of programmable ASICs provide partitioning software. For example, Altera usesits own
software system for design. Y ou can perform design entry using an HDL, schematic entry, or using the
Altera hardware design language (AHDL)-similar to PALASM or ABEL. In AHDL you can direct the
partitioner to automatically partition logic into chips within the same family, using the AUTO keyword:
DEVICE top_level ISAUTO; % the partitioner assign logic

Y ou can use the CLIQUE keyword to keep logic together (thisis not quite the sasmeasacliquein a
graph-more on thisin Section 15.7.3):

CLIQUE fast_logic

BEGIN

[shift_register: MACRO; % keep thisin one device
END;

An additional option, to reserve space on adevice, is very useful for making last minute additions or
changes.

15.7 Partitioning Methods

System partitioning requires goals and objectives, methods and algorithmsto find solutions, and waysto
evaluate these solutions. We start with measuring connectivity, proceed to an example that illustrates the
concepts of system partitioning and then to the algorithms for partitioning.

Assume that we have decided which parts of the system will use ASICs. The goal of partitioning isto
divide this part of the system so that each partition isasingle ASIC. To do this we may need to take into
account any or all of the following objectives:

® A maximum size for each ASIC

® A maximum number of ASICs

® A maximum number of connections for each ASIC

® A maximum number of total connections between al ASICs

We know how to measure the first two objectives. Next we shall explain ways to measure the last two.

15.7.1 Measuring Connectivity

To measure connectivity we need some help from the mathematics of graph theory. It turns out that the
terms, definitions, and ideas of graph theory are central to ASIC construction, and they are often used in
manuals and books that describe the knobs and dials of ASIC design tools.

[2l

ﬂ ﬂ ol e ﬂ%
gﬁ:‘ﬁL ﬂ H -— mn:u:ILIIeJ 5 g 3

L_ tetm inal, -:-rpln -:-rbbdc

L]

/

ware
node,

niatwork graph arpoint

L)

A thrae-tem inal
net requires

i/

C

thiee adges. 7 SI?EHE;E
Only one maﬁ:;l"zd by
wire 1= o E edgesin
reeded to F the network
connect araph
senetal :
modules G/ H |
an the
lagic: net cutset=two nets e net. \/
module edge out
edge cutset = four edges
)]

FIGURE 15.6 Networks, graphs, and partitioning. (a) A network containing circuit logic cells and
nets. (b) The equivalent graph with vertexes and edges. For example: logic cell D mapsto node D in
the graph; net 1 maps to the edge (A, B) in the graph. Net 3 (with three connections) maps to three
edgesin the graph: (B, C), (B, F), and (C, F). (c) Partitioning a network and its graph. A network with
anet cut that cuts two nets. (d) The network graph showing the corresponding edge cut. The net cutset
in ¢ contains two nets, but the corresponding edge cutset in d contains four edges. This means a graph
is not an exact model of a network for partitioning purposes.

Figure 15.6 (a) shows acircuit schematic, netlist, or network. The network consists of circuit modules

A-F. Equivaent termsfor a circuit module are acell, logic cell, macro, or ablock. A cell or logic cell
usually refersto asmall logic gate (NAND etc.), but can also be a collection of other cells, macro refers
to gate-array cells, ablock isusualy acollection of gates or cells. We shall use the term logic cell in this
chapter to cover all of these.

Each logic cell has electrical connections between the terminals (connectors or pins). The network can
be represented as the mathematical graph shown in Figure 15.6 (b). A graph islike a spider’ s web: it
contains vertexes (or vertices) A-F (also known as graph nodes or points) that are connected by edges. A
graph vertex corresponds to alogic cell. An electrical connection (anet or asignal) between two logic
cells corresponds to a graph edge.

Figure 15.6 (c) shows a network with ninelogic cells A-1. A connection, for example between logic cells
A and B in Figure 15.6 (c), iswritten as net (A, B). Net (A, B) isrepresented by the single edge (A, B)

in the network graph, shown in Figure 15.6 (d). A net with three terminals, for example net (B, C, F),
must be modeled with three edges in the network graph: edges (B, C), (B, F), and (C, F). A net with four
terminals requires six edges and so on. Figure 15.6 illustrates the differences between the nets of a
network and the edges in the network graphs. Notice that a net can have more than two terminals, but a
terminal has only one net.

If we divide, or partition, the network shown in Figure 15.6 (c) into two parts, corresponding to creating
two ASICs, we can divide the network’ s graph in the same way. Figure 15.6 (d) shows a possible
division, called a cutset. We say that thereis anet cutset (for the network) and an edge cutset (for the
graph). The connections between the two ASICs are external connections, the connections inside each
ASIC areinternal connections.

Notice that the number of external connectionsis not modeled correctly by the network graph. When we
divide the network into two by drawing aline across connections, we make net cuts. The resulting set of
net cuts is the net cutset. The number of net cuts we make corresponds to the number of externa
connections between the two partitions. When we divide the network graph into the same partitions we
make edge cuts and we create the edge cutset. We have already shown that nets and graph edges are not
equivalent when a net has more than two terminals. Thus the number of edge cuts made when we
partition a graph into two is not necessarily equal to the number of net cuts in the network. Aswe shall
see presently the differences between nets and graph edges is important when we consider partitioning a
network by partitioning its graph [Schweikert and Kernighan, 1979].

15.7.2 A Simple Partitioning Example

Figure 15.7 (a) shows a simple network we need to partition [Goto and Matsud, 1986]. There are 12
logic cells, labeled A-L, connected by 12 nets (labeled 1-12). At thislevel, each logic cell isalarge
circuit block and might be RAM, ROM, an ALU, and so on. Each net might also be a bus, but, for the
moment, we assume that each net is a single connection and al nets are weighted equally. The goal isto
partition our simple network into ASICs. Our objectives are the following:

® Use no more than three ASICs.

® Each ASIC isto contain no more than four logic cells.

® Use the minimum number of external connections for each ASIC.
® Use the minimum total number of external connections.

Figure 15.7 (b) shows a partitioning with five external connections; two of the ASICs have three pins;
the third has four pins.We might be able to find this arrangement by hand, but for larger systems we
need help.

@ (b)
IE e

&

4] 2 415 26

[AfHE] F e][]

[
mﬂ'\l
on

=

[]
[| (R e o] K
3J£ 12&]1 &l7|] AZIC AEIC 2 AEIC 2
IR EAR I
. . (9
FIGURE 15.7 Partitioning example. () We wish to partition
this network into three ASICs with no more than four logic
cellsper ASIC. (b) A partitioning with five external 2 : fz | pe
connections (nets 2, 4, 5, 6, and 8)-the minimum number. oG rm J @ﬁ‘ﬁ
(c) A constructed partition using logic cell C asaseed. Itis 2 . 3 2
difficult to get from thislocal minimum, with seven external alluil j —‘
connections (2, 3, 5, 7, 9,11,12), to the optimum solution of b. 7] d

Splitting a network into several piecesis anetwork partitioning problem. In the following sections we
shall examine two types of algorithms to solve this problem and describe how they are used in system
partitioning. Section 15.7.3 describes constructive partitioning, which uses a set of rulesto find a
solution. Section 15.7.4 describes iterative partitioning improvement (or iterative partitioning
refinement), which takes an existing solution and tries to improve it. Often we apply iterative
improvement to a constructive partitioning. We also use many of these partitioning algorithmsin solving
floorplanning and placement problems that we shall discussin Chapter 16.

15.7.3 Constructive Partitioning

The most common constructive partitioning algorithms use seed growth or cluster growth. A ssimple
seed-growth agorithm for constructive partitioning consists of the following steps:

1. Start anew partition with aseed logic cell.

2. Consider al thelogic cells that are not yet in a partition. Select each of these logic cellsin turn.

3. Calculate again function, g(m) , that measures the benefit of adding logic cell m to the current
partition. One measure of gain isthe number of connections between logic cell m and the current
partition.

4. Add thelogic cell with the highest gain g(m) to the current partition.

5. Repeat the process from step 2. If you reach the limit of logic cellsin a partition, start again at step
1

We may choose different gain functions according to our objectives (but we have to be careful to

distinguish between connections and nets). The algorithm starts with the choice of a seed logic cell (
seed module, or just seed). The logic cell with the most netsis a good choice as the seed logic cell. You
can also use a set of seed logic cells known as a cluster. Some people aso use the term clique -borrowed
from graph theory. A clique of agraph isasubset of nodes where each pair of nodesis connected by an
edge-like your group of friends at school where everyone knows everyone elsein your clique . In some
tools you can use schematic pages (at the leaf or lowest hierarchical level) as a starting point for
partitioning. If you use a high-level design language, you can use a Verilog module (different from a
circuit module) or VHDL entity/architecture as seeds (again at the leaf level).

15.7.4 lterative Partitioning | mprovement

The most common iterative improvement algorithms are based on interchange and group migration. The
process of interchanging (swapping) logic cellsin an effort to improve the partition is an interchange
method. If the swap improves the partition, we accept the trial interchange; otherwise we select a new
set of logic cellsto swap.

Thereisalimit to what we can achieve with a partitioning algorithm based on simple interchange. For
example, Figure 15.7 (c) shows a partitioning of the network of part a using a constructed partitioning
algorithm with logic cell C asthe seed. To get from the solution shown in part c to the solution of part b,
which has a minimum number of external connections, requires a complicated swap. The three pairs. D
and F, Jand K, C and L need to be swapped-all at the same time. It would take avery long time to
consider all possible swaps of this complexity. A simple interchange algorithm considers only one
change and rgjects it immediately if it is not an improvement. Algorithms of this type are greedy
algorithms in the sense that they will accept amove only if it provides immediate benefit. Such
shortsightedness leads an algorithm to alocal minimum from which it cannot escape. Stuck inavalley, a
greedy algorithm is not prepared to walk over ahill to seeif there is a better solution in the next valley.
Thistype of problem occurs repeatedly in CAD algorithms.

Group migration consists of swapping groups of logic cells between partitions. The group migration
algorithms are better than simple interchange methods at improving a solution but are more complex.
Almost all group migration methods are based on the powerful and general Kernighan-Lin algorithm (
K-L algorithm) that partitions a graph [Kernighan and Lin, 1970]. The problem of dividing a graph into
two pieces, minimizing the nets that are cut, is the min-cut problem-avery important onein VLSI
design. Asthe next section shows, the K-L algorithm can be applied to many different problemsin
ASIC design. We shall examine the algorithm next and then see how to apply it to system partitioning.

15.7.5 TheKernighan-Lin Algorithm

Figure 15.8 illustrates some of the terms and definitions needed to describe the K-L algorithm. External
edges cross between partitions; internal edges are contained inside a partition. Consider a network with 2
m nodes (where m is an integer) each of equal size. If we assign a cost to each edge of the network
graph, we can define acost matrix C=c¢ ij wherec i =Cji and c;; = 0. If al connections are equal in

importance, the elements of the cost matrix are 1 or 0, and in this special case we usually call the matrix
the connectivity matrix. Costs higher than 1 could represent the number of wiresin a bus, multiple
connectionsto asingle logic cell, or nets that we need to keep close for timing reasons.

extemal edge

(a) (b

FIGURE 15.8 Terms used by the Kernighan-Lin partitioning algorithm. (a) An example network
graph. (b) The connectivity matrix, C; the column and rows are labeled to help you see how the matrix
entries correspond to the node numbers in the graph. For example, C ;- (column 1, row 7) equals 1

because nodes 1 and 7 are connected. In this example all edges have an equal weight of 1, but in
general the edges may have different weights.

Suppose we aready have split a network into two partitions, A and B , each with m nodes (perhaps
using a constructed partitioning). Our goal now is to swap nodes between A and B with the objective of
minimizing the number of external edges connecting the two partitions. Each external edge may be
weighted by a cost, and our objective corresponds to minimizing a cost function that we shall call the
total external cost, cut cost, or cut weight, W :

W=S Cop (15.13)
a?A,b?B

In Figure 15.8 (a) the cut weight is 4 (all the edges have weights of 1).

In order to simplify the measurement of the change in cut weight when we interchange nodes, we need
some more definitions. First, for any node ain partition A , we define an external edge cost, which
measures the connections from nodeato B,

Ea: Cay

y?B (15.14)

For example, in Figure 15.8 (a) E ; = 1, and E 5 = 0. Second, we define the internal edge cost to measure
the internal connectionsto a,

l, =S C

z?A (15.15)

iy = Zc

=4 (15.2)

S0, inFigure 15.8 (a), | 1 =0, and | 5 = 2. We define the edge costs for partition B in asimilar way (so E

g =2, and | g =1). The cost difference is the difference between external edge costs and internal edge
costs,

Dy =E,-14. (15.16)

Thus, inFigure 158 (@) D 1 =1,D 3=-2,and D g=1. Now pick any nodein A , and any node in B . If

we swap these nodes, a and b, we need to measure the reduction in cut weight, which we call the gain,
g . We can express g in terms of the edge costs as follows:

g:Da+Db-2cab. (15.17)

The last term accounts for the fact that a and b may be connected. So, in Figure 15.8 (a), if we swap
nodesland6,theng=D ;+Dg-2c =1+ 1 If weswapnodes2and 8,theng=D ,+D g-2cC g

=1+2-2

The K-L agorithm finds a group of node pairsto swap that increases the gain even though swapping
individual node pairs from that group might decrease the gain. First we pretend to swap all of the nodes
apair at atime. Pretend swaps are like studying chess games when you make a series of trial movesin
your head.

Thisisthe algorithm:

1. Find two nodes, a; from A , and b ; from B, so that the gain from swapping them is a maximum.
Theganis
9; =D4+Dpi-2¢4,- (15.18)

2. Next pretend swap a; and b, even if the gain g, is zero or negative, and do not consider a; and b ,

eligible for being swapped again.
3. Repeat steps 1 and 2 atotal of m times until all the nodes of A and B have been pretend swapped.
We are back where we started, but we have ordered pairs of nodesin A and B according to the
gain from interchanging those pairs.
4. Now we can choose which nodes we shall actually swap. Suppose we only swap the first n pairs of
nodes that we found in the preceding process. In other wordswe swap nodesX =a;, a, ..., a

from A withnodesY =b,, b,,.., b fromB. Thetota gain would be

n

n
G,=S 0. (1519
i=1
5. We now choose n corresponding to the maximum value of G .

If the maximum vaue of G , > 0, then we swap the sets of nodes X and Y and thus reduce the cut
weight by G , . We use this new partitioning to start the process again at the first step. If the maximum
value of G ,, = 0, then we cannot improve the current partitioning and we stop. We have found alocally

optimum solution.

Figure 15.9 shows an example of partitioning a graph using the K-L algorithm. Each completion of steps
1 through 5 is a pass through the algorithm. Kernighan and Lin found that typically 2-4 passes were
required to reach a solution. The most important feature of the K-L algorithm isthat we are prepared to
consider moves even though they seem to make things worse. Thisis like unraveling atangled ball of
string or solving a Rubik’ s cube puzzle. Sometimes you need to make things worse so they can get
better later. The K-L agorithm works well for partitioning graphs. However, there are the following
problems that we need to address before we can apply the algorithm to network partitioning:

ﬂwap nades 1 and &
E
1

k7

3 3

1

A a8 A 8
edges cut=4 edges cut=2

()

4 Gain fom swapping ith pair of nodes, g

after swapping nodes 1 and &,
gain, gy=4-2=2

atiginal I 1 T f | i, number of pairs of

confguration—1 o 1 g 8 4 g nodes pretend swapped
-]

(bl

4 Total gain Fom swapping the frst @ pairs of nedes, G

G =m+a
e ‘.‘/ . . LE (]

A, number af pairs of
nodes actually swapped

i
5
(=]

FIGURE 15.9 Partitioning a graph using the Kernighan-Lin algorithm. (a) Shows how swapping node
1 of partition A with node 6 of partition B resultsin again of g = 1. (b) A graph of the gain resulting
from swapping pairs of nodes. (c) Thetotal gainisequal to the sum of the gains obtained at each step.

It minimizes the number of edges cut, not the number of nets cut.

It does not allow logic cellsto be different sizes.

It is expensive in computation time.

It does not allow partitions to be unequal or find the optimum partition size.
It does not allow for selected logic cellsto be fixed in place.

The results are random.

It does not directly allow for more than two partitions.

To implement a net-cut partitioning rather than an edge-cut partitioning, we can just keep track of the
nets rather than the edges [Schweikert and Kernighan, 1979]. We can no longer use a connectivity or
cost matrix to represent connections, though. Fortunately, several people have found efficient data
structures to handle the bookkeeping tasks. One example is the Fiduccia-Mattheyses algorithm to be
described shortly.

To represent nets with multiple terminalsin a network accurately, we can extend the definition of a
network graph. Figure 15.10 shows how a hypergraph with a special type of vertex, a star, and a
hyperedge, represents a net with more than two terminalsin a network.

A |—|""' EB One wire corresponds A B
| | toone hyperedge ina L
hypergraph.

A4—— hyperedge
- =tar

FIGURE 15.10 A hypergraph. (a) The network contains a net y with three terminals. (b) In the
network hypergraph we can model net y by a single hyperedge (B, C, D) and a star node. Now thereis
adirect correspondence between wires or nets in the network and hyperedges in the graph.

In the K-L algorithm, the internal and external edge costs have to be calculated for all the nodes before
we can select the nodes to be swapped. Then we have to find the pair of nodes that give the largest gain

when swapped. This requires an amount of computer time that grows as n 2 log n for a graph with 2n

nodes. This n 2 dependency isamajor problem for partitioning large networks. The Fiduccia-Mattheyses
algorithm (the F-M algorithm) is an extension to the K-L algorithm that addresses the differences
between nets and edges and also reduces the computational effort [Fiduccia and Mattheyses, 1982]. The
key features of this agorithm are the following:

® Only onelogic cell, the base logic cell, moves at atime. In order to stop the algorithm from
moving all the logic cellsto one large partition, the base logic cell is chosen to maintain balance
between partitions. The balance is the ratio of total logic cell sizein one partition to the total logic
cell sizein the other. Altering the balance allows us to vary the sizes of the partitions.

® Critical nets are used to simplify the gain calculations. A net isacritical net if it has an attached
logic cell that, when swapped, changes the number of nets cut. It is only necessary to recalculate
the gains of logic cells on critical nets that are attached to the base logic cell.

® Thelogic cellsthat are free to move are stored in adoubly linked list. The lists are sorted
according to gain. This allows the logic cells with maximum gain to be found quickly.

These techniques reduce the computation time so that it increases only slightly more than linearly with
the number of logic cellsin the network, a very important improvement [Fiduccia and Mattheyses,
1982].

Kernighan and Lin suggested simulating logic cells of different sizes by clumping slogic cells together
with highly weighted nets to simulate alogic cell of sizes. The F-M algorithm takes logic-cell sizeinto
account asit selectsalogic cell to swap based on maintaining the balance between the total 1ogic-cell
size of each of the partitions. To generate unequal partitions using the K-L algorithm, we can introduce
dummy logic cells with no connections into one of the partitions. The F-M algorithm adjusts the
partition size according to the balance parameter.

Often we need to fix logic cells in place during partitioning. This may be because we need to keep logic
cells together or apart for reasons other than connectivity, perhaps due to timing, power, or noise
constraints. Another reason to fix logic cells would be to improve a partitioning that you have already
partially completed. The F-M algorithm allows you to fix logic cells by removing them from
consideration as the base logic cells you move. Methods based on the K-L agorithm find locally
optimum solutions in arandom fashion. There are two reasons for this. The first reason is the random
starting partition. The second reason is that the choice of nodes to swap is based on the gain. The choice
between moves that have equal gain is arbitrary. Extensions to the K-L algorithm address both of these
problems. Finding nodes that are naturally grouped or clustered and assigning them to one of the initial
partitions improves the results of the K-L algorithm. Although these are constructive partitioning
methods, they are covered here because they are closely linked with the K-L iterative improvement
algorithm.

15.7.6 The Ratio-Cut Algorithm

The ratio-cut algorithm removes the restriction of constant partition sizes. The cut weight W for a cut
that divides a network into two partitions, A and B , isgiven by

W=S Ca
a?A,b?B (15.20)

The K-L algorithm minimizes W while keeping partitions A and B the same size. Theratio of acut is
defined as

=R p— (15.21)
|A]IB|

In thisequation | A | and | B | are the sizes of partitions A and B . The size of a partition is equal to the
number of nodes it contains (also known as the set cardinality). The cut that minimizes R is called the
ratio cut. The original description of the ratio-cut algorithm uses ratio cuts to partition a network into
small, highly connected groups. Then you form a reduced network from these groups-each small group
of logic cellsforms anode in the reduced network. Finally, you use the F-M algorithm to improve the
reduced network [Cheng and Wei, 1991].

15.7.7 The Look-ahead Algorithm

Both the K-L and F-M algorithms consider only the immediate gain to be made by moving a node.

When there is atie between nodes with equal gain (as often happens), there is no mechanism to make
the best choice. Thisis like playing chess looking only one move ahead. Figure 15.11 shows an example
of two nodes that have equal gains, but moving one of the nodes will allow a move that has a higher gain
later.

B
E
%?
qs
_//El
a B gain = +2

(b (e}
E

|
£
i
Al

=
£
=

FIGURE 15.11 An example of network partitioning that shows the need to look ahead when selecting
logic cellsto be moved between partitions. Partitionings (a), (b), and (c) show one sequence of moves,
partitionings (d), (e), and (f) show a second sequence. The partitioning in (a) can be improved by
moving node 2 from A to B with again of 1. The result of this move is shown in (b). This partitioning
can be improved by moving node 3 to B, again with again of 1. The partitioning shown in (d) isthe
same as (a). We can move node 5 to B with again of 1 as shown in (€), but now we can move node 4
to B withagain of 2.

We call the gain for the initial move the first-level gain. Gains from subsequent moves are then
second-level and higher gains. We can define a gain vector that contains these gains. Figure 15.11 shows
how the first-level and second-level gains are calculated. Using the gain vector allows usto use a
look-ahead algorithm in the choice of nodes to be swapped. This reduces both the mean and variation in
the number of cutsin the resulting partitions.

We have described algorithms that are efficient at dividing a network into two pieces. Normally we wish
to divide a system into more than two pieces. We can do this by recursively applying the algorithms. For
example, if we wish to divide a system network into three pieces, we could apply the F-M algorithm
first, using abalance of 2:1, to generate two partitions, with one twice as large as the other. Then we
apply the algorithm again to the larger of the two partitions, with a balance of 1:1, which will give us
three partitions of roughly the same size.

15.7.8 Simulated Annealing

A different approach to solving large graph problems (and other types of problems) that arisein VLSI
layout, including system partitioning, uses the simulated-annealing algorithm [Kirkpatrick et al., 1983].
Simulated annealing takes an existing solution and then makes successive changes in a series of random
moves. Each move is accepted or rejected based on an energy function, calculated for each new trial
configuration. The minimums of the energy function correspond to possible solutions. The best solution
isthe global minimum.

So far the description of simulated annealing is similar to the interchange algorithms, but thereisan
important difference. In an interchange strategy we accept the new trial configuration only if the energy
function decreases, which means the new configuration is an improvement. However, in the
simulated-annealing algorithm, we accept the new configuration even if the energy function increases
for the new configuration-which means things are getting worse. The probability of accepting a worse
configuration is controlled by the exponential expression exp(-D E/ T), where D E isthe resulting
increase in the energy function. The parameter T is a variable that we control and corresponds to the
temperature in the annealing of ametal cooling (thisiswhy the processis called simulated annealing).

We accept moves that seemingly take us away from a desirable solution to allow the system to escape
from alocal minimum and find other, better, solutions. The name for this strategy is hill climbing. As
the temperature is slowly decreased, we decrease the probability of making moves that increase the
energy function. Finally, as the temperature approaches zero, we refuse to make any moves that increase
the energy of the system and the system falls and comes to rest at the nearest local minimum. Hopefully,
the solution that corresponds to the minimum we have found is a good one.

The critical parameter governing the behavior of the simulated-annealing algorithm is the rate at which
the temperature T isreduced. Thisrate is known as the cooling schedule. Often we set a parameter athat

relates the temperatures, T, and T, , ; , at thei thand i + 1th iteration:

Tiy =2aT;. (1522

To find agood solution, alocal minimum close to the global minimum, requires ahigh initial
temperature and a slow cooling schedule. This results in many trial moves and very long computer run
times|[Rose, Klebsch, and Wolf, 1990]. If we are prepared to wait along time (forever in the worst
case), simulated annealing is useful because we can guarantee that we can find the optimum solution.
Simulated annealing is useful in several of the ASIC construction steps and we shall returnto it in
Section 16.2.7.

15.7.9 Other Partitioning Objectives

In partitioning areal system we need to weight each logic cell according to its areain order to control
the total areas of each ASIC. This can be done if the area of each logic cell can either be calculated or
estimated. Thisisusually done as part of floorplanning, so we may need to return to partitioning after
floorplanning.

There will be many objectives or constraints that we need to take into account during partitioning. For

example, certain logic cellsin a system may need to be located on the same ASIC in order to avoid
adding the delay of any external interconnections. These timing constraints can be implemented by
adding weights to nets to make them more important than others. Some logic cells may consume more
power than others and you may need to add power constraints to avoid exceeding the power-handling
capability of asingle ASIC. It isdifficult, though, to assign more than rough estimates of power
consumption for each logic cell at the system planning stage, before any simulation has been compl eted.
Certain logic cells may only be available in a certain technology-if you want to include memory on an
ASIC, for example. In this case, technology constraints will keep together logic cells requiring similar
technologies. We probably want to impose cost constraints to implement certain logic cellsin the lowest
cost technology available or to keep ASICs below a certain size in order to use alow-cost package. The
type of test strategy you adopt will also affect the partitioning of logic. Large RAM blocks may require
BIST circuitry; large amounts of sequential logic may require scan testing, possibly with a
boundary-scan interface. One of the objects of testability isto maintain controllability and observability
of logic inside each ASIC. In order to do this,

15.8 Summary

The construction or physical design of ASICsin amicroelectronics systemisavery large and complex
problem. To solve the problem we divide it into several steps: system partitioning, floorplanning,
placement, and routing. To solve each of these smaller problems we need goals and objectives,
measurement metrics, as well as algorithms and methods.

System partitioning is the first step in ASIC assembly. An example of the SPARCstation 1 illustrated the
various issues involved in partitioning. Presently commercial CAD tools are able to automatically
partition systems and chipsonly at alow level, at the level of anetwork or netlist. Partitioning for
FPGAs s currently the most advanced. Next we discussed the methods to use for system partitioning.
We saw how to represent networks as graphs, containing nets and edges, and how the mathematics of
graph theory is useful in system partitioning and the other steps of ASIC assembly. We covered methods
and algorithms for partitioning and explained that most are based on the Kernighan-Lin min-cut
algorithm.

The important pointsin this chapter are

® The goals and objectives of partitioning

® Partitioning as an art not a science

® The simple nature of the algorithms necessary for VL Sl-sized problems
® The random nature of the algorithms we use

® The controlsfor the algorithms used in ASIC design

15.9 Problems

* = Difficult, ** = Very difficult, *** = Extremely difficult

15.1 (Complexity, 10 min.) Suppose the workstations we use to design ASICs increase in power
(measured in MIPS-amillion instructions per second) by afactor of 2 every year. If we want to
keep the length of time to solve an ASIC design problem fixed, calculate how much larger chips

can get each year if constrained by an algorithm with the following complexities:

O a O (k).

O b. O (n).

O c.O(logn).
O d.O(nlogn).
0 e O(n?).

15.2 (Complexity, 10 min.) In afilm the main character looks 12 moves ahead to win a chess
championship.

O a. Estimate (stating your assumptions) the number of possible chess moves looking 12
moves ahead.
O b. How long would it take to evaluate all these moves on a modern workstation?

15.3 (Chips and towns, 20 min.) This problem is adapted from an analogy credited to Chuck
Seitz. Complete the entries in Table 15.8 , which shows the progression of integrated circuit
complexity using the analogy of town and city planning. If | is half the minimum feature size,
assume that atransistor isasguare 2 | on aside and is equivalent to acity block (which we
estimate at 200 m on a side).

TABLE 15.8 Complexity of ASICs (Problems 15.3 and 15.4).

o City size

Chipsize Transistor size (km on aside
Year | /mm (mmona _ Transistors = city blocks ' Example

side) (mmon aside) 1 block =

200m)

1970 50 5 200 25 ¥ 25=625 5 Palo Alto
1980 5 10 20 500 ¥ 500 = 25 ¥ 103
1990 05 20 1 1,000 ¥ 1,000 =1 ¥ 106
2000 0.05 40 0.2 ig'goo ¥20000=400%

15.4 (Polygons, 10 min.) Estimate (stating and explaining al your assumptions) how many
polygons there are on the layouts for each of the chipsin Table 15.8.

15.5 (Algorithm complexity, 10 min.) | think of a number between 1 and 100. Y ou guess the
number and | shall tell you whether you are high or low. We then repeat the process. If you were
to write a computer program to play this game, what would be the complexity of your algorithm?

15.6 (Algorithms, 60 min.) For each of these problems write or find (stating your source) an
algorithm to solve the problem:

O a Anagorithm to sort n numbers.

O b. An algorithm to discover whether a number nis prime.
O c. An agorithm to generate arandom number between 1 and n .

List the algorithm using a sequence of steps, pseudocode, or aflow chart. What is the complexity
of each algorithm?

15.7 (Measurement, 30 min.) The traveling-salesman problem is awell-known example of an
NP-complete problem (you have alist of cities and their locations and you have to find the shortest
route between them, visiting each only once). Propose a simple measure to estimate the length of
the solution. If | had to visit the 50 capitals of the United States, what is your estimate of my
frequent-flyer mileage?

15.8 (Construction, 30 min.) Try and make a quantitative comparison (stating and explaining all
your assumptions) of the difficulty and complexity of construction (for example, how many
components in each?) for each of the following: a Boeing 747 jumbo jet, the space shuttle, and an
Intel Pentium microprocessor. Which, in your estimation, is the most complex and why? Smailagic
[1995] proposes measures of design and construction complexity in a description of the wearable
computer project at Carnegie-Mellon University.

15.9 (Productivity, 20 min.). If | have six months to design an ASIC:

O a What isthe productivity (in transistors/day) required for each of the chipsin Table 15.8 ?

O b. What does this trandlate to in terms of a productivity increase (measured in percent
increase in productivity per month)?

O c. Moore's Law says that chip sizes double every 18 months. What does this correspond to
in terms of a percentage increase per month?

O d. Comment on your answers.

15.10 (Graphs and edges, 30 min.) We know a net with two connections requires asingle edge in
the network graph, a net with three connections requires three edges, and a net with four
connections requires six edges.

O a Canyou guess aformulafor the number of edges in the network graph corresponding to a
net with n connections?

O b. Canyou prove the formulayou guessed in part a? Hint: How many edges are there from
one nodeto n - 1 other nodes?

O c. Large nets cause problems for partitioning algorithms based on a connectivity matrix
(edges rather than wires). Suppose we have a 50-net connection that is no more critical for
timing than any other net. Suggest away to fool the partitioning algorithm so this net does
not drag all itslogic cellsinto one partition.

Most CAD programs treat large nets (like the clock, reset, or power nets) separately, but the nets
are required to have special names and you only can have alimited number of them. The average
net in an ASIC has between two and four connections and as arule of thumb 80 percent of nets
have afanout of 4 or less (afanout of 4 means a gate drives four others, making atotal of five
connections on the net).

15.11 (PC partitioning, 60 min.) Open an IBM-compatible PC, Apple Macintosh, or PowerPC that

has a motherboard that you can see easily. Make alist of the chips (manufacturer and type), their
packages, and pin counts. Make intelligent guesses as to the function of most of the chips.
Obviously manufacturer’ s logos and chip identification markings hel p-perhaps they are in a data
book. Identify the types of packages (pin-grid array, quad flat pack). Look for nearby components
that may give a hint-crystals for clock generators or the video subsystem. Where are the chips
located on the board-are they near the connectors for the floppy disk subsystem, the modem or
serial port, or video output? To help you, Table 15.9 shows an example-alist of the first row of
chips on an old H-P Vectra ES/12 motherboard. Use the same format for your list.

TABLE 15.9 A list of the chips on thefirst row of an HP Vectra PC (Problem 15.11).

Manufacturer Chip Package Function Comment

HP 87411AAE 24-pin DIP

Intel L7220048 40-pin DIP EPROM (9/3/87) Boot commands

Chips 7014-0093 80-pin quad flat pack Custom ASIC

Intel 80286-12 68-pin package Microprocessor CPU

TI AS00 14-pin DIP Quad 2-input NAND gate Addressing
S74F08D 14-pin DIP Quad 2-input AND gate Addressing
F74F51 14-pin DIP AOQI gate Addressing

15.12 (Estimates, 60 min.) System partitioning is not exact science. Estimate:

O a The power developed by a grasshopper, in watts (from a Cambridge University entrance
exam).

O b. The number of doorsin New Y ork City.

O c. The number of grains of sand on Hawaii’ s beaches.

O d. Thetotal length of the roads in the continental United States in kilometers.

In each case: (i) Provide an equation that depends on parameters and symbols that you define.
(i) List the parametersin your equation, and the values that you assume with their uncertainty.
(iii) Give the answer as a number (with units where necessary). (iv) Include a numerical estimate
of the uncertainty in your answer.

15.13 (Pad-limited and core-limited die, 10 min.) Asthe number of 1/O pads increases, an ASIC
can become pad-limited. The spacing between 1/0 pads is determined by mechanical limitations of
the equipment used for bonding-usually 2-5 mil (amil is athousandth of an inch). In a pad-limited
design the number of pads around the outer edge of the die determines the die size, not the number
of gates (see Figure 15.12). For the pad-limited design, shown in Figure 15.12 (@), the price per
I/0 pad is more important than the price per gate. When we have alot of logic but few /O pads,
we have a core-limited design-the opposite of a pad-limited ASIC-as shown in Figure 15.12 (b).
For a given number of 1/0 pads and a pad-limited design, all the different ASIC types will have
the same die size, determined by a graph such as the one shown in Figure 15.12 (c). If 1/O pad

spacing is 5 mil and gate density is 1.0 gate/mil 2, when does an ASIC becomes pad-limited?
Express your answer as a function of the number of gates, G, and the number of 1/Os, I .

I,."I:Ipad dooooooon OO0 000D & mikbad 4 milpad

die sidedmil

o
o 200
o zon
o 100
[n]
=)

200 400 10 pads
(a) (bl e

o -1

.

s}
a
a
o a
o a
a
o a
a
a
=

u]
u]
uoooooooon

FIGURE 15.12 Diesize. (a) A pad-limited die, the die size is determined by the number of 1/0
pads. (b) A core-limited die, the die size islimited by the amount of logic in the core. (c) For a
given pad spacing we can determine the die size for a pad-limited die.

15.14 (Estimating ASIC size, 120 min.) Let us pretend we are going to build alaptop
SPARCstation. We need to drastically reduce the number of chips used in the desktop system.
Focus on the 1/0 subsystems in Figure 15.2 (chip labels are shown in parentheses): LANCE
Ethernet controller (14), 3C90 SCSI controller (15), 85C30 serial port controller (16, 17), 79C30
ISDN interface (18), and 82072 floppy-disk controller (19). Consider combining these functions
into asingle custom ASIC.

O a Coallect as much data as you can on the ASSP chips (14-19) that are currently used in the
SPARCstation 1, similar to that presented in Table 15.5 . National Semiconductor, Texas
Instruments, AMD, Intel, and Motorola produce these or similar chips. Y ou will need one or
more of their ASSP data books. Try to find the pin count, power dissipation, and gate count
for each chip. If you can’t find one of these parameters, make an estimate and explain your
assumptions.

O b. Using your data, make an estimate of the size, power dissipation, and pin count of the
ASIC toreplace chips 14-19in Figure 15.2 .

O c. Asasanity check compare your results with the DMA?2 Ethernet, SCSI, and parallel port
chip in the SPARCstation 10 (see Table 15.2). Thisisa 30 k-gate array in a 160-pin quad
flat pack.

15.15 (Power dissipation, 20 min.) If a Pentium microprocessor dissipates 5 W and, on average,
20 percent of the circuit nodes toggle every clock cycle

O a. Calculate the total capacitance of all the circuit nodes in picofarads if the clock frequency
is100MHzandV =5V,

O b. If half of thisis due to interconnect capacitance at 2 pFcm 1, what is the total length of
interconnect?

O c. If thereare 100 I/Os driving an average of 20 pF load off-chip at an average frequency of
50 MHz, what is the power dissipation in the 1/0s?

O d. A Pentium chip contains about 3 ¥ 10 © transistors. How many gatesis this?
O e. How many gates are switching on average every clock cycle?

15.16 (Parasitic power dissipation, 20 min.) Consider the following arguments: The energy stored

in acapacitor is 1/2(CV 2) (measured in joules). Suppose we charge and discharge a capacitance
C between zero and V volts at afrequency f . We have to replace this energy f times per second
and we shall dissipate a power (measured in watts) equal to

P=05fCVpp? (15.23)

When the p -channel transistor in an inverter is charging a capacitance, C, at afrequency, f , the
current through the transistor isC (d V /d t), the power dissipationisCV (dV /d t) for one-half
the period of the input, t = 1/(2 f). The power dissipated in the p -channel transistor is thus

@) dv
P=fU CV - dt=05fCVy?2 (15.24)
0 dt

During the second half-period of the input signal the p -channel transistor is off, so that there can
be no power dissipation in the power supply. The power dissipation that occursin the n -channel
transistor must come from the stored energy in the capacitor-which is accounted for in the

equation. In both cases the total power dissipation should be 1/2(fCV 2), not (fCV 2) aswe have
stated in Eq. 15.4 . Point out the errors in both of these arguments. (If you are interested in
situations in which these equations do hold, you can search for the term adiabatic logic.)

15.17 (Short-circuit power dissipation, 30 min.) Prove Eg. 15.5 asfollows: The input to a CMOS
inverter isalinear ramp withrisetimet ; . Caculate the n -channel transistor current as afunction

of theinput voltage, V ;,, , assuming the n -channel transistor turnsonwhen 'V, =V, nand the
current reachesamaximumwhenV ., =V gy /2att=t /2.

The transistor current is given by Eg. 2.9. Assume b = (W/L) m Cox is the same for both p - and
n -channel transistors, the magnitude of the threshold voltages |V |, | are assumed equal for both

transistor types, and t is the rise time and fall time (assumed equal) of the input signal.

Show that for aCMOS inverter (Eg. 15.5):
Py =(W12)bft (Vpp-2V,,)° (15.25)

where b = (W/L) m Cox isthe same for both p - and n -channel transistors, the magnitude of the
threshold voltages |V, , | are assumed equal for both transistors, and t is the rise time and fall time

(assumed equal) of the input signal [Veendrick, 1984].

15.18 (Connectivity matrix, 10 min.) Find the connectivity matrix for the ATM Connection
Simulator shown in Figure 15.5 . Use the following scheme to number the blocks and ordering of
the matrix rows and columns: 1 = Personal Compuiter, 2 = Intel 80186, 3= UTOPIA receiver, 4 =
UTOPIA transmitter, 5 = Header remapper and screener, 6 = Remapper SRAM, ... 15=
Random-number and bit error rate generator, 16 = Random-variable generator. All buses are
labeled with their width except for two single connections (the arrows).

15.19 (K-L agorithm, 15 min.)

O a. Draw the network graph for the following connectivity matrix:
0000001000
0000010100
0001000100
0010100010

C =0001000000 (15.26)
0100000010
1000000010
0110000010
0001001101
0000000010

O b. Draw the partitioned network graph for C with nodes 1-5 in partition A and nodes 6-10 in
partition B. What is the cut weight?

O c. Improvetheinitia partitioning using the K-L algorithm. Show the gains at each stage.
What problems did you find in following the algorithm and how do you resolve them?

15.20 (The gain graph in the K-L algorithm, 20 min.). Continue with the K-L algorithm for the
network that we started to partition in Figure 15.9 (a).

O a. Show that choices of logic cells to swap and the gains correspond to the graph of

Figure 15.9 (b).
O b. Noticethat G ;= 0. Infact G | (where there are 2 m nodes to be partitioned) will always

be zero. Can you explain why?

15.21 (Look-ahead gaininthe K-L algorithm, 20 min.) In the K-L algorithm we have to compute
the gain each time we consider swapping one pair of nodes:

g, = Da+Db-20ab. (15.27)

If we swap two pairs of nodes (a, and b , followed by a, and b ,), show that the gain is

91 =D a2*Dp2-2C,5542°2C5245172C42p172Ch24172Ch2p 1 (15.28)
15.22 (FPGA partitioning, 30 min.) Table 15.10 shows some data on FPGAs from company Z.

TABLE 15.10 FPGAsfrom company Z (Problem 15.22).
FPGA size Diearea/ cm? Average gate count Package pins Cost

S 0.26 1500 68 $26
M 0.36 2300 44 $35
L 0.46 2800 84 $50

XL 0.64 4700 84 $90
XXL 0.84 6200 84 $130

O a Notice that the FPGAs come in different package sizes. To eliminate the effect of package
price, multiply the price for the S chip by 106 percent, and the M chip by 113 percent. Now
all prices are normalized for an 84-pin plastic package. All the chips are the same speed
grade; if they were not, we could normalize for thistoo (alittle harder to justify though).

O b. Plot the normalized chip prices vs. gate count. What is the cost per gate?

O c. The part cost ought to be related to the yield, which is directly related to die area. If the
cost of a 6-inch-diameter wafer is fixed (approximately $1000), calculate the cost per die,
assuming ayield Y (in percent), as afunction of the die area, A (incm?). Assume you
completely fill the wafer and you can have fractional die (i.e., do not worry about packing
square die into a circular wafer).

O d. There are many models for theyield of aprocess, Y . Two common models are

Y =exp[-+(AD)]. (15.29)
and

E 1-exp(-AD) " 2
Y = A e ~ (15.30)

Parameter A isthe die areain cm2 and D isthe spot defect density in defects/cm 2andis usually

around 1.0 defects/cm 2 for a good submicron CMOS process (above 5.0 defects/cm 2 is unusual).
The most important thing is the yield; anything below about 50 percent good die per wafer is
usually bad news for an ASIC foundry. Does the FPGA cost datafit either model ?

O e. Now disregard the current pricing strategy of company Z. If you had to bet that physics
would determine the true price of the chip, how much worse or better off are you using two
small FPGAs rather than one larger FPGA (assume the larger die is exactly twice the area of
the smaller one) under these two yield models?

O f. What assumptions are inherent in the calculation you made in part €? How much do you
think they might affect your answer, and what el se would affect your judgment?

O g. Give some reasons why you might select two smaller FPGASs rather than alarger FPGA,
even if the larger FPGA is a cheaper solution.

O h. Give some reasons why you would select alarger FPGA rather than two smaller FPGAS,
even if the smaller FPGAs were a cheaper solution.

15.23 (Constructive partitioning, 30 min.) We shall use the ssmple network with 12 blocks shown
in Figure 15.7 to experiment with constructive partitioning. This example is topologically
equivalent to that used in [Goto and Matsud, 1986].

O a Weshall use again function, g(m) , calculated as follows: Sum the number of the nets (not
connections) from the selected logic cell, m, that connect to the current partition-call this
P(m). Now calculate the number of nets that connect logic cell m to logic cells which are not
yet in partitions-call this N(m). Then g(m) = P(m) - N(m) is the gain of adding the logic cell

m to the partition currently being filled.

O b. Partition the network using the seed growth algorithm with logic cell C as the seed. Show
how this choice of seed can lead to the partitioning shown in Figure 15.7 (¢). Use atable like
Table 15.11 as a bookkeeping aid (a spreadsheet will help too). Each row correspondsto a
pass through the algorithm. Fill in the measures, P(m) - N(m), equal to the gain, g(m). Once
alogic cell isassigned to a partition, fill in the name of the partition (X, Y, or Z) in that
column. The first row shows you how logic cell L is selected; proceed from there. What
problems do you encounter while completing the algorithm, and how do you resolve them?

O c. Now partition using logic cell F as the seed instead-the logic cell with the highest number
of nets. When you have atie between logic cells with the same gain, or you are starting a
new partition, pick the logic cell with the largest P(m) . Use acopy of Table 15.12 asa
bookkeeping aid. How does your partition compare with those we have aready made
(summarized in Table 15.13)?

O d. Comment on your results.

Table 15.14 will help in constructing the gain function at each step of the algorithm.

TABLE 15.11 Bookkeeping table for Problem 15.23 (b).

PassGin A B CD E F G H | J K L

, P-N0-21-2,0-21-40-50-20-20-30-30-20-1
g =2 =1%X=2=3=05=2=2=3=-3 =2 =-1

2 X X X

TABLE 15.12 Bookkeeping table for Problem 15.23 (¢).

PassGin A B C D E FG H | J K L

1-20-21-11-11-3 ,0-2 1-2 2-2 0-3 0-2 0-1
1L P-N=9_ 1 _-5-0 =0 =2 %2221 =0 =3 =2 =-1
2 X X

TABLE 15.13 Different partitions for the network shown in Figure 15.7 (Problem 15.23 ¢).

Total external Partition contents Connections to each

Partitioning)
connections X, Y, Z partition
X=(A,B,C,L) 3
5
Figure 15.7 (b) Y=(D,FH,I 3
(2,4,5,6,8)
Z=(E, G, JK) 4
X=(A,B,F,D) 5
7
Figure 15.7 (c) Y=(H1,JK) 5

(2,3,5,7,9, 11, 12)
Z=(C,E G,L) 4

TABLE 15.14 An aid to calculating the gains for Problem 15.23 .
Number of

Logiccell Connectsto: Number of nets
connections

B, F
A, (C,E)

(B, E)

FH

(B,C),F, (G, L),J
A, D, E, (H,11),12
(E, L), (3, K)

D, (F, 1)

F1, (F2, H), (3 K)
E, (G, K1), (I, K2)
(G, 1), (1, 2)

(E G)

—r X« T IOTTMmMmoOw>
P NDWWNNDORANERENDN
N A OO WA ODOONDNDWN

15.24 (Simulated annealing, 15 min.) If you have afixed amount of time to solve a partitioning
problem, comment on the following alternatives and choose one:

i. Run a single ssmulated annealing cycle using a slow cooling schedule.
ii. Run several (faster) min-cut based partitionings, using different seeds, and pick the best one.
iii. Run several simulated annealing cycles using a faster cooling schedule, and pick the best result.

15.25 (Net weights, 15 min.) Figure 15.13 shows asmall part of a system and will help illustrate
some potential problems when you weight nets for partitioning. Nets s1-s3 are critical, nets c1-c4
are not. Assume that all nets are weighted by a cost of one unless the special net weight symbol is
attached.

O a. Explain the problem with the net weights as shown in Figure 15.13 (a).

O b. Figure 15.13 (b) shows a different way to assign weights. What problems might this
cause in the rest of the system?

O c. Figure 15.13 (c) shows another possible solution. Discuss the advantages of this
approach.

O d. Can you think of another way to solve the problem?

This situation represents avery real problem with using net weights and tools that use min-cut
algorithms. As soon as you get one critical net right, the tool makes several other nets too long and
they become critical. The problem is worse during system partitioning when the blocks are big and
there are many different nets with differing importance attached to each block-but it can happen
during floorplanning and placement also.

cl cl cl

[=¥4 [[=¥
Gdc Gdc Eidca |
L 1 L 1 []
|“}?E||“%B||“| N
sz |=3 K\mweigm sz |=3 = | A

— o] Lo+
21 f2] fol fol
(&) (=3 (ch

FIGURE 15.13 (For Problem 15.25.) An example of a problem in weighting nets. The symbols

attached to the nets apply aweight or cost to that net during partitioning. Nets c1-c4 are control
lines-they are not critical for timing purposes. Nets s1-s3 are signal lines that are critical-they
must be kept short. The figure shows three different ways to handle this using net weights.

15.26 (Cost, 60 min.) You have three chip sizes available for your part of project "DreamOn” (a
new video game): S, M, and L. The L chip has twice the logic of the M chip. The M chip has twice
thelogic of the S chip. The L chip costs $16, which is 4 times as much as the M chip and 16 times
as much asthe S chip. There are two speed grades available: fast (F) and turbocharged (T). The T

chip costs twice as much as the F version. Using a partitioning program, you find you need the
equivalent of 1.8 of the L chips, but only athird of your logic needsaT chip.

O a What isthe cheapest way to build "DreamOn"?

O b. During prototyping you find you can use 90 percent of the S and M type chips, but for

reliable routing you can only count on a maximum utilization of 85 percent for the L chip.
Y ou aso find that, to maximize performance, you need to keep all of the logic that requires
the turbo speed on one chip. Our ASIC vendor, Xactera, promises us that the chip prices will
fall by the time we go into production in one year. The estimates are that the prices will be
amost proportional to chip size: The L chip will cost 2.2 timesthe M chip and 4.4 times
whatever isthe cost of the S chip by then (but Xacterawill not commit to afuture price for
the S chip, only the present price). Y ou predict the price of the S chip will fall 20 percent in
one year (thisis about average for the annual rate of price decrease for semiconductors).
Xactera says the turbocharged speed grade will stay about twice the cost of the fast grade.
How does thisinformation affect your decision?

c. Sometime later, as you are ready to go on vacation, the production department tells you
that the board cost is about the same as the chip cost! The board area does not make much
difference to the price, but there is an extra charge per package pin to reflow solder the
surface-mount chips. We only need each chip to have the minimum size package-a 44-pin
quad plastic package. Production has two price quotes: Boards-R-Us charges $5 per board
plus $0.01 per pin, and PCB Inc. quotes at $0.05 per pin. What should we do? The CEO
needs a recommendation today.

d. You come back from holiday and find out from your e-mail that we went with your
recommendation on the board vendor but now we have other problems. The test company is
charging per chip pin on the board since we are using an old style bed-of-nails tester. The
cost is about $0.01 per chip pin. Y ou can go back and add a test interface to all the chips,
which is the equivalent of adding 10 percent of asmall chip (type S) on each chip (S, M, or
L). Thiswould eliminate the bed-of-nails test, and reduce board test cost to $1 per board.

Xacteraaso just lowered their prices: L chips are now $4, M chips are $2, and S chips are
$0.95. Thereisaso anew Xactera XL chip that has twice the capacity of the L chips and
costs $8 (but you do not know what utilization to expect). These prices are for the fast speed
grades, the turbo versions are now 2.5 times more expensive.

e. There are some serious consequences to making any design changes now (including
schedule glips). We have an emergency meeting with production, finance, marketing, and the
CEO this afternoon in the boardroom. | have to prepare a presentation outlining our past
decisions and the advantages and disadvantages of each of our options (with quantitative
estimates of their effect). Can you prepare four foils for me, and a one-page spreadsheet that
will allow us to make some rapid "what-if" decisions in the meeting? Print the foils and the
one-page spreadsheet.

f. A year later we arein full production and al iswell. We are reviewing your performance
on project "DreamOn." What did you learn from this project and how would you do things
differently next time? (Y ou only have room for 100 words on your review form.)

