
ASIC 
CONSTRUCTION
A town planner works out the number, types, and sizes of buildings in a development project. An
architect designs each building, including the arrangement of the rooms in each building. Then a builder
carries out the construction according to the architect’s drawings. Electrical wiring is one of the last
steps in the construction of each building. The physical design of ASICs is normally divided into system
partitioning, floorplanning, placement, and routing. A microelectronic system is the town and the ASICs
are the buildings. System partitioning corresponds to town planning, ASIC floorplanning is the
architect’s job, placement is done by the builder, and the routing is done by the electrician. We shall
design most, but not all, ASICs using these design steps. 
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15.1  Physical Design
Figure 15.1 shows part of the design flow, the physical design steps, for an ASIC (omitting simulation,
test, and other logical design steps that have already been covered). Some of the steps in Figure 15.1
might be performed in a different order from that shown. For example, we might, depending on the size
of the system, perform system partitioning before we do any design entry or synthesis. There may be
some iteration between the different steps too. 

FIGURE 15.1  Part of an ASIC design flow showing the system
partitioning, floorplanning, placement, and routing steps. These
steps may be performed in a slightly different order, iterated or
omitted depending on the type and size of the system and its
ASICs. As the focus shifts from logic to interconnect, floorplanning
assumes an increasingly important role. Each of the steps shown in
the figure must be performed and each depends on the previous
step. However, the trend is toward completing these steps in a
parallel fashion and iterating, rather than in a sequential manner.

 

 

We must first apply system partitioning to divide a microelectronics system into separate ASICs. In
floorplanning we estimate sizes and set the initial relative locations of the various blocks in our ASIC
(sometimes we also call this chip planning). At the same time we allocate space for clock and power
wiring and decide on the location of the I/O and power pads. Placement defines the location of the logic
cells within the flexible blocks and sets aside space for the interconnect to each logic cell. Placement for
a gate-array or standard-cell design assigns each logic cell to a position in a row. For an FPGA,
placement chooses which of the fixed logic resources on the chip are used for which logic cells.
Floorplanning and placement are closely related and are sometimes combined in a single CAD tool.
Routing makes the connections between logic cells. Routing is a hard problem by itself and is normally
split into two distinct steps, called global and local routing. Global routing determines where the
interconnections between the placed logic cells and blocks will be situated. Only the routes to be used by
the interconnections are decided in this step, not the actual locations of the interconnections within the
wiring areas. Global routing is sometimes called loose routing for this reason. Local routing joins the
logic cells with interconnections. Information on which interconnection areas to use comes from the
global router. Only at this stage of layout do we finally decide on the width, mask layer, and exact
location of the interconnections. Local routing is also known as 

15.2  CAD Tools



In order to develop a CAD tool it is necessary to convert each of the physical design steps to a problem
with well-defined goals and objectives. The goals for each physical design step are the things we must
achieve. The objectives for each step are things we would like to meet on the way to achieving the goals.
Some examples of goals and objectives for each of the ASIC physical design steps are as follows:

System partitioning:

Goal. Partition a system into a number of ASICs. 
Objectives. Minimize the number of external connections between the ASICs. Keep each ASIC
smaller than a maximum size. 

Floorplanning:

Goal. Calculate the sizes of all the blocks and assign them locations. 
Objective. Keep the highly connected blocks physically close to each other. 

Placement:

Goal. Assign the interconnect areas and the location of all the logic cells within the flexible blocks.
Objectives. Minimize the ASIC area and the interconnect density. 

Global routing:

Goal. Determine the location of all the interconnect. 
Objective. Minimize the total interconnect area used. 

Detailed routing:

Goal. Completely route all the interconnect on the chip. 
Objective. Minimize the total interconnect length used. 

There is no magic recipe involved in the choice of the ASIC physical design steps. These steps have
been chosen simply because, as tools and techniques have developed historically, these steps proved to
be the easiest way to split up the larger problem of ASIC physical design. The boundaries between the
steps are not cast in stone. For example, floorplanning and placement are often thought of as one step
and in some tools placement and routing are performed together.

15.2.1 Methods and Algorithms

A CAD tool needs methods or algorithms to generate a solution to each problem using a reasonable
amount of computer time. Often there is no best solution possible to a particular problem, and the tools
must use heuristic algorithms, or rules of thumb, to try and find a good solution. The term algorithm is
usually reserved for a method that always gives a solution.

We need to know how practical any algorithm is. We say the complexity of an algorithm is O ( f ( n ))
(read as order f ( n )) if there are constants k and n 0 so that the running time of the algorithm T ( n ) is



less than k f ( n ) for all n > n 0 [ Sedgewick, 1988]. Here n is a measure of the size of the problem

(number of transistors, number of wires, and so on). In ASIC design n is usually very large. We have to
be careful, though. The notation does not specify the units of time. An algorithm that is O ( n 2 )
nanoseconds might be better than an algorithm that is O ( n ) seconds, for quite large values of n . The
notation O ( n ) refers to an upper limit on the running time of the algorithm. A practical example may
take less running time-it is just that we cannot prove it. We also have to be careful of the constants k and
n 0 . They can hide overhead present in the implementation and may be large enough to mask the

dependence on n , up to large values of n . The function f (n) is usually one of the following kinds:

f (n)  = constant. The algorithm is constant in time. In this case, steps of the algorithm are repeated
once or just a few times. It would be nice if our algorithms had this property, but it does not
usually happen in ASIC design. 
f (n)  = log  n . The algorithm is logarithmic in time. This usually happens when a big problem is
(possibly recursively) transformed into a smaller one. 
f (n) = n . The algorithm is linear in time. This is a good situation for an ASIC algorithm that
works with n objects. 
f (n)  =  n  log  n . This type of algorithm arises when a large problem is split into a number of
smaller problems, each solved independently. 
f (n)  =  n 2 . The algorithm is quadratic in time and usually only practical for small ASIC
problems. 

If the time it takes to solve a problem increases with the size of the problem at a rate that is polynomial
but faster than quadratic (or worse in an exponential fashion), it is usually not appropriate for ASIC
design. Even after subdividing the ASIC physical design problem into smaller steps, each of the steps
still results in problems that are hard to solve automatically. In fact, each of the ASIC physical design
steps, in general, belongs to a class of mathematical problems known as NP-complete problems. This
means that it is unlikely we can find an algorithm to solve the problem exactly in polynomial time.

Suppose we find a practical method to solve our problem, even if we can find a solution we now have a
dilemma. How shall we know if we have a good solution if, because the problem is NP-complete, we
cannot find the optimum or best solution to which to compare it? We need to know how close we are to
the optimum solution to a problem, even if that optimum solution cannot be found exactly. We need to
make a quantitative measurement of the quality of the solution that we are able to find. Often we
combine several parameters or metrics that measure our goals and objectives into a measurement
function or objective function. If we are minimizing the measurement function, it is a cost function. If
we are maximizing the measurement function, we call the function a gain function (sometimes just
gain).

Now we are ready to solve each of the ASIC physical design steps with the following items in hand: a
set of goals and objectives, a way to measure the goals and objectives, and an algorithm or method to
find a solution that meets the goals and objectives. As designers attempt to achieve a desired ASIC
performance they make a continuous trade-off between speed, area, power, and several other factors.
Presently CAD tools are not smart enough to be able to do this alone. In fact, current CAD tools are only
capable of finding a solution subject to a few, very simple, objectives. 

15.3  System Partitioning



Microelectronic systems typically consist of many functional blocks. If a functional block is too large to
fit in one ASIC, we may have to split, or partition, the function into pieces using goals and objectives
that we need to specify. For example, we might want to minimize the number of pins for each ASIC to
minimize package cost. We can use CAD tools to help us with this type of system partitioning.

Figure 15.2 shows the system diagram of the Sun Microsystems SPARCstation 1. The system is
partitioned as follows; the numbers refer to the labels in Figure 15.2 . (See Section 1.3, "Case Study" for
the sources of infomation in this section.)

Nine custom ASICs (1-9) 
Memory subsystems (SIMMs, single-in-line memory modules): CPU cache (10), RAM (11),
memory cache (12, 13) 
Six ASSPs (application-specific standard products) for I/O (14-19) 
An ASSP for time of day (20) 
An EPROM (21) 
Video memory subsystem (22) 
One analog/digital ASSP DAC (digital-to-analog converter) (23) 

Table 15.1 shows the details of the nine custom ASICs used in the SPARCstation 1. Some of the
partitioning of the system shown in Figure 15.2 is determined by whether to use ASSPs or custom
ASICs. Some of these design decisions are based on intangible issues: time to market, previous
experience with a technology, the ability to reuse part of a design from a previous product. No CAD
tools can help with such decisions. The goals and objectives are too poorly defined and finding a way to
measure these factors is very difficult. CAD tools cannot answer a question such as: "What is the
cheapest way to build my system?" but can help the designer answer the question: "How do I split this
circuit into pieces that will fit on a chip?" Table 15.2 shows the partitioning of the SPARCstation 10 so
you can compare it to the SPARCstation 1. Notice that the gate counts of nearly all of the
SPARCstation 10 ASICs have increased by a factor of 10, but the pin counts have increased by a smaller
factor.

 



 

FIGURE 15.2  The Sun Microsystems SPARCstation 1 system block diagram. The acronyms for the
various ASICs are listed in Table 15.1 .

15.4  Estimating ASIC Size
Table 15.3 shows some useful numbers for estimating ASIC die size. Suppose we wish to estimate the
die size of a 40 k-gate ASIC in a 0.35 m m gate array, three-level metal process with 166 I/O pads. For
this ASIC the minimum feature size is 0.35 m m. Thus l (one-half the minimum feature size) = 0.35 m
m/2 = 0.175 m m. Using our data and Table 15.3 , we can derive the following information. We know
that 0.35 m m standard-cell density is roughly 5 ¥ 10 -4 gate/ l 2 . From this we can calculate the gate
density for a 0.35 m m gate array: 

gate density = 0.35 m m standard-cell density ¥ (0.8 to 0.9)  

 = 4 ¥ 10 -4 to 4.5 ¥ 10 -4 gate/ l 2 . (15.1)

This gives the core size (logic and routing only) as 

(4 ¥ 10 4 gates/gate density) ¥ routing factor ¥ (1/gate-array utilization)  

 = 4 ¥ 10 4 /(4 ¥ 10 -4 to 4.5 ¥ 10 -4 ) ¥ (1 to 2) ¥ 1/(0.8 to 0.9) = 10 8 to 2.5 ¥ 10 8 l 2  

 = 4840 to 11,900 mil 2 . (15.2)

TABLE 15.2  System partitioning for the Sun Microsystems SPARCstation 10.

 SPARCstation  10 ASIC Gates Pins Package Type 

1 SuperSPARC Superscalar SPARC 3 M-transistors 293 PGA FC

2 SuperCache cache controller 2 M-transistors 369 PGA FC



3 EMC memory control 40 k-gate 299 PGA GA

4 MSI MBus-SBus interface 40 k-gate 223 PGA GA

5 DMA2 Ethernet, SCSI, parallel port 30 k-gate 160 PQFP GA

6 SEC SBus to 8-bit bus 20 k-gate 160 PQFP GA

7 DBRI dual ISDN interface 72 k-gate 132 PQFP GA

8 MMCodec stereo codec 32 k-gate 44 PLCC FC

Abbreviations: 

 PGA = pin-grid array GA = channelless gate array

 PQFP = plastic quad flat pack FC = full custom

 PLCC = plastic leaded chip carrier   

We shall need to add (0.175/0.5) ¥ 2 ¥ (15 to 20) = 10.5 to 21 mil (per side) for the pad heights (we
included the effects of scaling in this calculation). With a pad pitch of 5 mil and roughly 166/4 = 42 I/Os
per side (not counting any power pads), we need a die at least 5 ¥ 42 = 210 mil on a side for the I/Os.
Thus the die size must be at least 210 ¥ 210 = 4.4 ¥ 10 4 mil 2 to fit 166 I/Os. Of this die area only 1.19
¥ 10 4 /(4.4 ¥ 10 4 ) = 27 % (at most) is used by the core logic. This is a severely pad-limited design and
we need to rethink the partitioning of this system.

Table 15.4 shows some typical areas for datapath elements. You would use many of these datapath
elements in floating-point arithmetic (these elements are large-you should not use floating-point
arithmetic unless you have to):

A leading-one detector with barrel shifter normalizes a mantissa. 
A priority encoder corrects exponents due to mantissa normalization. 
A denormalizing barrel shifter aligns mantissas. 
A normalizing barrel shifter with a leading-one detector normalizes mantissa subtraction. 

TABLE 15.3  Some useful numbers for ASIC estimates, normalized to a 1 m m technology
unless noted.

Parameter Typical value Comment 1 Scaling 

Lambda, l 
0.5 m m = 0.5
(minimum feature
size)

In a 1 m m technology, l ª 0.5 m m. NA

CAD pitch

1 micron = 10 -6 m
= 1 m m

= minimum feature
size

Not to be confused with minimum
CAD grid size (which is usually less
than 0.01 m m).

l 

Effective gate length 0.25 to 1.0 m m Less than drawn gate length, usually
by about 10 percent.

l 

I/O-pad width (pitch)
5 to 10 mil 

= 125 to 250 m m

For a 1 m m technology, 2LM ( l =
0.5 m m). Scales less than linearly
with l .

l 



I/O-pad height
15 to 20 mil 

= 375 to 500 m m

For a 1 m m technology, 2LM ( l =
0.5 m m). Scales approximately
linearly with l .

l 

Large die 1000 mil/side, 10 6

mil 2 
Approximately constant 1

Small die 100 mil/side, 10 4

mil 2 
Approximately constant 1

Standard-cell density

1.5 ¥ 10 -3 gate/ m
m 2 

= 1.0 gate/mil 2 

For 1 m m, 2LM, library 

= 4 ¥ 10 -4 gate /l 2 (independent of
scaling).

1/ l 2 

Standard-cell density

8 ¥ 10 -3 gate/ m m
2 

= 5.0 gate/mil 2 

For 0.5 m m, 3LM, library

= 5 ¥ 10 -4 gate/ l 2 (independent of
scaling).

1/ l 2 

Gate-array utilization 60 to 80 % For 2LM, approximately constant 1

 80 to 90 % For 3LM, approximately constant 1

Gate-array density (0.8 to 0.9) ¥
standard cell density

For the same process as standard
cells

1

Standard-cell routing factor
= (cell area + route
area)/cell area

1.5 to 2.5 (2LM)

1.0 to 2.0 (3LM)
Approximately constant 1

Package cost
$0.01/pin, "penny
per pin"

Varies widely, figure is for low-cost
plastic package, approximately
constant

1

Wafer cost
$1 k to $5 k

average $2 k

Varies widely, figure is for a mature,
2LM CMOS process, approximately
constant

1

TABLE 15.4  Area estimates for datapath functions. 2 

Datapath function Area per bit/ l 2 Area/ l 2

(32-bit)
Area/ l 2

(64-bit)

High-speed comparator (4-32 bit) 24,000 7.7E + 05 1.5E + 06

High-speed comparator (32-128 bit) 28,800 9.2E + 05 1.8E + 06

Leading-one detector ( n -bit) 7200 log 2 n 1.2E + 06 2.8E + 06

All-ones detector ( n -bit) 6000 + 800 log 2 n 3.2E + 05 6.9E + 05

Priority encoder ( n -bit)
19,000 + 1400 log

2 ( n - 2)
8.4E + 05 1.8E + 06

Zero detector ( n -bit) 5500 + 800 log 2 n 3.0E + 05 6.6E + 05



Barrel shifter/rotator ( n- by m -bit) 19,000 + 1000 n +
1600 m 

3.4E + 06 1.2E + 07

Carry-save adder 24,000 7.7E + 05 1.5E + 06

Digital delay line ( n delay stages, t output
taps)

12,000 + 6000 n +
8400 t 

1.5E + 07 6.0E + 07

Synchronous FIFO ( n -bit) 34,000 + 9600 n 1.1E + 07 4.1E + 07

Multiplier-accumulator ( n -bit) 190,000 + 18,000
n 

2.4E + 07 8.5E + 07

Unsigned multiplier ( n- by m -bit) 54,000 + 18,000 (
n - 2)

1.9E + 07 7.4E + 07

2:1 MUX 7200 2.3E + 05 4.6E + 05

8:1 MUX 29,000 9.2E + 05 1.8E + 06

Low-speed adder 28,000 8.8E + 05 1.8E + 06

2901 ALU 41,000 1.3E + 06 2.6E + 06

Low-speed adder/subtracter 30,000 9.6E + 05 1.9E + 06

Sync. up-down counter with sync. load and
clear

43,000 1.4E + 06 2.8E + 06

Low-speed decrementer 14,000 4.6E + 05 9.2E + 05

Low-speed incrementer 14,000 4.6E + 05 9.2E + 05

Low-speed incrementer/decrementer 20,000 6.5E + 05 1.3E + 06

Most datapath elements have an area per bit that depends on the number of bits in the datapath (the
datapath width). Sometimes this dependency is linear (for the multipliers and the barrel shifter, for
example); in other elements it depends on the logarithm (to base 2) of the datapath width (the leading
one, all ones, and zero detectors, for example). In some elements you might expect there to be a
dependency on datapath width, but it is small (the comparators are an example).

The area estimates given in Table 15.4 can be misleading. The exact size of an adder, for example,
depends on the architecture: carry-save, carry-select, carry-lookahead, or ripple-carry (which depends on
the speed you require). These area figures also exclude the routing between datapath elements, which is
difficult to predict-it will depend on the number and size of the datapath elements, their type, and how
much logic is random and how much is datapath.

Figure 15.3 (a) shows the typical size of SRAM constructed on an ASIC. These figures are based on the
use of a RAM compiler (as opposed to building memory from flip-flops or latches) using a standard
CMOS ASIC process, typically using a six-transistor cell. The actual size of a memory will depend on
(1) the required access time, (2) the use of synchronous or asynchronous read or write, (3) the number
and type of ports (read-write), (4) the use of special design rules, (5) the number of interconnect layers
available, (6) the RAM architecture (number of devices in RAM cell), and (7) the process technology
(active pull-up devices or pull-up resistors). 

(a) (b)



  

FIGURE 15.3  (a) ASIC memory size. These figures are for static RAM constructed using compilers
in a 2LM ASIC process, but with no special memory design rules. The actual area of a RAM will
depend on the speed and number of read-write ports. (b) Multiplier size for a 2LM process. The actual
area will depend on the multiplier architecture and speed.

The maximum size of SRAM in Figure 15.3 (a) is 32 k-bit, which occupies approximately 6.0 ¥ 10 7 l 2 .
In a 0.5 m m process (with l = 0.25 m m), the area of a 32 k-bit SRAM is 6.0 ¥ 10 7 ¥ 0.25 ¥ 0.25 = 3.75
¥ 10 6 m m 2 (or about 2 mm on a side-a large piece of silicon). If you need an SRAM that is larger than
this, you probably need to consult with your ASIC vendor to determine the best way to implement a
large on-chip memory. Figure 15.3 (b) shows the typical sizes for multipliers. Again the actual
multiplier size will depend on the architecture (Booth encoding, Wallace tree, and so on), the process
technology, and design rules. Table 15.5 shows some estimated gate counts for medium-size functions
corresponding to some popular ASSP devices. 

TABLE 15.5  Gate size estimates for popular ASSP functions.

ASSP device Function Gate estimate  

8251A Universal synchronous/asynchronous receiver/transmitter (USART) 2900  

8253 Programmable interval timer 5680  

8255A Programmable peripheral interface 784-1403  

8259 Programmable interrupt controller 2205  

8237 Programmable DMA controller 5100  

8284 Clock generator/driver 99  

8288 Bus controller 250  

8254 Programmable interval timer 3500  

6845 CRT controller 2843  

87030 SCSI controller 3600  

87012 Ethernet controller 3900  

2901 4 bit ALU 917  

2902 Carry-lookahead ALU 33  

2904 Status and shift control 500  

2910 12- bit microprogram controller 1100  

Source: Fujitsu channelless gate-array data book, AU and CG21 series.



1. 2LM = two-level metal; 3LM = three-level metal.

2. Area estimates are for a two-level metal (2 LM) process. Areas for a three-level metal (3LM) process
are approximately 0.75 to 1.0 times these figures.

15.5  Power Dissipation
Power dissipation in CMOS logic arises from the following sources:

Dynamic power dissipation due to switching current from charging and discharging parasitic
capacitance. 
Dynamic power dissipation due to short-circuit current when both n -channel and p -channel
transistors are momentarily on at the same time. 
Static power dissipation due to leakage current and subthreshold current. 

15.5.1 Switching Current

When the p -channel transistor in an inverter is charging a capacitance, C , at a frequency, f , the current
through the transistor is C (d V /d t ). The power dissipation is thus CV (d V /d t ) for one-half the period
of the input, t = 1/(2 f ). The power dissipated in the p -channel transistor is thus 

1/(2f)  d V   V DD     

 CV -- d t =  CV d V   

0  d t   0     

          

    = 0.5 CV DD 2 (15.3)

When the n -channel transistor discharges the capacitor, the power dissipation is equal, making the total
power dissipation 

P 1 = fCV 2 DD  (15.4)

Most of the power dissipation in a CMOS ASIC arises from this source-the switching current. The best
way to reduce power is to reduce V DD (because it appears as a squared term in Eq.  15.4 ), and to

reduce C , the amount of capacitance we have to switch. A rough estimate is that 20 percent of the nodes
switch (or toggle) in a circuit per clock cycle. To determine more accurately the power dissipation due to
switching, we need to find out how many nodes toggle during typical circuit operation using a dynamic
logic simulator. This requires input vectors that correspond to typical operation, which can be difficult to
produce. Using a digital simulator also will not take into account the effect of glitches, which can be
significant. Power simulators are usually a hybrid between SPICE transistor-level simulators and digital
event-driven simulators [ Najm, 1994].



15.5.2 Short-Circuit Current

The short-circuit current or crowbar current can be particularly important for output drivers and large
clock buffers. For a CMOS inverter (see Problem 15.17 ) the power dissipation due to the crowbar
current is 

P 2 = (1/12) b f t rf (V DD - 2 V t n ) 3  (15.5)

where we assume the following: We ratio the p -channel and n -channel transistor sizes so that b = ( W/L
) m C ox is the same for both p - and n -channel transistors, the magnitude of the threshold voltages V t n
are assumed equal for both transistor types, and t rf is the rise and fall time (assumed equal) of the input

signal [ Veendrick, 1984]. For example, consider an output buffer that is capable of sinking 12 mA at an
output voltage of 0.5 V. From Eq. 2.9 we can derive the transistor gain factor that we need as follows: 

  I DS   

b = ------------------------  (15.6)

  [( V GS - V t n ) -0.5 V DS ] V DS   

     

  12 ¥ 10 -3   

 = -------------------------   

  [(3.3 - 0.65) - (0.5) (0.5)] (0.5)   

     

 = 0.01 AV -1   

If the output buffer is switching at 100 MHz and the input rise time to the buffer is 2 ns, we can
calculate the power dissipation due to short-circuit current as 

P 2 = (1/12) b f t rf (V DD - 2 V t n ) 3 (15.7)

 = (0.01) (100 ¥ 106) (2 ¥ 10 -9 ) (3.3 - (2)(0.65)) 3  

 = 0.00133W   or about 1 mW .  

If the output load is 10 pF, the dissipation due to switching current is 

P 1 = fCV 2 DD  

 = (100 ¥ 10 6 ) (10 ¥ 10 -12 )(3.3) 2  

 = 0.01089 W   or about 10 mW .  

As a general rule, if we adjust the transistor sizes so that the rise times and fall times through a chain of



logic are approximately equal (as they should be), the short-circuit current is typically less than 20
percent of the switching current.

For the example output buffer, we can make a rough estimate of the output-node switching time by
assuming the buffer output drive current is constant at 12 mA. This current will cause the voltage on the
output load capacitance to change between 3.3 V and 0 V at a constant slew rate d V /d t for a time 

  C D V  (10 ¥ 10 -12 ) (3.3)   

D t = ----- = ----------------  (15.8)

  I  (12 ¥ 10 -3 )   

This is close to the input rise time of 2 ns. So our estimate of the short-circuit current being less than 20
percent of the switching current assuming equal input rise time and output rise time is valid in this case.

15.5.3  Subthreshold and Leakage Current

Despite the claim made in Section 2.1, a CMOS transistor is never completely off . For example, a
typical specification for a 0.5 m m process for the subthreshold current (per micron of gate width for V

GS = 0 V) is less than 5 pA m m -1 , but not zero. With 10 million transistors on a large chip and with

each transistor 10 m m wide, we will have a total subthreshold current of 0.1 mA; high, but reasonable.
The problem is that the subthreshold current does not scale with process technology. 

When the gate-to-source voltage, V GS , of an MOS transistor is less than the threshold voltage, V t , the

transistor conducts a very small subthreshold current in the subthreshold region 

    q V GS   ^   

I DS = I 0 exp  ----- - 1 ~  (15.9)

    nkT   ¯   

where I 0 is a constant, and the constant, n, is normally between 1 and 2. 

The slope, S, of the transistor current in the subthreshold region is 

  -nkT    nkT   

S = ---- log 10 e = 2.3 ---- V/decade . (15.10)

  q    q   

For example, at a junction temperature, T ª 400 K) and assuming n ª 1.5, S = 120 mV/decade
( q = 1.6 ¥ 10 -19 Fm -1 , k = 1.38 ¥ 10 -23 JK -1 ), which does not scale. The constant value of S = 120
mV/decade means it takes 120 mV to reduce the subthreshold current by a factor of 10 in any process. If
we reduce the threshold voltages to 0.36 V in a deep-submicron process, for example, this means at V

 = 0 V we can only reduce I  to 0.001 times its value at V  = V  . This problem can lead to large



GS = 0 V we can only reduce I DS to 0.001 times its value at V GS = V t . This problem can lead to large

static currents.

Transistor leakage is caused by the fact that a reverse-biased diode conducts a very small leakage
current. The sources and drains of every transistor, as well as the junctions between the wells and
substrate, form parasitic diodes. The parasitic-diode leakage currents are strongly dependent on the type
and quality of the process as well as temperature. The parasitic diodes have two components in parallel:
an area diode and a perimeter diode. The ideal parasitic diode currents are given by the following
equation: 

    q V D   ^   

I = I s exp  ----- - 1 ~  (15.11)

    nkT   ¯   

 .(15.1)

Table 15.6 shows specified maximum leakage currents of junction parasitic diodes as well as the leakage
currents of the field transistors (the parasitic MOS transistors formed when poly crosses over the thick
oxide, or field oxide) in a typical 0.5 m m process. 

TABLE 15.6  m m ( l = 0.25 m m) CMOS
process.

Junction Diode type Leakage (max.) Unit 

n -diffusion/ p -substrate area 0.6 fA m m -2 V -1 

n -diffusion/ p -substrate perimeter 2.0 fA m m -1 V -1 

p -diffusion/ n -well area 0.6 fA m m -2 V -1 

p -diff/ n -well perimeter 3.0 fA m m -1 V -1 

n -well / p -substrate area 1.0 fA m m -2 V -1 

Field NMOS transistor  100 fA m m -1 

Field PMOS transistor  30 fA m m -1 

For example, if we have an n -diffusion region at a potential of 3.3 V that is 10 m m by 4 m m in size,
the parasitic leakage current due to the area diode would be 

  40 m m 2 ¥ 3.3 V ¥ 0.6 fA m m -2 V -1   

 = (40) (3.3) (0.6 ¥ 10 -15 )   

 = 7.92 ¥ 10 -14 A ,   

or approximately 80 fA. 



The perimeter of this drain region is 28 m m, so that the leakage current due to the perimeter diode is 

  28 m m ¥ 3.3 V ¥ 2.0 fA m m -1 V -1   

 = (28) (3.3) (2.0 ¥ 10 -15 )   

 = 2.848 ¥ 10 -13 A ,   

or approximately 0.2 pA, over twice as large as the area-diode leakage current.

As a very rough estimate, if we have 100,000 transistors each with a source and a drain 10 m m by 4 m
m, and half of them are biased at 3.3 V, then the total leakage current would be 

  (100 ¥ 10 5 ) (2) (0.5) (280 ¥ 10 -15 )   

 = 2.8 ¥ 10 -6 A ,  (15.12)

or approximately 3 m A. This is the same order of magnitude (a few microamperes) as the quiescent
leakage current, I DDQ , that we expect to measure when we test an ASIC with power applied, but with

no signal activity. A measurement of more current than this in a nonactive CMOS ASIC indicates a
problem with the chip manufacture or the design. We use this measurement to test an ASIC using an
IDDQ test.

15.6  FPGA Partitioning
In Section 15.3 we saw how many different issues have to be considered when partitioning a complex
system into custom ASICs. There are no commercial tools that can help us with all of these issues-a
spreadsheet is the best tool in this case. Things are a little easier if we limit ourselves to partitioning a
group of logic cells into FPGAs-and restrict the FPGAs to be all of the same type.

15.6.1 ATM Simulator

In this section we shall examine a hardware simulator for Asynchronous Transfer Mode ( ATM ). ATM
is a signaling protocol for many different types of traffic including constant bit rates (voice signals) as
well as variable bit rates (compressed video). The ATM Connection Simulator is a card that is connected
to a computer. Under computer control the card monitors and corrupts the ATM signals to simulate the
effects of real networks. An example would be to test different video compression algorithms.
Compressed video is very bursty (brief periods of very high activity), has very strict delay constraints,
and is susceptible to errors. ATM is based on ATM cells (packets). Each ATM cell has 53 bytes: a
5-byte header and a 48-byte payload; Figure 15.4 shows the format of the ATM packet. The ATM
Connection Simulator looks at the entire header as an address.

 



 

FIGURE 15.4  The asynchronous transfer mode (ATM) cell format. The ATM protocol uses 53-byte
cells or packets of information with a data payload and header information for routing and error
control.

Figure 15.5 shows the system block diagram of the ATM simulator designed by Craig Fujikami at the
University of Hawaii. Now produced by AdTech, the simulator emulates the characteristics of a single
connection in an ATM network and models ATM traffic policing, ATM cell delays, and ATM cell
errors. The simulator is partitioned into the three major blocks, shown in Figure 15.5 , and connected to
an IBM-compatible PC through an Intel 80186 controller board together with an interface board. These
three blocks are

 



 

FIGURE 15.5  An asynchronous transfer
mode (ATM) connection simulator.

The traffic policer, which regulates the input to the simulator. 
The delay generator, which delays ATM cells, reorders ATM cells, and inserts ATM cells with
valid ATM cell headers. 
The error generator, which produces bit errors and four random variables that are needed by the
other two blocks. 

The error generator performs the following operations on ATM cells:

1. Payload bit error ratio generation. The user specifies the Bernoulli probability, p BER , of the

payload bit error ratio. 
2. Random-variable generation for ATM cell loss, misinsertion, reordering, and deletion. 

The delay generator delays, misinserts, and reorders the target ATM cells. Finally, the traffic policer
performs the following operations:

1. Performs header screening and remapping. 
2. Checks ATM cell conformance. 
3. Deletes selected ATM cells. 

Table 15.7 shows the partitioning of the ATM board into 12 Lattice Logic FPGAs (ispLSI 1048)



corresponding to the 12 blocks shown in Figure 15.5 . The Lattice Logic ispLSI 1048 has 48 GLBs
(generic logic blocks) on each chip. This system was partitioned by hand-with difficulty. Tools for
automatic partitioning of systems like this will become increasingly important. In Section 15.6.2 we
shall briefly look at some examples of such tools, before examining the partitioning methods that are
used in Section 15.7 . 

TABLE 15.7  Partitioning of the ATM board using Lattice Logic ispLSI 1048 FPGAs. Each FPGA
contains 48 generic logic blocks (GLBs).

Chip # Size Chip #   Size 

1 42 GLBs 7   36 GLBs

2 64 k-bit ¥ 8 SRAM 8   22 GLBs

3 38 GLBs 9   256 k-bit ¥ 16 SRAM

4 38 GLBs 10   43 GLBs

5 42 GLBs 11   40 GLBs

6 64 k-bit ¥ 16 SRAM 12   30 GLBs

15.6.2  Automatic Partitioning with FPGAs

Some vendors of programmable ASICs provide partitioning software. For example, Altera uses its own
software system for design. You can perform design entry using an HDL, schematic entry, or using the
Altera hardware design language (AHDL)-similar to PALASM or ABEL. In AHDL you can direct the
partitioner to automatically partition logic into chips within the same family, using the AUTO keyword:

DEVICE top_level IS AUTO; % the partitioner assign logic

You can use the CLIQUE keyword to keep logic together (this is not quite the same as a clique in a
graph-more on this in Section 15.7.3 ):

CLIQUE fast_logic

BEGIN

|shift_register: MACRO; % keep this in one device

END;

An additional option, to reserve space on a device, is very useful for making last minute additions or
changes.

15.7  Partitioning Methods
System partitioning requires goals and objectives, methods and algorithms to find solutions, and ways to
evaluate these solutions. We start with measuring connectivity, proceed to an example that illustrates the
concepts of system partitioning and then to the algorithms for partitioning.



Assume that we have decided which parts of the system will use ASICs. The goal of partitioning is to
divide this part of the system so that each partition is a single ASIC. To do this we may need to take into
account any or all of the following objectives:

A maximum size for each ASIC 
A maximum number of ASICs 
A maximum number of connections for each ASIC 
A maximum number of total connections between all ASICs 

We know how to measure the first two objectives. Next we shall explain ways to measure the last two.

15.7.1  Measuring Connectivity

To measure connectivity we need some help from the mathematics of graph theory. It turns out that the
terms, definitions, and ideas of graph theory are central to ASIC construction, and they are often used in
manuals and books that describe the knobs and dials of ASIC design tools.

 

 

FIGURE 15.6  Networks, graphs, and partitioning. (a) A network containing circuit logic cells and
nets. (b) The equivalent graph with vertexes and edges. For example: logic cell D maps to node D in
the graph; net 1 maps to the edge (A, B) in the graph. Net 3 (with three connections) maps to three
edges in the graph: (B, C), (B, F), and (C, F). (c) Partitioning a network and its graph. A network with
a net cut that cuts two nets. (d) The network graph showing the corresponding edge cut. The net cutset
in c contains two nets, but the corresponding edge cutset in d contains four edges. This means a graph
is not an exact model of a network for partitioning purposes.

Figure 15.6 (a) shows a circuit schematic, netlist, or network. The network consists of circuit modules



A-F. Equivalent terms for a circuit module are a cell, logic cell, macro, or a block. A cell or logic cell
usually refers to a small logic gate (NAND etc.), but can also be a collection of other cells; macro refers
to gate-array cells; a block is usually a collection of gates or cells. We shall use the term logic cell in this
chapter to cover all of these.

Each logic cell has electrical connections between the terminals ( connectors or pins). The network can
be represented as the mathematical graph shown in Figure 15.6 (b). A graph is like a spider’s web: it
contains vertexes (or vertices) A-F (also known as graph nodes or points) that are connected by edges. A
graph vertex corresponds to a logic cell. An electrical connection (a net or a signal) between two logic
cells corresponds to a graph edge.

Figure 15.6 (c) shows a network with nine logic cells A-I. A connection, for example between logic cells
A and B in Figure 15.6 (c), is written as net (A, B). Net (A, B) is represented by the single edge (A, B)
in the network graph, shown in Figure 15.6 (d). A net with three terminals, for example net (B, C, F),
must be modeled with three edges in the network graph: edges (B, C), (B, F), and (C, F). A net with four
terminals requires six edges and so on. Figure 15.6 illustrates the differences between the nets of a
network and the edges in the network graphs. Notice that a net can have more than two terminals, but a
terminal has only one net.

If we divide, or partition, the network shown in Figure 15.6 (c) into two parts, corresponding to creating
two ASICs, we can divide the network’s graph in the same way. Figure 15.6 (d) shows a possible
division, called a cutset. We say that there is a net cutset (for the network) and an edge cutset (for the
graph). The connections between the two ASICs are external connections, the connections inside each
ASIC are internal connections. 

Notice that the number of external connections is not modeled correctly by the network graph. When we
divide the network into two by drawing a line across connections, we make net cuts. The resulting set of
net cuts is the net cutset. The number of net cuts we make corresponds to the number of external
connections between the two partitions. When we divide the network graph into the same partitions we
make edge cuts and we create the edge cutset. We have already shown that nets and graph edges are not
equivalent when a net has more than two terminals. Thus the number of edge cuts made when we
partition a graph into two is not necessarily equal to the number of net cuts in the network. As we shall
see presently the differences between nets and graph edges is important when we consider partitioning a
network by partitioning its graph [ Schweikert and Kernighan, 1979].

15.7.2  A Simple Partitioning Example

Figure 15.7 (a) shows a simple network we need to partition [ Goto and Matsud, 1986]. There are 12
logic cells, labeled A-L, connected by 12 nets (labeled 1-12). At this level, each logic cell is a large
circuit block and might be RAM, ROM, an ALU, and so on. Each net might also be a bus, but, for the
moment, we assume that each net is a single connection and all nets are weighted equally. The goal is to
partition our simple network into ASICs. Our objectives are the following:

Use no more than three ASICs. 
Each ASIC is to contain no more than four logic cells. 
Use the minimum number of external connections for each ASIC. 
Use the minimum total number of external connections. 



Figure 15.7 (b) shows a partitioning with five external connections; two of the ASICs have three pins;
the third has four pins.We might be able to find this arrangement by hand, but for larger systems we
need help.

(a)

 

(b)

 

FIGURE 15.7  Partitioning example. (a) We wish to partition
this network into three ASICs with no more than four logic
cells per ASIC. (b) A partitioning with five external
connections (nets 2, 4, 5, 6, and 8)-the minimum number.
(c) A constructed partition using logic cell C as a seed. It is
difficult to get from this local minimum, with seven external
connections (2, 3, 5, 7, 9,11,12), to the optimum solution of b.

(c)

 

Splitting a network into several pieces is a network partitioning problem. In the following sections we
shall examine two types of algorithms to solve this problem and describe how they are used in system
partitioning. Section 15.7.3 describes constructive partitioning, which uses a set of rules to find a
solution. Section 15.7.4 describes iterative partitioning improvement (or iterative partitioning
refinement), which takes an existing solution and tries to improve it. Often we apply iterative
improvement to a constructive partitioning. We also use many of these partitioning algorithms in solving
floorplanning and placement problems that we shall discuss in Chapter 16.

15.7.3  Constructive Partitioning

The most common constructive partitioning algorithms use seed growth or cluster growth. A simple
seed-growth algorithm for constructive partitioning consists of the following steps:

1. Start a new partition with a seed logic cell. 
2. Consider all the logic cells that are not yet in a partition. Select each of these logic cells in turn. 
3. Calculate a gain function, g(m) , that measures the benefit of adding logic cell m to the current

partition. One measure of gain is the number of connections between logic cell m and the current
partition. 

4. Add the logic cell with the highest gain g(m) to the current partition. 
5. Repeat the process from step 2. If you reach the limit of logic cells in a partition, start again at step

1. 

We may choose different gain functions according to our objectives (but we have to be careful to



distinguish between connections and nets). The algorithm starts with the choice of a seed logic cell (
seed module, or just seed). The logic cell with the most nets is a good choice as the seed logic cell. You
can also use a set of seed logic cells known as a cluster. Some people also use the term clique -borrowed
from graph theory. A clique of a graph is a subset of nodes where each pair of nodes is connected by an
edge-like your group of friends at school where everyone knows everyone else in your clique . In some
tools you can use schematic pages (at the leaf or lowest hierarchical level) as a starting point for
partitioning. If you use a high-level design language, you can use a Verilog module (different from a
circuit module) or VHDL entity/architecture as seeds (again at the leaf level).

15.7.4  Iterative Partitioning Improvement

The most common iterative improvement algorithms are based on interchange and group migration. The
process of interchanging (swapping) logic cells in an effort to improve the partition is an interchange
method. If the swap improves the partition, we accept the trial interchange; otherwise we select a new
set of logic cells to swap.

There is a limit to what we can achieve with a partitioning algorithm based on simple interchange. For
example, Figure 15.7 (c) shows a partitioning of the network of part a using a constructed partitioning
algorithm with logic cell C as the seed. To get from the solution shown in part c to the solution of part b,
which has a minimum number of external connections, requires a complicated swap. The three pairs: D
and F, J and K, C and L need to be swapped-all at the same time. It would take a very long time to
consider all possible swaps of this complexity. A simple interchange algorithm considers only one
change and rejects it immediately if it is not an improvement. Algorithms of this type are greedy
algorithms in the sense that they will accept a move only if it provides immediate benefit. Such
shortsightedness leads an algorithm to a local minimum from which it cannot escape. Stuck in a valley, a
greedy algorithm is not prepared to walk over a hill to see if there is a better solution in the next valley.
This type of problem occurs repeatedly in CAD algorithms.

Group migration consists of swapping groups of logic cells between partitions. The group migration
algorithms are better than simple interchange methods at improving a solution but are more complex.
Almost all group migration methods are based on the powerful and general Kernighan-Lin algorithm (
K-L algorithm) that partitions a graph [ Kernighan and Lin, 1970]. The problem of dividing a graph into
two pieces, minimizing the nets that are cut, is the min-cut problem-a very important one in VLSI
design. As the next section shows, the K-L algorithm can be applied to many different problems in
ASIC design. We shall examine the algorithm next and then see how to apply it to system partitioning.

15.7.5  The Kernighan-Lin Algorithm

Figure 15.8 illustrates some of the terms and definitions needed to describe the K-L algorithm. External
edges cross between partitions; internal edges are contained inside a partition. Consider a network with 2
m nodes (where m is an integer) each of equal size. If we assign a cost to each edge of the network
graph, we can define a cost matrix C = c ij , where c ij = c ji and c ii = 0. If all connections are equal in

importance, the elements of the cost matrix are 1 or 0, and in this special case we usually call the matrix
the connectivity matrix. Costs higher than 1 could represent the number of wires in a bus, multiple
connections to a single logic cell, or nets that we need to keep close for timing reasons.

 



 

FIGURE 15.8  Terms used by the Kernighan-Lin partitioning algorithm. (a) An example network
graph. (b) The connectivity matrix, C; the column and rows are labeled to help you see how the matrix
entries correspond to the node numbers in the graph. For example, C 17 (column 1, row 7) equals 1

because nodes 1 and 7 are connected. In this example all edges have an equal weight of 1, but in
general the edges may have different weights.

Suppose we already have split a network into two partitions, A and B , each with m nodes (perhaps
using a constructed partitioning). Our goal now is to swap nodes between A and B with the objective of
minimizing the number of external edges connecting the two partitions. Each external edge may be
weighted by a cost, and our objective corresponds to minimizing a cost function that we shall call the
total external cost, cut cost, or cut weight, W : 

W = S c ab  (15.13)

  a ? A , b ? B    

In Figure 15.8 (a) the cut weight is 4 (all the edges have weights of 1).

In order to simplify the measurement of the change in cut weight when we interchange nodes, we need
some more definitions. First, for any node a in partition A , we define an external edge cost, which
measures the connections from node a to B , 

E a = S c ay   

  y ? B   (15.14)

For example, in Figure 15.8 (a) E 1 = 1, and E 3 = 0. Second, we define the internal edge cost to measure

the internal connections to a , 

I a = S c az   

  z ? A   (15.15)

 .(15.2)

So, in Figure 15.8 (a), I 1 = 0, and I 3 = 2. We define the edge costs for partition B in a similar way (so E



8 = 2, and I 8 = 1). The cost difference is the difference between external edge costs and internal edge

costs, 

D x = E x - I x .  (15.16)

Thus, in Figure 15.8 (a) D 1 = 1, D 3 = - 2, and D 8 = 1. Now pick any node in A , and any node in B . If

we swap these nodes, a  and  b, we need to measure the reduction in cut weight, which we call the gain,
g . We can express g in terms of the edge costs as follows: 

g = D a + D b - 2 c ab .  (15.17)

The last term accounts for the fact that a and b may be connected. So, in Figure 15.8 (a), if we swap
nodes 1 and 6, then g = D 1 + D 6 - 2 c 16 = 1 + 1. If we swap nodes 2 and 8, then g = D 2 + D 8 - 2 c 28
= 1 + 2 - 2.

The K-L algorithm finds a group of node pairs to swap that increases the gain even though swapping
individual node pairs from that group might decrease the gain. First we pretend to swap all of the nodes
a pair at a time. Pretend swaps are like studying chess games when you make a series of trial moves in
your head. 

This is the algorithm:

1. Find two nodes, a i from A , and b i from B , so that the gain from swapping them is a maximum.

The gain is 

g i = D ai + D bi - 2 c aibi .  (15.18)

2. Next pretend swap a i and b i even if the gain g i is zero or negative, and do not consider a i and b i
eligible for being swapped again. 

3. Repeat steps 1 and 2 a total of m times until all the nodes of A and B have been pretend swapped.
We are back where we started, but we have ordered pairs of nodes in A and B according to the
gain from interchanging those pairs. 

4. Now we can choose which nodes we shall actually swap. Suppose we only swap the first n pairs of
nodes that we found in the preceding process. In other words we swap nodes X = a 1 ,  a 2 ,...,  a n
from A with nodes Y = b 1 ,  b 2 ,...,  b n from B. The total gain would be 

  n    

G n = S g i .  (15.19)

  i = 1    

5. We now choose n corresponding to the maximum value of G n . 

If the maximum value of G n > 0, then we swap the sets of nodes X and Y and thus reduce the cut

weight by G n . We use this new partitioning to start the process again at the first step. If the maximum

value of G n = 0, then we cannot improve the current partitioning and we stop. We have found a locally



optimum solution.

Figure 15.9 shows an example of partitioning a graph using the K-L algorithm. Each completion of steps
1 through 5 is a pass through the algorithm. Kernighan and Lin found that typically 2-4 passes were
required to reach a solution. The most important feature of the K-L algorithm is that we are prepared to
consider moves even though they seem to make things worse. This is like unraveling a tangled ball of
string or solving a Rubik’s cube puzzle. Sometimes you need to make things worse so they can get
better later. The K-L algorithm works well for partitioning graphs. However, there are the following
problems that we need to address before we can apply the algorithm to network partitioning:

 

 

FIGURE 15.9  Partitioning a graph using the Kernighan-Lin algorithm. (a) Shows how swapping node
1 of partition A with node 6 of partition B results in a gain of g = 1. (b) A graph of the gain resulting
from swapping pairs of nodes. (c) The total gain is equal to the sum of the gains obtained at each step.

It minimizes the number of edges cut, not the number of nets cut. 
It does not allow logic cells to be different sizes. 
It is expensive in computation time. 
It does not allow partitions to be unequal or find the optimum partition size. 
It does not allow for selected logic cells to be fixed in place. 
The results are random. 
It does not directly allow for more than two partitions. 



To implement a net-cut partitioning rather than an edge-cut partitioning, we can just keep track of the
nets rather than the edges [ Schweikert and Kernighan, 1979]. We can no longer use a connectivity or
cost matrix to represent connections, though. Fortunately, several people have found efficient data
structures to handle the bookkeeping tasks. One example is the Fiduccia-Mattheyses algorithm to be
described shortly.

To represent nets with multiple terminals in a network accurately, we can extend the definition of a
network graph. Figure 15.10 shows how a hypergraph with a special type of vertex, a star, and a
hyperedge, represents a net with more than two terminals in a network. 

 

 

FIGURE 15.10  A hypergraph. (a) The network contains a net y with three terminals. (b) In the
network hypergraph we can model net y by a single hyperedge (B, C, D) and a star node. Now there is
a direct correspondence between wires or nets in the network and hyperedges in the graph.

In the K-L algorithm, the internal and external edge costs have to be calculated for all the nodes before
we can select the nodes to be swapped. Then we have to find the pair of nodes that give the largest gain
when swapped. This requires an amount of computer time that grows as n 2 log n for a graph with 2n
nodes. This n 2 dependency is a major problem for partitioning large networks. The Fiduccia-Mattheyses
algorithm (the F-M algorithm) is an extension to the K-L algorithm that addresses the differences
between nets and edges and also reduces the computational effort [ Fiduccia and Mattheyses, 1982]. The
key features of this algorithm are the following:

Only one logic cell, the base logic cell, moves at a time. In order to stop the algorithm from
moving all the logic cells to one large partition, the base logic cell is chosen to maintain balance
between partitions. The balance is the ratio of total logic cell size in one partition to the total logic
cell size in the other. Altering the balance allows us to vary the sizes of the partitions. 
Critical nets are used to simplify the gain calculations. A net is a critical net if it has an attached
logic cell that, when swapped, changes the number of nets cut. It is only necessary to recalculate
the gains of logic cells on critical nets that are attached to the base logic cell. 
The logic cells that are free to move are stored in a doubly linked list. The lists are sorted
according to gain. This allows the logic cells with maximum gain to be found quickly. 

These techniques reduce the computation time so that it increases only slightly more than linearly with
the number of logic cells in the network, a very important improvement [Fiduccia and Mattheyses,
1982].



Kernighan and Lin suggested simulating logic cells of different sizes by clumping s logic cells together
with highly weighted nets to simulate a logic cell of size s . The F-M algorithm takes logic-cell size into
account as it selects a logic cell to swap based on maintaining the balance between the total logic-cell
size of each of the partitions. To generate unequal partitions using the K-L algorithm, we can introduce
dummy logic cells with no connections into one of the partitions. The F-M algorithm adjusts the
partition size according to the balance parameter.

Often we need to fix logic cells in place during partitioning. This may be because we need to keep logic
cells together or apart for reasons other than connectivity, perhaps due to timing, power, or noise
constraints. Another reason to fix logic cells would be to improve a partitioning that you have already
partially completed. The F-M algorithm allows you to fix logic cells by removing them from
consideration as the base logic cells you move. Methods based on the K-L algorithm find locally
optimum solutions in a random fashion. There are two reasons for this. The first reason is the random
starting partition. The second reason is that the choice of nodes to swap is based on the gain. The choice
between moves that have equal gain is arbitrary. Extensions to the K-L algorithm address both of these
problems. Finding nodes that are naturally grouped or clustered and assigning them to one of the initial
partitions improves the results of the K-L algorithm. Although these are constructive partitioning
methods, they are covered here because they are closely linked with the K-L iterative improvement
algorithm. 

15.7.6 The Ratio-Cut Algorithm

The ratio-cut algorithm removes the restriction of constant partition sizes. The cut weight W for a cut
that divides a network into two partitions, A and B , is given by 

W = S c ab   

  a ? A , b ? B   (15.20)

The K-L algorithm minimizes W while keeping partitions A and B the same size. The ratio of a cut is
defined as 

  W   

R = -------  (15.21)

  | A | | B |   

In this equation | A | and | B | are the sizes of partitions A and B . The size of a partition is equal to the
number of nodes it contains (also known as the set cardinality). The cut that minimizes R is called the
ratio cut. The original description of the ratio-cut algorithm uses ratio cuts to partition a network into
small, highly connected groups. Then you form a reduced network from these groups-each small group
of logic cells forms a node in the reduced network. Finally, you use the F-M algorithm to improve the
reduced network [ Cheng and Wei, 1991].

15.7.7 The Look-ahead Algorithm

Both the K-L and F-M algorithms consider only the immediate gain to be made by moving a node.



When there is a tie between nodes with equal gain (as often happens), there is no mechanism to make
the best choice. This is like playing chess looking only one move ahead. Figure 15.11 shows an example
of two nodes that have equal gains, but moving one of the nodes will allow a move that has a higher gain
later. 

 

 

FIGURE 15.11  An example of network partitioning that shows the need to look ahead when selecting
logic cells to be moved between partitions. Partitionings (a), (b), and (c) show one sequence of moves,
partitionings (d), (e), and (f) show a second sequence. The partitioning in (a) can be improved by
moving node 2 from A to B with a gain of 1. The result of this move is shown in (b). This partitioning
can be improved by moving node 3 to B, again with a gain of 1. The partitioning shown in (d) is the
same as (a). We can move node 5 to B with a gain of 1 as shown in (e), but now we can move node 4
to B with a gain of 2.

We call the gain for the initial move the first-level gain. Gains from subsequent moves are then
second-level and higher gains. We can define a gain vector that contains these gains. Figure 15.11 shows
how the first-level and second-level gains are calculated. Using the gain vector allows us to use a
look-ahead algorithm in the choice of nodes to be swapped. This reduces both the mean and variation in
the number of cuts in the resulting partitions.

We have described algorithms that are efficient at dividing a network into two pieces. Normally we wish
to divide a system into more than two pieces. We can do this by recursively applying the algorithms. For
example, if we wish to divide a system network into three pieces, we could apply the F-M algorithm
first, using a balance of 2:1, to generate two partitions, with one twice as large as the other. Then we
apply the algorithm again to the larger of the two partitions, with a balance of 1:1, which will give us
three partitions of roughly the same size.



15.7.8  Simulated Annealing

A different approach to solving large graph problems (and other types of problems) that arise in VLSI
layout, including system partitioning, uses the simulated-annealing algorithm [ Kirkpatrick et al., 1983].
Simulated annealing takes an existing solution and then makes successive changes in a series of random
moves. Each move is accepted or rejected based on an energy function, calculated for each new trial
configuration. The minimums of the energy function correspond to possible solutions. The best solution
is the global minimum.

So far the description of simulated annealing is similar to the interchange algorithms, but there is an
important difference. In an interchange strategy we accept the new trial configuration only if the energy
function decreases, which means the new configuration is an improvement. However, in the
simulated-annealing algorithm, we accept the new configuration even if the energy function increases
for the new configuration-which means things are getting worse. The probability of accepting a worse
configuration is controlled by the exponential expression exp(-D E / T ), where D E is the resulting
increase in the energy function. The parameter T is a variable that we control and corresponds to the
temperature in the annealing of a metal cooling (this is why the process is called simulated annealing). 

We accept moves that seemingly take us away from a desirable solution to allow the system to escape
from a local minimum and find other, better, solutions. The name for this strategy is hill climbing. As
the temperature is slowly decreased, we decrease the probability of making moves that increase the
energy function. Finally, as the temperature approaches zero, we refuse to make any moves that increase
the energy of the system and the system falls and comes to rest at the nearest local minimum. Hopefully,
the solution that corresponds to the minimum we have found is a good one.

The critical parameter governing the behavior of the simulated-annealing algorithm is the rate at which
the temperature T is reduced. This rate is known as the cooling schedule. Often we set a parameter a that
relates the temperatures, T i and T i + 1 , at the i th and i + 1th iteration: 

T i +1 = a T i .  (15.22)

To find a good solution, a local minimum close to the global minimum, requires a high initial
temperature and a slow cooling schedule. This results in many trial moves and very long computer run
times [ Rose, Klebsch, and Wolf, 1990]. If we are prepared to wait a long time (forever in the worst
case), simulated annealing is useful because we can guarantee that we can find the optimum solution.
Simulated annealing is useful in several of the ASIC construction steps and we shall return to it in
Section 16.2.7.

15.7.9 Other Partitioning Objectives

In partitioning a real system we need to weight each logic cell according to its area in order to control
the total areas of each ASIC. This can be done if the area of each logic cell can either be calculated or
estimated. This is usually done as part of floorplanning, so we may need to return to partitioning after
floorplanning.

There will be many objectives or constraints that we need to take into account during partitioning. For



example, certain logic cells in a system may need to be located on the same ASIC in order to avoid
adding the delay of any external interconnections. These timing constraints can be implemented by
adding weights to nets to make them more important than others. Some logic cells may consume more
power than others and you may need to add power constraints to avoid exceeding the power-handling
capability of a single ASIC. It is difficult, though, to assign more than rough estimates of power
consumption for each logic cell at the system planning stage, before any simulation has been completed.
Certain logic cells may only be available in a certain technology-if you want to include memory on an
ASIC, for example. In this case, technology constraints will keep together logic cells requiring similar
technologies. We probably want to impose cost constraints to implement certain logic cells in the lowest
cost technology available or to keep ASICs below a certain size in order to use a low-cost package. The
type of test strategy you adopt will also affect the partitioning of logic. Large RAM blocks may require
BIST circuitry; large amounts of sequential logic may require scan testing, possibly with a
boundary-scan interface. One of the objects of testability is to maintain controllability and observability
of logic inside each ASIC. In order to do this, 

15.8  Summary
The construction or physical design of ASICs in a microelectronics system is a very large and complex
problem. To solve the problem we divide it into several steps: system partitioning, floorplanning,
placement, and routing. To solve each of these smaller problems we need goals and objectives,
measurement metrics, as well as algorithms and methods. 

System partitioning is the first step in ASIC assembly. An example of the SPARCstation 1 illustrated the
various issues involved in partitioning. Presently commercial CAD tools are able to automatically
partition systems and chips only at a low level, at the level of a network or netlist. Partitioning for
FPGAs is currently the most advanced. Next we discussed the methods to use for system partitioning.
We saw how to represent networks as graphs, containing nets and edges, and how the mathematics of
graph theory is useful in system partitioning and the other steps of ASIC assembly. We covered methods
and algorithms for partitioning and explained that most are based on the Kernighan-Lin min-cut
algorithm.

The important points in this chapter are

The goals and objectives of partitioning 
Partitioning as an art not a science 
The simple nature of the algorithms necessary for VLSI-sized problems 
The random nature of the algorithms we use 
The controls for the algorithms used in ASIC design 

15.9  Problems
* = Difficult, ** = Very difficult, *** = Extremely difficult

15.1 (Complexity, 10 min.) Suppose the workstations we use to design ASICs increase in power
(measured in MIPS-a million instructions per second) by a factor of 2 every year. If we want to
keep the length of time to solve an ASIC design problem fixed, calculate how much larger chips



can get each year if constrained by an algorithm with the following complexities:

a. O (k). 
b. O (n). 
c. O(log n ). 
d. O( n log n ). 
e. O( n 2 ). 

15.2 (Complexity, 10 min.) In a film the main character looks 12 moves ahead to win a chess
championship. 

a. Estimate (stating your assumptions) the number of possible chess moves looking 12
moves ahead. 
b. How long would it take to evaluate all these moves on a modern workstation? 

15.3  (Chips and towns, 20 min.) This problem is adapted from an analogy credited to Chuck
Seitz. Complete the entries in Table 15.8 , which shows the progression of integrated circuit
complexity using the analogy of town and city planning. If l is half the minimum feature size,
assume that a transistor is a square 2 l on a side and is equivalent to a city block (which we
estimate at 200 m on a side). 

TABLE 15.8  Complexity of ASICs (Problems 15.3 and 15.4 ).

Year l / m m 

Chip size 

(mm on a
side) 

Transistor size 

( m m on a side) 
Transistors = city blocks

City size 

(km on a side, 

1 block =
200m) 

Example 

1970 50 5 200 25 ¥ 25 = 625 5 Palo Alto

1980 5 10 20 500 ¥ 500 = 25 ¥ 10 3   

1990 0.5 20 1 1,000 ¥ 1,000 = 1 ¥ 10 6   

2000 0.05 40 0.2 
20,000 ¥ 20,000 = 400 ¥
10 6 

  

15.4  (Polygons, 10 min.) Estimate (stating and explaining all your assumptions) how many
polygons there are on the layouts for each of the chips in Table 15.8 .

15.5 (Algorithm complexity, 10 min.) I think of a number between 1 and 100. You guess the
number and I shall tell you whether you are high or low. We then repeat the process. If you were
to write a computer program to play this game, what would be the complexity of your algorithm?

15.6 (Algorithms, 60 min.) For each of these problems write or find (stating your source) an
algorithm to solve the problem:

a. An algorithm to sort n numbers. 



b. An algorithm to discover whether a number n is prime. 
c. An algorithm to generate a random number between 1 and n . 

List the algorithm using a sequence of steps, pseudocode, or a flow chart. What is the complexity
of each algorithm?

15.7 (Measurement, 30 min.) The traveling-salesman problem is a well-known example of an
NP-complete problem (you have a list of cities and their locations and you have to find the shortest
route between them, visiting each only once). Propose a simple measure to estimate the length of
the solution. If I had to visit the 50 capitals of the United States, what is your estimate of my
frequent-flyer mileage?

15.8 (Construction, 30 min.) Try and make a quantitative comparison (stating and explaining all
your assumptions) of the difficulty and complexity of construction (for example, how many
components in each?) for each of the following: a Boeing 747 jumbo jet, the space shuttle, and an
Intel Pentium microprocessor. Which, in your estimation, is the most complex and why? Smailagic
[ 1995] proposes measures of design and construction complexity in a description of the wearable
computer project at Carnegie-Mellon University.

15.9 (Productivity, 20 min.). If I have six months to design an ASIC:

a. What is the productivity (in transistors/day) required for each of the chips in Table 15.8 ? 
b. What does this translate to in terms of a productivity increase (measured in percent
increase in productivity per month)? 
c.  Moore’s Law says that chip sizes double every 18 months. What does this correspond to
in terms of a percentage increase per month? 
d. Comment on your answers. 

15.10  (Graphs and edges, 30 min.) We know a net with two connections requires a single edge in
the network graph, a net with three connections requires three edges, and a net with four
connections requires six edges.

a. Can you guess a formula for the number of edges in the network graph corresponding to a
net with n connections? 
b.  Can you prove the formula you guessed in part a? Hint: How many edges are there from
one node to n - 1 other nodes? 
c. Large nets cause problems for partitioning algorithms based on a connectivity matrix
(edges rather than wires). Suppose we have a 50-net connection that is no more critical for
timing than any other net. Suggest a way to fool the partitioning algorithm so this net does
not drag all its logic cells into one partition. 

Most CAD programs treat large nets (like the clock, reset, or power nets) separately, but the nets
are required to have special names and you only can have a limited number of them. The average
net in an ASIC has between two and four connections and as a rule of thumb 80 percent of nets
have a fanout of 4 or less (a fanout of 4 means a gate drives four others, making a total of five
connections on the net).

15.11  (PC partitioning, 60 min.) Open an IBM-compatible PC, Apple Macintosh, or PowerPC that



has a motherboard that you can see easily. Make a list of the chips (manufacturer and type), their
packages, and pin counts. Make intelligent guesses as to the function of most of the chips.
Obviously manufacturer’s logos and chip identification markings help-perhaps they are in a data
book. Identify the types of packages (pin-grid array, quad flat pack). Look for nearby components
that may give a hint-crystals for clock generators or the video subsystem. Where are the chips
located on the board-are they near the connectors for the floppy disk subsystem, the modem or
serial port, or video output? To help you, Table 15.9 shows an example-a list of the first row of
chips on an old H-P Vectra ES/12 motherboard. Use the same format for your list. 

TABLE 15.9  A list of the chips on the first row of an HP Vectra PC (Problem 15.11 ).

Manufacturer Chip Package Function Comment 

HP 87411AAE 24-pin DIP   

Intel L7220048 40-pin DIP EPROM (9/3/87) Boot commands 

Chips 7014-0093 80-pin quad flat pack Custom ASIC  

Intel 80286-12 68-pin package Microprocessor CPU 

TI AS00 14-pin DIP Quad 2-input NAND gate Addressing

 S74F08D 14-pin DIP Quad 2-input AND gate Addressing

 F74F51 14-pin DIP AOI gate Addressing

15.12  (Estimates, 60 min.) System partitioning is not exact science. Estimate:

a. The power developed by a grasshopper, in watts (from a Cambridge University entrance
exam). 
b. The number of doors in New York City. 
c. The number of grains of sand on Hawaii’s beaches. 
d. The total length of the roads in the continental United States in kilometers. 

In each case: (i) Provide an equation that depends on parameters and symbols that you define.
(ii) List the parameters in your equation, and the values that you assume with their uncertainty.
(iii) Give the answer as a number (with units where necessary). (iv) Include a numerical estimate
of the uncertainty in your answer.

15.13 (Pad-limited and core-limited die, 10 min.) As the number of I/O pads increases, an ASIC
can become pad-limited. The spacing between I/O pads is determined by mechanical limitations of
the equipment used for bonding-usually 2-5 mil (a mil is a thousandth of an inch). In a pad-limited
design the number of pads around the outer edge of the die determines the die size, not the number
of gates (see Figure 15.12 ). For the pad-limited design, shown in Figure 15.12 (a), the price per
I/O pad is more important than the price per gate. When we have a lot of logic but few I/O pads,
we have a core-limited design-the opposite of a pad-limited ASIC-as shown in Figure 15.12 (b).
For a given number of I/O pads and a pad-limited design, all the different ASIC types will have
the same die size, determined by a graph such as the one shown in Figure 15.12 (c). If I/O pad
spacing is 5 mil and gate density is 1.0 gate/mil 2 , when does an ASIC becomes pad-limited?
Express your answer as a function of the number of gates, G , and the number of I/Os, I .

 



 

FIGURE 15.12  Die size. (a) A pad-limited die, the die size is determined by the number of I/O
pads. (b) A core-limited die, the die size is limited by the amount of logic in the core. (c) For a
given pad spacing we can determine the die size for a pad-limited die.

15.14  (Estimating ASIC size, 120 min.) Let us pretend we are going to build a laptop
SPARCstation. We need to drastically reduce the number of chips used in the desktop system.
Focus on the I/O subsystems in Figure 15.2 (chip labels are shown in parentheses): LANCE
Ethernet controller (14), 3C90 SCSI controller (15), 85C30 serial port controller (16, 17), 79C30
ISDN interface (18), and 82072 floppy-disk controller (19). Consider combining these functions
into a single custom ASIC.

a. Collect as much data as you can on the ASSP chips (14-19) that are currently used in the
SPARCstation 1, similar to that presented in Table 15.5 . National Semiconductor, Texas
Instruments, AMD, Intel, and Motorola produce these or similar chips. You will need one or
more of their ASSP data books. Try to find the pin count, power dissipation, and gate count
for each chip. If you can’t find one of these parameters, make an estimate and explain your
assumptions. 
b. Using your data, make an estimate of the size, power dissipation, and pin count of the
ASIC to replace chips 14-19 in Figure 15.2 . 
c. As a sanity check compare your results with the DMA2 Ethernet, SCSI, and parallel port
chip in the SPARCstation 10 (see Table 15.2 ). This is a 30 k-gate array in a 160-pin quad
flat pack. 

15.15  (Power dissipation, 20 min.) If a Pentium microprocessor dissipates 5 W and, on average,
20 percent of the circuit nodes toggle every clock cycle 

a. Calculate the total capacitance of all the circuit nodes in picofarads if the clock frequency
is 100 MHz and V DD = 5 V. 

b. If half of this is due to interconnect capacitance at 2 pFcm -1 , what is the total length of
interconnect? 
c. If there are 100 I/Os driving an average of 20 pF load off-chip at an average frequency of
50 MHz, what is the power dissipation in the I/Os? 
d. A Pentium chip contains about 3 ¥ 10 6 transistors. How many gates is this? 
e. How many gates are switching on average every clock cycle? 

15.16  (Parasitic power dissipation, 20 min.) Consider the following arguments: The energy stored
in a capacitor is 1/2( CV 2 ) (measured in joules). Suppose we charge and discharge a capacitance
C between zero and V volts at a frequency f . We have to replace this energy f times per second
and we shall dissipate a power (measured in watts) equal to 



P = 0.5 f CV DD 2  (15.23)

When the p -channel transistor in an inverter is charging a capacitance, C , at a frequency, f , the
current through the transistor is C (d V /d t ), the power dissipation is CV (d V /d t ) for one-half
the period of the input, t = 1/(2 f ). The power dissipated in the p -channel transistor is thus 

   1/(2f)  d V      

P = f  CV -- d t = 0.5 fCV DD 2  (15.24)

   0  d t      

During the second half-period of the input signal the p -channel transistor is off, so that there can
be no power dissipation in the power supply. The power dissipation that occurs in the n -channel
transistor must come from the stored energy in the capacitor-which is accounted for in the
equation. In both cases the total power dissipation should be 1/2( fCV 2 ), not ( fCV 2 ) as we have
stated in Eq. 15.4 . Point out the errors in both of these arguments. (If you are interested in
situations in which these equations do hold, you can search for the term adiabatic logic.)

15.17  (Short-circuit power dissipation, 30 min.) Prove Eq. 15.5 as follows: The input to a CMOS
inverter is a linear ramp with rise time t rf . Calculate the n -channel transistor current as a function

of the input voltage, V in , assuming the n -channel transistor turns on when V in = V t n and the

current reaches a maximum when V in = V DD / 2 at t = t rf / 2.

The transistor current is given by Eq. 2.9. Assume b = ( W/L ) m Cox is the same for both p - and
n -channel transistors, the magnitude of the threshold voltages | V t n | are assumed equal for both

transistor types, and t is the rise time and fall time (assumed equal) of the input signal.

Show that for a CMOS inverter (Eq. 15.5 ): 

P 2 = (1/12) b f t rf (V DD - 2 V t n ) 3  (15.25)

where b = ( W/L ) m Cox is the same for both p - and n -channel transistors, the magnitude of the
threshold voltages | V t n | are assumed equal for both transistors, and t is the rise time and fall time

(assumed equal) of the input signal [ Veendrick, 1984].

15.18 (Connectivity matrix, 10 min.) Find the connectivity matrix for the ATM Connection
Simulator shown in Figure 15.5 . Use the following scheme to number the blocks and ordering of
the matrix rows and columns: 1 = Personal Computer, 2 = Intel 80186, 3 = UTOPIA receiver, 4 =
UTOPIA transmitter, 5 = Header remapper and screener, 6 = Remapper SRAM, . . . 15 =
Random-number and bit error rate generator, 16 = Random-variable generator. All buses are
labeled with their width except for two single connections (the arrows).

15.19 (K-L algorithm, 15 min.)



a. Draw the network graph for the following connectivity matrix: 

  0 0 0 0 0 0 1 0 0 0   

  0 0 0 0 0 1 0 1 0 0   

  0 0 0 1 0 0 0 1 0 0   

  0 0 1 0 1 0 0 0 1 0   

C = 0 0 0 1 0 0 0 0 0 0  (15.26)

  0 1 0 0 0 0 0 0 1 0   

  1 0 0 0 0 0 0 0 1 0   

  0 1 1 0 0 0 0 0 1 0   

  0 0 0 1 0 0 1 1 0 1   

  0 0 0 0 0 0 0 0 1 0   

b. Draw the partitioned network graph for C with nodes 1-5 in partition A and nodes 6-10 in
partition B. What is the cut weight? 
c. Improve the initial partitioning using the K-L algorithm. Show the gains at each stage.
What problems did you find in following the algorithm and how do you resolve them? 

15.20 (The gain graph in the K-L algorithm, 20 min.). Continue with the K-L algorithm for the
network that we started to partition in Figure 15.9 (a).

a. Show that choices of logic cells to swap and the gains correspond to the graph of
Figure 15.9 (b). 
b. Notice that G 5 = 0. In fact G m (where there are 2 m nodes to be partitioned) will always

be zero. Can you explain why? 

15.21  (Look-ahead gain in the K-L algorithm, 20 min.) In the K-L algorithm we have to compute
the gain each time we consider swapping one pair of nodes: 

g 1 = D a + D b - 2 c ab .  (15.27)

If we swap two pairs of nodes ( a 1 and b 1 followed by a 2 and b 2 ), show that the gain is 

g 1 = D a 2 + D b 2 - 2 c a 2 b 2 - 2 c a 2 a 1 - 2 c a 2 b 1 - 2 c b 2 a 1 + 2 c b 2 b 1 . (15.28)

15.22  (FPGA partitioning, 30 min.)  Table 15.10 shows some data on FPGAs from company Z.

TABLE 15.10  FPGAs from company Z (Problem 15.22 ).

FPGA size Die area / cm 2 Average gate count Package pins Cost

S 0.26 1500 68 $26

M 0.36 2300 44 $35

L 0.46 2800 84 $50



XL 0.64 4700 84 $90

XXL 0.84 6200 84 $130

a. Notice that the FPGAs come in different package sizes. To eliminate the effect of package
price, multiply the price for the S chip by 106 percent, and the M chip by 113 percent. Now
all prices are normalized for an 84-pin plastic package. All the chips are the same speed
grade; if they were not, we could normalize for this too (a little harder to justify though). 
b. Plot the normalized chip prices vs. gate count. What is the cost per gate? 
c. The part cost ought to be related to the yield, which is directly related to die area. If the
cost of a 6-inch-diameter wafer is fixed (approximately $1000), calculate the cost per die,
assuming a yield Y (in percent), as a function of the die area, A (in cm 2 ). Assume you
completely fill the wafer and you can have fractional die (i.e., do not worry about packing
square die into a circular wafer). 
d. There are many models for the yield of a process, Y . Two common models are 

Y = exp [-  (AD) ] .  (15.29)

and 

   1 - exp (- AD ) ^ 2  

Y =  ----------- ~  (15.30)

   AD ¯   

Parameter A is the die area in cm 2 and D is the spot defect density in defects/cm 2 and is usually
around 1.0 defects/cm 2 for a good submicron CMOS process (above 5.0 defects/cm 2 is unusual).
The most important thing is the yield; anything below about 50 percent good die per wafer is
usually bad news for an ASIC foundry. Does the FPGA cost data fit either model?

e. Now disregard the current pricing strategy of company Z. If you had to bet that physics
would determine the true price of the chip, how much worse or better off are you using two
small FPGAs rather than one larger FPGA (assume the larger die is exactly twice the area of
the smaller one) under these two yield models? 
f. What assumptions are inherent in the calculation you made in part e? How much do you
think they might affect your answer, and what else would affect your judgment? 
g. Give some reasons why you might select two smaller FPGAs rather than a larger FPGA,
even if the larger FPGA is a cheaper solution. 
h. Give some reasons why you would select a larger FPGA rather than two smaller FPGAs,
even if the smaller FPGAs were a cheaper solution. 

15.23  (Constructive partitioning, 30 min.) We shall use the simple network with 12 blocks shown
in Figure 15.7 to experiment with constructive partitioning. This example is topologically
equivalent to that used in [Goto and Matsud, 1986].

a. We shall use a gain function, g(m) , calculated as follows: Sum the number of the nets (not
connections ) from the selected logic cell, m , that connect to the current partition-call this
P(m). Now calculate the number of nets that connect logic cell m to logic cells which are not
yet in partitions-call this N(m). Then g(m) = P(m) - N(m) is the gain of adding the logic cell



m to the partition currently being filled. 
b.  Partition the network using the seed growth algorithm with logic cell C as the seed. Show
how this choice of seed can lead to the partitioning shown in Figure 15.7 (c). Use a table like
Table 15.11 as a bookkeeping aid (a spreadsheet will help too). Each row corresponds to a
pass through the algorithm. Fill in the measures, P(m) - N(m), equal to the gain, g(m). Once
a logic cell is assigned to a partition, fill in the name of the partition (X, Y, or Z) in that
column. The first row shows you how logic cell L is selected; proceed from there. What
problems do you encounter while completing the algorithm, and how do you resolve them? 
c.  Now partition using logic cell F as the seed instead-the logic cell with the highest number
of nets. When you have a tie between logic cells with the same gain, or you are starting a
new partition, pick the logic cell with the largest P(m) . Use a copy of Table 15.12 as a
bookkeeping aid. How does your partition compare with those we have already made
(summarized in Table 15.13 )? 
d. Comment on your results. 

Table 15.14 will help in constructing the gain function at each step of the algorithm. 

TABLE 15.11  Bookkeeping table for Problem 15.23 ( b ).

Pass Gain A B C D E F G H I J K L

1 P - N 
= g 

0 - 2 
= -2

1 - 2 
= -1

X 0 - 2 
= -2

1 - 4 
= -3

0 - 5 
= -5

0 - 2 
= -2

0 - 2 
= -2

0 - 3 
= -3

0 - 3 
= -3

0 - 2 
= -2

0 - 1 
= -1

2    X       X  X

TABLE 15.12  Bookkeeping table for Problem 15.23 ( c ).

Pass Gain A B C D E F G H I J K L

1 P - N = g 1 - 2 
= -1

0 - 2 
= -2

1 - 1 
= 0

1 - 1 
= 0

1 - 3 
= -2

X 0 - 2 
= -2

1 - 2 
= -1

2 - 2 
= 0

0 - 3 
= -3

0 - 2 
= -2

0 - 1 
= -1

2       X   X    

TABLE 15.13  Different partitions for the network shown in Figure 15.7 (Problem 15.23 c ).

Partitioning
Total external 
connections

Partition contents

X, Y, Z

Connections to each

partition

Figure 15.7 (b)
5

(2, 4, 5, 6, 8)

X = (A, B, C, L)

Y = (D, F, H, I)

Z = (E, G, J, K)

3

3

4

Figure 15.7 (c)
7

(2, 3, 5, 7, 9, 11, 12)

X = (A, B, F, D)

Y = (H, I, J, K)

Z = (C, E, G, L)

5

5

4

TABLE 15.14  An aid to calculating the gains for Problem 15.23 .

Number of



Logic cell Connects to: Number of nets
connections

A B, F 2 2

B A, (C, E) 2 3

C (B, E) 1 2

D F, H 2 2

E (B, C), F, (G, L), J 4 6

F A, D, E, (H, I1), I2 5 6

G (E, L), (J, K) 2 4

H D, (F, I) 2 3

I F1, (F2, H), (J, K) 3 5

J E, (G, K1), (I, K2) 3 5

K (G, J1), (I, J2) 2 4

L (E, G) 1 2

15.24 (Simulated annealing, 15 min.) If you have a fixed amount of time to solve a partitioning
problem, comment on the following alternatives and choose one:

i. Run a single simulated annealing cycle using a slow cooling schedule.

ii. Run several (faster) min-cut based partitionings, using different seeds, and pick the best one.

iii. Run several simulated annealing cycles using a faster cooling schedule, and pick the best result.

15.25  (Net weights, 15 min.)  Figure 15.13 shows a small part of a system and will help illustrate
some potential problems when you weight nets for partitioning. Nets s1-s3 are critical, nets c1-c4
are not. Assume that all nets are weighted by a cost of one unless the special net weight symbol is
attached.

a. Explain the problem with the net weights as shown in Figure 15.13 (a). 
b.  Figure 15.13 (b) shows a different way to assign weights. What problems might this
cause in the rest of the system? 
c.  Figure 15.13 (c) shows another possible solution. Discuss the advantages of this
approach. 
d. Can you think of another way to solve the problem? 

This situation represents a very real problem with using net weights and tools that use min-cut
algorithms. As soon as you get one critical net right, the tool makes several other nets too long and
they become critical. The problem is worse during system partitioning when the blocks are big and
there are many different nets with differing importance attached to each block-but it can happen
during floorplanning and placement also.

 



 

FIGURE 15.13  (For Problem 15.25 .) An example of a problem in weighting nets. The symbols
attached to the nets apply a weight or cost to that net during partitioning. Nets c1-c4 are control
lines-they are not critical for timing purposes. Nets s1-s3 are signal lines that are critical-they
must be kept short. The figure shows three different ways to handle this using net weights.

15.26  (Cost, 60 min.)  You have three chip sizes available for your part of project "DreamOn" (a
new video game): S, M, and L. The L chip has twice the logic of the M chip. The M chip has twice
the logic of the S chip. The L chip costs $16, which is 4 times as much as the M chip and 16 times
as much as the S chip. There are two speed grades available: fast (F) and turbocharged (T). The T
chip costs twice as much as the F version. Using a partitioning program, you find you need the
equivalent of 1.8 of the L chips, but only a third of your logic needs a T chip.

a. What is the cheapest way to build "DreamOn"? 
b. During prototyping you find you can use 90 percent of the S and M type chips, but for
reliable routing you can only count on a maximum utilization of 85 percent for the L chip.
You also find that, to maximize performance, you need to keep all of the logic that requires
the turbo speed on one chip. Our ASIC vendor, Xactera, promises us that the chip prices will
fall by the time we go into production in one year. The estimates are that the prices will be
almost proportional to chip size: The L chip will cost 2.2 times the M chip and 4.4 times
whatever is the cost of the S chip by then (but Xactera will not commit to a future price for
the S chip, only the present price). You predict the price of the S chip will fall 20 percent in
one year (this is about average for the annual rate of price decrease for semiconductors).
Xactera says the turbocharged speed grade will stay about twice the cost of the fast grade.
How does this information affect your decision? 
c. Some time later, as you are ready to go on vacation, the production department tells you
that the board cost is about the same as the chip cost! The board area does not make much
difference to the price, but there is an extra charge per package pin to reflow solder the
surface-mount chips. We only need each chip to have the minimum size package-a 44-pin
quad plastic package. Production has two price quotes: Boards-R-Us charges $5 per board
plus $0.01 per pin, and PCB Inc. quotes at $0.05 per pin. What should we do? The CEO
needs a recommendation today. 
d. You come back from holiday and find out from your e-mail that we went with your
recommendation on the board vendor but now we have other problems. The test company is
charging per chip pin on the board since we are using an old style bed-of-nails tester. The
cost is about $0.01 per chip pin. You can go back and add a test interface to all the chips,
which is the equivalent of adding 10 percent of a small chip (type S) on each chip (S, M, or
L). This would eliminate the bed-of-nails test, and reduce board test cost to $1 per board.



Xactera also just lowered their prices: L chips are now $4, M chips are $2, and S chips are
$0.95. There is also a new Xactera XL chip that has twice the capacity of the L chips and
costs $8 (but you do not know what utilization to expect). These prices are for the fast speed
grades, the turbo versions are now 2.5 times more expensive. 
e. There are some serious consequences to making any design changes now (including
schedule slips). We have an emergency meeting with production, finance, marketing, and the
CEO this afternoon in the boardroom. I have to prepare a presentation outlining our past
decisions and the advantages and disadvantages of each of our options (with quantitative
estimates of their effect). Can you prepare four foils for me, and a one-page spreadsheet that
will allow us to make some rapid "what-if" decisions in the meeting? Print the foils and the
one-page spreadsheet. 
f. A year later we are in full production and all is well. We are reviewing your performance
on project "DreamOn." What did you learn from this project and how would you do things
differently next time? (You only have room for 100 words on your review form.) 


